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A semispan wing and nacelle of a typical general aviation twin-engine aircraft was lested to evaluate the

cooling capability and drag of several nacelle shapes; the nacelle shapes included cooling air inlet and exit
variations. The tests were conducted in the Ames Research Center 40 x g0-ft Wind Tunnel. It was found thai the

cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery,
but only a minor effect on drag. Exit location showed a large effect on drag, especially for those locations on the
sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.

Nomenclature

A i = cooling air inlet area
A ® = cooling airstream tube cross section
C = cowl-flap exit width

C O = drag coefficient

Cp = pressure coefficient

LCPid = ideal pressure coefficient [Eq. (4)]= cowl-flap exit length

p = pressure
q = dynamic pressure
S =semispan model wing area =8.60 m 2 (92.6 ft 2)

I(.** = airspeed
W = cooling air mass-flow rate
W,. = required cooling air mass-flow rate = 1.4 kg/s

(3 Ib/s)
a =angle of attack
B = orifice plate opening

5¢f = cowl-flap deflection
p =air density

Subscripts

/ = lower plenum

u = upper plenum
oo =upstream conditions

Introduction

HE airborne piston engine cooling problem is almost as
old as powered flight itself. During World War !1, there

were numerous studies of engine cooling and nacelle in-

stallations. A summary of the British effort at that time is

given in Ref. 1. The combined study of engine cooling and
associated nacelle drag (cooling drag) was initiated only
recently, 2s because of difficulties in availability and increases

in the price of fuel. The present opposed piston layout used on
general aviation aircraft led to new cooling problems that are
different from those of earlier radial engine installations. An

early study of such horizontally opposed installations is

reported by Ellerbrock and Wilson, 6 who started with cooling
air inlets located on both sides of the spinner, similar to
present design practice. By combining a single low inlet (under
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the spinner) with an upflow cooling system, however, they
considerably improved the cooling characteristics of the

installation. Current experience with piston engine in-
stallations is summarized by Monts. 2 Miley et al. 3.4 recently

conducted a series of flight tests in which they recorded inlet
pressure recovery data to obtain inlet efficiency, propeller

slipstream, total pressure, and the pressure drop across the
cylinders for several inlet geometries. The major concern of
their studies was the engine cooling; drag data were secondary
considerations, in order to fill this need, accurate

measurements of nacelle drag were conducted in the 40 × 80-ft
Wind Tunnel at Ames Research Center by Corsiglia et al., _

who found that about 13°70 of the aircraft drag is associated

with the cooling requirements of the engines. Only 2-4070 of
the airplane drag results from the engine itself. The balance is
associated with inlet losses and the external shape, including

the cowl flap (Fig. 1). The present study, a continuation of

that investigation, examines the pressure recovery and relative
drag of several cooling air inlets; the performance and drag
effects of various air exits were also tested and analyzed.

Experimental Setup

In the present test, a semispan wing model of a typical

general aviation twin-engine aircraft was mounted vertically
in the Ames 40 x 80-ft Wind Tunnel (Fig. 2). The production
nacelle that was tested had two side inlets and one cowl-flap

exit at the bottom. During the test, both the size and shape of

the cooling air inlets and exits were changed. The drag and lift
forces were measured, using the wind-tunnel scales. In ad-
dition, the pressure was recorded at 48 locations in and
around the nacelle.

_ ICOOL ING DRAG

I 12-13 %

AIRPLANE DRAG

100%

Fig. I Magnitude of cooling drag relative to airplane drag and
magnitude of various components of cooling drag.
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Fig. 2
Tunnel.

24 m (80 it)

V_ END PLATE

Schematic of cooling drag model in the 40xg0-fl Wind

ENGINE SIMULATOR
COOLING AIR INLET /

SIDE EXIT IA + B)

1) OR COWL FLAP EXIT

NLET __...__

ADJUSTABLE ORIFICE LOWER PLENUM

b) OPENINGS

Fig. 3 Schematic of airflow through cooling drag
a) Production nacelle; h) spinner inlet.

model. a)

A schematic description of the cooling drag model is given

in Fig. 3. The cooling air entered through the inlet into the

upper plenum, where the recovery pressure was measured; it

then passed through an adjustable orifice plate into the lower

plenum. By varying the orifice opening, the cooling air mass-

flow rate was controlled. From the lower plenum the air was

exhausted through the exit, which was either on the sides or on

the bottom of the nacelle. Only the bottom exit (Fig. 3a) was

assisted by a cowl flap. The total pressure recovery in the

upper plenum was measured by eight total pressure probes

(Kiel) and four static holes. The total pressure in the lower

plenum was measured in a similar manner, but only four Kiel

probes were used. The total pressures at the exits were

measured by four Kiel probes and the static pressures by four

static holes on the outside of the nacelle. Additional surface

pressure data on the back of the nacelle were recorded

through static holes on the surface.

