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PREFACE.

IN recent years investigations of the torsional vibration
characteristics of shaft systems transmitting pulsating
torques have become an important part of the designer’s
responsibility.

Indeed,. satisfactory operation of high-duty trans-
mission systems may be said to depend to a large extent
on successful handling of the vibration problem.

‘Whilst many failures of shafting have been traced
to abmormal vibration at critical speeds, satisfactory
operation implies more than freedom from actual me-
chanical breakdown. The ideal system should exhibit
no perceptible vibratory disturbance throughout the
normal operating speed range, a requirement which
is now an important consideration in the design of
automobile transmission systems.

The rapid development of the internal combustion
engine for marine propulsion is another factor which
has brought the torsional vibration problem into such
prominence that a definite guarantee of a smooth
operating speed range is becoming a feature of many
high-class marine specifications.

In electrical engineering practice, the heavy rotating
masses necessary for satisfactory electrical operation of
generating sets direct-coupled to internal combustion
engines render this type of installation particularly
susceptible to disturbing vibrations, and it is necessary
to make sure that no critical or disturbing amplitude
occurs near the operating speed.
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In this book an attempt has been made to set down
the principles and computation details of the subject
in a manner suitable for everyday reference. The
selection and arrangement of the subject-matter is
based on several years’ practical experience in carrying
out torsional vibration investigations on many different
types of installation ; and the methods which are de-
veloped have been found reliable in practice.

It is hoped that the reader in search of specific
information will be able to select data appropriate to
his particular problem, and from this build up a set of
standard forms suitable for rapid reference.

Acknowledgment is due to the reference works listed
in the Bibliography; and to the firms whose names
appear in the text for permission to reproduce diagrams
of their specialities.

W.K. W.

SUNDERLAND,
October, 1g34.

PREFACE TO SECOND EDITION.

A REVIEW of engineering progress during the past four
or five years reveals in no small measure the tonic
influence of applied vibration study with the out-
standing importance of torsional vibration phenomena
well established.

This period has been notable for a steady accumula-
tion of contributions to the literature dealing with both
practical and theoretical aspects of the subject, whilst
at the present time there is undoubtedly an increasing
tendency towards regarding vibration study as a neces-
sary accompaniment of sound fundamental design.
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The particularly insidious nature of torsional vibra-
tion is due to a capacity for destructive action without
displaying the external symptoms which are usually
very mnoticeable with other forms of vibration. In
addition, torsional critical zomes invariably occupy
lower positions in the speed range than those corre-
sponding to flexural modes, since the moduli of rigidity
of most structural materials are less than one-half the
moduli of elasticity.

Furthermore, the fatigue limits for alternating tor-
sion are invariably about one-half the fatigue limits
for alternating flexure ; torsional excitations are more
numerous ; and, finally, whereas flexural excitations
can in many cases be neutralised by simple means such
as halance weights, torsional excitations usually require
a change of fundamental design to bring about even
partial cancellation.

In reviewing the progress made since the first edition
of this book was published the following items are of
special interest.

More general application of the art of tuning oscil-
lating systems so that severe critical zones do mot
occur in the operating speed ranges. For example, the
use of stiff connecting shafts where it is expedient to
place the severe critical zones above the operating range
or the use of very flexible shafts or couplings when the
better solution is to place these zones below the operating
range. There are indications that the trend towards
higher operating speeds is exhausting the possibilities
of high-frequency tuning as a method of solving tor-
sional vibration problems, and on this account there
is considerable interest in the future development of
couplings employing rubber spring elements.
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Considerable progress has been made in accumulating
data relating to fatigue phemomena with particular
reference to the influence of structural discontinuities
in causing zones of high-stress concentration. The
valuable work carried out at the Imstitution of Auio-
mobile Engineers Research Laboratories in this country,
and at the German Institute for Aeronautical Research,
on full-scale crankshaft elements to determine the
influence of crank form and material deserves special
attention.

There appears to be a general tendency to employ
vibration absorbers instead of emergy destroying
dampers where a completely satisfactory solution can-
not be obtained by tuning methods alone. Outstanding
achievements in this direction are detuning flywheels
and couplings, and the rotating pendulum absorber.

The rotating pendulum absorber was first used in
quantity on radial aero-engines, and in a paper read at
a meeting of the Imstitute of Aeronautical Sciemces in
1936, Mr. Arthur Nutt, Vice-President of Engineering
of the Wright Aeronautical Corporation, said that without
question the development of the rotating pendulum
absorber was one of the most valuable contributions to
aircraft engine design in many years.

Since the installation of these absorbers service
experience over extended periods shows an appreciable
reduction in wear not only of engine parts but also of
the operating mechanism of variable pitch air-screws.
In the latest engines the absorbers have permitted
a higher take-off speed with an actual decrease of air-
screw stress due to reduction of torsiomal vibration.
This latter point indicates that a satisfactory solution
of the torsional vibration problem may also be bene-
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ficial throughout the power plant. Indeed, recognition
of the possibility of sympathetic response of all parts
of an oscillating system to appropriate excitations has
explained certain apparent discrepancies between prac-
tical results and theoretical predictions in cases where
the theoretical treatment did not take into account the
influence of all parts of the system.
Aero-Engine/Air-screw installations are particularly
important examples of this aspect of the torsional
vibration problem. Until quite recently it was cus-
tomary to carry out a torsional vibration analysis by
regarding the air-screw as a rigid flywheel having the
same polar moment of inertia and then treating the
simplified system as a normal multi-mass system capable
of oscillating in various modes of torsional vibration,
i.e. the influence of air-screw blade flexibility was
neglected. It is now known, however, that this par-
titioning of the engine and air-screw assemblies is
liable to yield gravely misleading results, and that a
true solution can only be obtained by methods which
take into account the characteristics of the combined
engine and air-screw systems simultaneously. Un-
fortunately oscillating systems which contain com-
plicated structural elements, such as air-screw blades,
do not yield easily to mathematical treatment alone,
although this method of attack provides a useful
physical conception of the dynamic principles involved.
This difficulty has been overcome by the development
of suitable experimentalmethods, and these are described
in an Appendix to Volume I of the present edition.
The introduction of flexible mountings for engines
is another factor which has complicated the study of
torsional vibration phenomena, especially in geared

e
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engines where there is a particularly strong coupling
between crankshaft and crankcase motions, whilst
in a recent paper entitled “ Strength of Marine Engine
Shafting " (N.E. Coast Instn. of Engs. & Shipbuilders,
1939), Dr. Dorey has drawn attention to the possibility
of crankshaft failure through axial or longitudinal
vibration probably initiated by torsional excitations.
The existence of a relationship between axial and tor-
sional modes has not yet been definitely established,
however, and is one of the items for future investigation.

Damping of torsional vibrations, especially in engine
systems, has received considerable attention during
the period under review, without however disclosing
any better method for assessing the probable vibratory
amplitudes and stresses in resonant zones than the
empirical or semi-empirical formule commonly em-
ployed for this purpose. This work has served to
emphasise the complex nature of engine damping, and
has drawn attention to its non-linear character which is
undoubtedly a powerful check on the growth of vibra-
tory amplitudes. The rapid increase of hysteresis
damping at stresses in the neighbourhood of the fatigue
limit of the material, for example, probably accounts
for absence of trouble in many an otherwise risky
adventure in crankshaft design.

The assessment of torsional vibration stresses in
Tesonance remains, therefore, a matter for establishing
reliable empirical formule based on test results. This
has paturally led to the development of accurate in-
struments for measuring torsional vibration frequencies
and amplitudes. Apparatus is now available for all
classes of installation, including high-speed automobile
and aero-engine systems.
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In preparing this edition an attempt has been made
to bring the text and illustrations thoroughly up-to-date,
This has necessitated re-writing a considerable part of
the original text and the introduction of several new
chapters. Inaddition to theinclusion of a large amount
of new practical design data and a more comprehensive
treatment of high-speed engine systems, the following
important changes will be found :—

More comprehensive treatment of flexible
couplings, including the use of rubber as a struc-
tural material with special reference to rubber-in-
shear couplings.