An engine simulator was fitted in the middle of the nacelle

(Fig. 3) for the wind-tunnel runs. It consisted of a tubular

volume that partially filled the upper and lower plenum

volumes, thereby using space normally occupied by a gasoline

engine. Further details on the test apparatus and cooling air

mass-flow measurements are given in Ref. 5. The accuracy of

lift and drag data was about 0.1 and 1.0%, respectively.

Two basic flight conditions, climb and cruise, were

examined during the test. Table 1 defines these two flight

conditions. The air mass-flow rate through the nacelle for

each configuration was increased by opening the orifice plate

from/_ = 0 to the fully open/_ = 1.0 position. The reduction in

the inlet size was obtained by inserts (Fig. 4) that had smaller

openings but retained the same inlet contour and inlet lip

radius. The production inlet areas are given in Table 1.

Study of Inlet Geomelry

In this section, two parameters are reported: 1) the cooling

air inlet area A_ (or velocity ratio) and 2) the variation in

inlet design. The upper plenum total pressure recovery Cp
and semispan model drag coefficient C D are defined a_s

b)

Fig. 4 Inlet inserts used to change inlet area ratio, a) Production

inlet; b) spinner inlet.

Table ! Test variables

Tunnel and model conditions

Condition q, cm H20 (psi') ct, deg 6_r, deg V®, m/s (ft/s)

Climb 15. I (30) 8 30 50 (166)

Cruise 40.3 (80) 2.3 0 84 (272)

Inlet variables

Production inlet area, Spinner inlet area,
Inlet cm 2 (in. 2 ) cm 2 (in.2)

Large 690 007) 393 (61)

Medium 393 (61) 329 (51 )
Small 265 (41 ) 265 (41 )



JULY 1982 COOLING AIR INLET AND EXIT GEOMETRIES 527

1.0

,6

Cp u

.4

a) o

_. 1 - (A_/Ai) 2

CRU,SE
\. CLIMB

\

.O6

.O5

C D

.04

-- CRUISE

--- CLIMB

- - -
,,,c///-- -
1,1111 _
066

W/Wc
1.00

.03

b) .o2 b) i i A

.2 .4 .6 .8 1.0

A_/A i

Fig. 5 Influence of cooling air inlet area ratio on a) pressure

recovery and b) drag; IV c = 1.36 kg/s (3 Ib/s), production inlet.
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follows:

Cp. = (p.-p®)/q (l)

CD = D/qS (2)

q=p= V_2 (3)

Here p. and p® are the upper plenum total and far-field static
pressures, respectively.

Production Inlet

The variation of Cp and C o with area ratio is shown in
Fig. 5 for a typical pro"duction inlet design; the far-field area

A= represents the area of incoming stream tube, with a
uniform velocity V** (see Fig. 3). The pressure recovery C,
decreases for decreasing inlet area A, and is smaller than th_

ideal external pressure recovery Cpi d that would be expected
ahead of the inlet.

Cpi d = 1 - (A..IAi) 2 (4)

The value of 1 - (A**/Ai) 2 is plotted in Fig. 5a; the poorer
measured pressure recovery is due to a smaller effective inlet
area than the actual geometrical inlet size. This inlet blockage
results from the sharp inlet lips and edges and the boundary
layer originating from the propeller spinner. The production

inlet pressure recovery Cp vs normalized cooling air mass-
flow rate I,V/I_' c is plotted"in Fig. 6, where We is the cooling
air mass-flow rate required for adequate cooling at climb. The

high inlet losses are due to the inlet design that has no internal
diffuser walls to insure high internal pressure recovery. This is
so because of the lack of space between the propeller and the

engine cylinders. Miley et al. 4 noted this and studied inlets
where the internal diffuser length was increased to the

maximum space available. In the absence of internal inlet

diffuser length for the production inlet design, higher pressure
recoveries can be obtained by increasing the inlet area A i,
which results in external diffusion, as seen in Fig. 5a.