The addition of material relating to the choice
of crank sequence and firing order of various engine
aggregates, including single and multi-row radial
engines with articulated connected rods, and Vee-
type in-line engines.

Considerable additions to the subject-matter
relating to geared systems, including the treatment
of geared engines supported on flexible mountings.

The material relating to vibration measuring
instruments has been - brought up-to-date and
includes the latest types of electrical measuring
instruments and a full discussion of instrument
theory and calibration.

The subject-matter relating to engine damping
has been completely revised.

Comprehensive treatment of the properties of
materials used in transmission systems, including
astudy of fatigue phenomena with special reference
to the influence of discontinuities in causing stress
concentrations.
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The material relating to damping devices has
been brought up-to-date and includes a separate
chapter dealing with the rotating pendulum vibra-
tion absorber.

The inclusion of a simple practical treatment of
air-screw blade vibration and its influence on the
vibration characteristics of aircraft power plants.

The Bibliography has been expanded consider-
ably, and a list of British Patents relating to tor-
sional vibration has been added in Volume I

In conclusion the author desires once again to make
acknowledgment to the reference works listed in the
Bibliography and to the Firms whose names appear in
the text. In addition, grateful thanks are due to many
readers for helpful criticism and encouragement and to
those of the author’s colleagues who cheerfully under-
took the task of checking portions of the manuscript.
Special acknowledgment is due to Mr. R. Clink for his
careful checking of proofs and ‘for many valuable
suggestions.

W. K. W.

Loxpox,
Jume, 1940.
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CHAPTER 1.
TORSIONAL VIBRATION.

Introduction.—Since no material is perfectly rigid, the
effect of applying an external force or load to a body is to
produce a change of size or of shape or of both. These changes
are termed strains. The internal equal and opposite reactions
which are the result of the external force or load, and which
resist deformation, are termed sresses. ’

That property of matter which enables it to resist deforma-
tion is termed elasticity, and in a perfectly elastic material the
strain disappears after removal of the stress, i.e. the body then
returns to its original configuration. Whilst no material is
perfectly elastic, metals are almost perfectly elastic within
certain limits of loading.

Within those limits the strain is proportional to the stress
producing it. Beyond those limits the deformation is partly
elastic or temporary, and partly plastic or permanent.

The point beyond which stress and strain cease to be pro-
portional is commonly called the elastic limt of the material,
although the modern tendency is to term it the Zimaf of pro-
portionality, since the metal still possesses some elasticity after
this limit is passed.

The laws governing the elastic deformation of a shaft when
an externally applied twisting moment or couple is transmitted
from one end to the other are well known, and are contained
in the following expression :—

M 2./, G.f ‘
=71 - - W

VOL. IL.—1



2 TORSIONAL VIBRATION PROBLEMS

where = the external couple in lbs.-ins.,
= the polar moment of inertia of the cross- -section
of the shaft in inches? units
=T &
=g
d = the diameter of the shaft in inches,
fo = the shear stress in Ibs. per sq. in.,
G == the modulus of rigidity in-1bs. per sq. in.
= 12,000,000 for steel,
# = angular deflection or twist of shaft in radians,
L = length of shaft in inches.

This expression shows that the strain or angular deflection
is directly proportional to the stress, provided the limit of
proportionality is not exceeded.

Elastic Vibrations.—When a shaft, fixed at one end, is
twisted by applying an external couple at the free end, the
work donme against the internal elastic forces which resist
deformation is termed strain energy, and in common with other
elastic bodies the shaft possesses the property of restoring this
energy when the couple is removed.

This property is termed resilience.

In a perfectly elastic material the whole of the strain energy
is restored when the load is removed, but in the case of a shaft
twisted by an external couple a proportion of the work done is
absorbed in overcoming internal molecular friction, and appears
as heat in the material strained.

A similar amount of energy is absorbed by frictional resist-
ances when the shaft returns to its original configuration after
the load is removed.

Within the limit of proportionality, however, only a very
small proportion of the strain energy is absorbed in this way,
the greater proportion being stored in the shaft. This stored
energy is termed potential energy of strain or vesilience, and very
nearly the whole of it is restored when the load on the shaft is
removed.

Beyond the limit of proportionality a progressively greater
proportion of the strain energy is expended in overcoming the
internal friction of the material to produce permanent defor-
mation.



TORSIONAL VIBRATION 3

Fig. 1 shows a simple torsional pendulum, consisting of a
length of shafting fixed at one end and carrying a heavy disc
at the free end.

If the disc is disturbed from its position of equilibrium by
the application of an external couple, strain energy is imparted
to the shaft, and this energy is available for expenditure when
the load is removed, assuming that the material is not stressed
beyond the limit of proportionality.

The lower portion of Fig. 1 shows the disc and shaft dia-
grammatically. In this diagram + @ represents the circum-

Fic. 1.—One-mass system.

ferential distance an imaginary point on the surface of the
shaft at end B moves when the external couple is applied.

The corresponding angular deflection in radians is 6 = 2.4
and since Equation (1) shows that the deflection at any other
position along the shaft is directly proportional to the distance
from the fixed end, the elastic deflection curve AD is a straight
line of constant slope. The stress induced in the shaft which
is proportional to §/L (Equation 1) is the same at all positions
between A and B. .

When the external couple is removed the shaft commences
to untwist. During this process a small proportion of the
potential energy of strain is absorbed by frictional resistances,
the greater proportion being expended in imparting motion to
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the disc. This energy of motion is termed kinetic encrgy. The
kinetic energy imparted to the disc attains a maximum value
when the whole of the available potential energy is absorbed,
ig. when the shaft is completely untwisted and the system
has regained its original configuration. At this instant the
kinetic energy of the disc is equal to the potential energy of
strain diminished by the small amount of energy’absorbed by
frictional resistances. The disc therefore continues to move
beyond the original unstrained position of the system until a
strain nearly equal to the original strain, but in the opposite
direction, is induced in the shaft. At this instant the potential
energy of strain is once more equal to the maximum kinetic
energy acquired by the disc diminished by a small amount of
energy absorbed in frictional resistances, and the disc comes to
rest.

It is evident that in passing from one extreme position
towards the other the disc gradually acquires kinetic energy
until it reaches the original position of equilibrium, now the
central position of its movement, and thereafter gradually
loses kinetic energy. If the energy dissipated in doing work
against friction during the motion of the disc is neglected,
the kinetic energy of the disc at the instant it reaches the
central position must be equal to the potential energy of strain
at each extreme position of its movement. At any intermediate
position the sum of the kinetic and potential energies must be
constant, and this constant quantity of energy is termed the
energy of the vibration.

In this example the energy of the vibration is equal to the
strain energy imparted to the system by the initial displacement
of the disc.

If none of this energy is absorbed in doing work against
friction, the vibratory motion of the disc would continue
indefinitely, the motion being shown diagrammatically in
Fig. 1 by the lines AC and AD, with maximum displacements
of 4-a and — 2 at the free end of the shaft, or, in circular

measure, + 6 and — 6, where 8 = %.
In practice, however, there is always a gradual dissipation
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of energy by work done against internal and external resistances
which oppose the vibration. In consequence the system
gradually loses its energy of vibration, until finally the whole
has been absorbed and the disc comes to rest at its original
position of equilibrium.

Vibration may therefore be regarded as the process whereby
an elastic system dissipates the potential energy of strain
imparted to it when its equilibrium is disturbed.

The process can easily be verified experimentally by attach-
ing a fairly heavy disc to one end of a fairly long piece of
wire. If one end of the wire is held rigidly, with the disc
suspended below, and the latter is given a twist and then re-
leased, it will vibrate through gradually decreasing angles until
finally it comes to rest at its original position of equilibrium.

Simple Harmonic Motien.—This is the simplest type of
periodic motion.