An earlier study by Becker 7 that related inlet size to nacelle
drag concluded that smaller inlets have lower drag because the
transition to turbulent boundary layer is delayed. Becker

recommended that inlets have area ratios greater than

A**/Ai = 0.3 because suction pressure peaks (as shown in Ref.
5) result in a thickened boundary layer and increased drag.
Hammen and Rowley 8 claimed later that reasonable area

ratios would be A=/A_=0.4 for cruise and about 0.8 for the
more critical climb condition. The drag coefficient data of

Fig. 5b show no significant drag reduction with increasing
area ratio. Tuft studies indicate flow separation behind the

nacelle and on the wing fairings around the back of the
nacelle; the separations were probably initiated by the blunt
shape of the nacelle at the inlet section. Therefore changing

the size of the inlet did not considerably change the pressure
distribution either in the front or in the rear of the

nacelle--thus there was almost no change in drag.
Because of the absence of internal diffusion, it is concluded

that the performance of production type inlets decreases with
reduced inlet size and with increased angle of attack.
Therefore, to obtain the highest pressure recovery, the largest

inlet is preferred.

Spinner Inlet
Earlier studies conducted at Ames Research Center 5 found

a nacelle shape with reduced external drag; a flow-through
version of the same shape was tested in the present in-

vestigation. A schematic description of this configuration
(spinner inlet) is shown in Fig. 3. The single inlet forms an
annulus around the propeller spinner. Although it did not

rotate in the present study, it would, in practice, rotate with

the propeller spinner and might have fan blades to extract
power from the engine to boost cooling performance. A
similar design was tested on an aircraft by Bierman and
Turner 9 in the early days of World War II. They found im-

proved cooling potential with that design when the airplane

was on the ground. A further advantage of this layout is the
inclusion of a diffuser without using propeller shaft ex-

tensions or an increase in upper plenum volume to produce a
more uniform cooling air distribution among the cylinders.

The performance of such an engine nacelle is given in Figs. 7

and 8; inlet area values are given in Table l. In comparison
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with the results for a conventional inlet in Fig. 5, it is evident
that the pressure recovery of the spinner inlet is considerably

higher and that drag levels are the same. The lack of drag
reduction is probably due to the small inlet radius used--l.9

cm (0.75 in.)--to keep the interchangeable inlet duct size
small. A larger inlet radius will reduce pressure peaks at the
outer side of the inlet lips, thereby reducing the boundary-
layer thickness so as to lower the external drag. 7 For the climb

case (Fig. 7a), inlet pressure recovery Cp_, is much lower as a
result of the internal flow separation. All data points are
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Fig. 10 Drag coefficient of model with cowl-flap exits vs cooling air
mass-flow rate; climb configuration, a) Narrow cowl flap, L = 43 cm
(16.9 in.), C= 25 cm (9.8 in.); b) production cowl flap, L = 25 cm (9.8
in.), C= 43 cm (16.9 in.).

above the external pressure recovery Cpd , however, in-
dicating that the pressure recovery is greaier than that for

external diffusion only. Moreover, the cruise data points
show internal pressure recoveries of 90-95 %, values that are

reasonable for such geometry._O Figure 8 also shows the high
pressure recovery potential of the spinner inlet geometry. For
the climb case ((_=8 deg), the inner flow separations are
stronger; however, the inclusion of built-in compressor blades

on a rotating version of the spinner inlet and a larger inlet lip

radius would be expected to significantly improve the pressure
recovery. It is interesting to observe the curves in Figs. 6 and
8; they indicate a nonlinear relationship between C. and
mass-flow rate, especially for the climb condition in'_vhich

internal flow separation is present.

The angle-of-attack-dependent performance of the con-

ventional and spinner inlets is presented in Fig. 9. The con-

ventional inlet had an area ratio of A=/A, =0.2; the spinner

inlet had less than 500/0 of this inlet area (A=/A_ =0.43). The
smaller spinner inlet was used here for the comparison
because the pressure recovery is the closest to the conventional

inlet. Even so, the drop in Ca, starts at angles of attack of
about _ = I0 deg instead of at _ = 4 deg for the conventional

inlet (orifice opening was the same for both cases, _ = 0.60).
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Fig. 13 Effect of aft fairing on nacelle drag for side exit B and
production cowl-flap exit (_rr = 30 deg); climb configuration.

Both inlets show decreased inlet recoveries with increasing

angle of attack because of the mentioned internal separations
with increased cooling airflow.

Study of Exit Geometry

Cowl-Flap Exits

In this section the performances of lower cowl-flap exits

(see insert in Fig. 10) and side-mounted exits (insert in Fig. 11)
are examined. The problem of cowl-flap exit shape was in-
vestigated earlier by Hammer and Rowley, 8 who found that

the longer and narrower cowl flaps provide more efficient
pumping of the cooling air. Those exits were mounted on the
sides of the aircraft fuselage, however, and no drag data were

reported.