In Fig. 22, O is a fixed point, and OC is a radius rotating
with uniform angular velocity round O. ABis any diameter of
the circular path described by C, and CQ is the perpendicular
from C to AB for any instantaneous position of the radius OC.
As the point C rotates round O with uniform angular velocity
the point Q vibrates along the diameter AB about the centre
O with simple harmonic motion. A single vibration is com-
pleted when the point C has moved once round the circle, Le.
when the motion of Q is the same as it was at the commence-
ment of the cycle. Thus, if the cycle is assumed to commence
at point D in the circular path of C or at point O in the path of
Q, and the rotation of C is assumed to be counter-clockwise,
then the initial movement of Q is upwards towards B. At B
point Q comes to rest, its motion along AB is reversed, and
it travels downwards from B to A. At A it comes to rest
again, its motion is once more reversed, and it travels upwards
towards O.

When it reaches O it has the same motion as at the com-
mencement of the cycle, i.e. upwards towards B, and the cycle
is therefore completed. '

The time required to complete one cycle is termed the
periodic time of the vibration, and the reciprocal of the periodic
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time is termed the frequency of the vibration, since it is the
number of complete cycles which are executed in unit time.

Let P = periodic time in seconds,
F = frequency of vibration in cycles per second,
o = the uniform angular velocity of point C (usually
termed the phase velocity of the vibration) in
radians per second.

(a) Displacement Diagram.

“ B
YT i o
4 +2 .
l < \D X [1) %rr 7 37| 2w
o0 1 !
S NI
A ) No_t_e-‘.-_t‘--%secs,-
() Velocity Diagram.
lvl
3
(©) Acceleration Diagram.
r T 3r 2r
2 2
o

F16. 2.—Simple harmonic motion.

Then, since each cycle is completed in one revolution of G, ie.
when the angular movement of OCis 2. = radians,
p2-7_ 6283
o T "

ECS

]
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or F= IE’ = z‘"——-ﬂ = 0-I50I . w vibs./sec.

= 955 . @ vibs. fmin.
From the geometry of Fig. 24,
y=asno.t, . (2)

where y == OQ = the displacement of Q from the centre of
vibration O,
a = OC = the radius of the circle described by C,
¢ = w./=the angular displacement of C from the
' initial position D,
t = the time in seconds, assumed to be measured
from the instant C is at D.

The motion of Q can be shown conveniently by the ordinates of
a displacement diagram on a time base (Fig. 24). The maximum
displacements of Q from the centre of vibration O are 4  and
— @, and @ is termed the amplitude of the vibration. The curve
of displacement is a true sine curve when the point is executing
simple harmonic vibrations.

In Fig. 24 the radius OC = a may be regarded as the dis-
placement vector ; the displacement diagram being obtained by
projecting the successive instantaneous positions of C on to the
corresponding ordinates in the displacement diagram.

The velocity of Q is greatest at the instant Q passes through
O in either direction, being then equal to the uniform velocity
0f C, viz. w . @. At A and B, Qs at rest.

At any intermediate position, therefore, the velocity of Q is
equal to the velocity of C resolved along AB, and from the
geometry of Fig. 28,

Y=w.acosw .t . Lo (3)

where v = the velocity of Q along AB.

In Fig. 25, OV = .a may be regarded as the velocity
vector for vibration of Q along AB, and the velocity diagram is
obtained by projecting the successive instantaneous positions
of V on to the corresponding ordinates in the velocity diagram.
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The velocity vector is a quarter of a cycle, or =/2 radians
ahead of the displacement vector.

The acceleration of Q along AB can be obtained from the
acceleration of C, since the latter is merely the acceleration of
a point moving in a circle with uniform angular velocity, viz.
w?. @, acting always along the radius OC towards O.

The acceleration of Q along AB is then the acceleration of
C resclved along AB, and from the geometry of Fig. 2c,

S=—w.asinw.f, . . . @)

where S = the acceleration of Q along AB, which is seen to
be proportional to the displacement of Q from the centre of
vibration Q.

The negative sign indicates that this acceleration is always
directed towards the centre of vibration O.

In Fig. 2¢, 0S = w?. @ may be regarded as the acceleration
vector for vibration of Q along AB, and the acceleration
diagram is obtained by projecting the successive instantaneous
positions of S on to the corresponding ordinates in the accelera-
tion diagram.