Figure 10 shows the drag coefficient due to cowl-flap

opening 6¢f of two exits having the same area. The results for
the production cowl are noted to confirm those obtained
earlier by Corsiglia et al. s The dimensions of the narrow cowl
are the same as those of the production cowl, but the
dimensions L and C are inverted. The dashed lines in Fig. 10a,

marked by 3=0.6, correspond to data taken at constant

orifice opening. This condition was found to provide a
pressure drop between the upper and lower plenum

corresponding to that of an actual gasoline engine. Therefore
this line provides the drag variation and cooling air mass-flow

rates vs cowl-flap opening (_¢f) as would be measured with an
actual gasoline engine present. In Fig. 10b, the _ = 0.6 line of
the narrower cowl flap was repeated for comparison with the

performance of the wider design. It is evident from that
comparison that the narrow cowl flap has both slightly higher

drag and lower mass-flow rate (less suction) than the
production cowl. A possible explanation for that increase in
drag is the stronger vortices that occur on the edge of the

separated flow region shed behind the narrow cowl flap due to

its greater extension into the airstream.

Side Exits

The nacelle surface pressure data provided in Ref. 5

suggested a side location for the cooling exits that might take
advantage of the low pressure provided by the wing leading

edge (up to CA = - 1.2). _ The side exits tested (see Fig. 3 and
the insert in Fig. I 1) started at 2.5 cm (! in.) above the wing

leading edge and had a total length of 46 cm (18 in., inlets A
and B). Part of the inlet could be closed to provide a forward

inlet A, having an area of 368 cm 2 (57 in.:), or a rear exit
section B with an area of 206 cm 2 (32 in.2). The interaction of
the exiting flow with the wing surface pressures resulted in a

loss in lift compared to the standard cowl configuration of up

to z_CL = 0. I for _ = 8 deg. In addition, the drag was increased
by the amounts shown in Fig. 11. The configuration A and B
inboard only refers to a configuration with exit only on the

wing-root side of the nacelle. The aft location of the side exit
(configuration B) in which the external surface pressure
coefficient was C_=-0.8 (as shown in Ref. 5) seemed to

provide improved' performance. Lift losses for this con-

figuration (not shown) were less than AC L=0.05, and the
drag values shown in Fig. I ! are much lower than the drag of
the exits, including the A location. The flow-rate values,
however, are lower than those with configuration A for

corresponding values of the orifice opening (/_). This is a
result of the lower external pressure at this exit location.

Preliminary analysis of some more recent data suggests that
further improvements in exit performance can be obtained by

moving the exit forward of the leading edge.

An important feature of the side exits is seen in Fig. 12.

Here the orifice plate opening /_ (simulating the cooling air
pressure drop across the cylinders) was set up to/3 = 0.60. As
the wing angle of attack was increased, the suction capability

of the side exits increased while that of the production cowl
stayed the same. This is an important feature because

reduction in aircraft speed results in an increase of angle of
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attack, which corresponds, in the case of climb, to higher

cooling airflow requirements. This exit suction characteristic,

however, was accompanied by an adverse effect on lift and

drag at fixed angle of attack. The interference was partially in

the form of increased flow separation on the aft portion of the

nacelle as noted by tuft studies. The effect of this flow

separation is demonstrated in Fig. 13. Here an aft fairing was

added (see insert, Fig. 13) to better contour the surface. It can

be seen that the drag is substantially reduced with the aft

fairing. In fact, there is a negligible difference in drag between

the configuration with side exits with aft fairing and the

configuration with cowl-flap exit (e.g., compare Figs. I i and

13).

It is concluded that the side exits have some very important

characteristics, and that by reducing interference with the

wing (possibly by a more forward exit location) and

modifying the nacelle aft section (aft fairing), they might be

an attractive replacement for the present cowl-flap exits.

Conclusions

It was shown earlier that the cooling drag for a typical

general aviation aircraft accounts for as much as 13e/0 of the
aircraft's total calculated drag, and that the power required

for engine cooling adds up to only about 2-4°/o of the air-

craft's drag. That situation can be improved by using inlet

designs that provide higher pressure recovery and by using

improved cooling exits integrated into a lower drag nacelle.

By adding a diffuser to the inlet, pressure recoveries of up to

95¢/0 were demonstrated. That improvement alone can

eliminate most of the need for a cowl flap and thereby save up

to 3_/0 of total aircraft drag. Drag reduction by improved

nacelle design can be attained by carefully contouring the

nacelle aft section. The high drag is mainly a result of the

current blunt shape and sharp corners of the front of the

nacelle, which cause an increase in boundary-layer thickness

that results in flow separation around the inlet and behind the
nacelle.

The present study has been extended to include tests with a

propeller and tests with an operating piston engine. _t.J2 It was

found that the effect of the propeller slipstream was to reduce

the frontal air spillage around the blunt nacelle shape. These

effects are more pronounced for the climb condition. For the

cruise condition, those effects were more moderate.
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