Since force = mass X acceleration, equation (4) shows
that the force under which a mass will execute simple harmonic
vibrations must vary proportionally to the displacement from
the centre of vibration, and must always be directed towards
the centre of vibration.

The acceleration at any instant is

S=—w'asinw.t . . - (@
and the corresponding displacement is
' y=asihw.? . . . (2)
Hence, S=—w.y,
but * wz%{r:z_,,.F’
ie. S=41‘>:2._'y-—«4.1r'.F“.y,

or periodic time, P=2z, "\/g secs.
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Frequency of vibration, F = ZI—_” \/% vibs. /sec.

I [acceleration
T . ()

2. w Vdisplacement” °

Since the acceleration is directly propoertional to the dis-
placement, the frequency is independent of the amplitude of
the vibration, and depends only on the strength of the restoring
force, i.e. the restoring force per unit displacement.

The phase of a vibration is the fraction of a cycle which
has elapsed since the vibrating point last passed through its
middle position in the positive direction. Thus the phase of a
vibration measures the particular point of the cycle, where the
vibrating body happens to be, at some chosen instant. In
Fig. 2a the angle ¢ = w . ¢ is termed the phase angle. Two
vibrations are said to be in phase when they are at correspond-
ing points of their cycles at the same instant. w is termed the
phase velocity, since it is the rate of change of the phase angle.

Free or Natural Torsional Vibration.—Equation (1)
shows that when the disc in Fig. 1 is given an angular dis-
placement a restoring moment is induced in the shaft which is
proportional to the displacement, and which tends to return
the disc to the equilibrium position. This establishes the
important fact that when the disc is released it will execute
rotary vibrations of the simple harmonic type until it is brought+
to rest by frictional resistances.

Since these vibrations are executed without any external
exciting force acting on the system, and since the frictional
resisting forces are usually very small, the motion is termed
free or natural torsional vibration.

The expressions for angular displacement, angular velocity,
and angular acceleration are the same as those already deter-
mined for linear simple harmonic motion.

In Fig. 3 the displacement diagram corresponds to the
displacement diagram shown in Fig. 2 at («), and represents
linear displacements of the weight W along the circumference
of a circle of radius R.
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The linear amplitude is 4 « and the corresponding angular
amplitude is + a = 4 «/R radians.

Fixed End
P
Vector Diogram’

) /}%Jﬁn iide
24 Eg/\iéﬁég ‘ lﬁzlvg/am

.
! ~~— o-Ldl
] &Qg

Fic. 3—Relationship between linear and angular motion.

From Equation (2) the linear displacement of W along the
circumference at radius R is
y=oasinw.t

Hence the corresponding angular displacement is

o . .
9—§smw‘t—asmw.t‘

Similarly, the angular velocity is
Q=w.acosw.i

and the angular acceleration is

p=—0l.asihw.i
ie. f=asinw.f, . . - . (2a)
Q=w.acsw.t, . . . (3@)
=—owl.asinw.t, . . . {(4a)

where

6§ = angular displacement of the disc from the equilibrium
or mean position in radsans,
@ = amplitude of vibration of disc in radians,
@ = angular velocity of disc in radians/second,
¢ = angular acceleration of disc in radians[second?,
t = time in seconds, .
o = phase velocity of the vibration in radians/second.



TORSIONAL VIBRATION pos

It is important to distinguish between @, the angular velocity
of the disc at any instant, and w = 2.#.F, the constant
angular velocity from which the vibration is derived, the latter
is termed the phase velocity of the vibration.

The frequency of natural torsional vibration of the disc is
determined as follows :—

At either extremity of the motion of the disc the potential
energy of strain and the resisting moment due to elastic forces
have their maximum values,

i.e. maximum restoring torque exerted by the elastic forces,
from Equation (1), .
I,.G.
M, =27 3

The torque required to produce the acceleration ?.a at
the position of maximum displacement of Q is

*M,, = moment of inertia X angular acceleration
=]J.w?. a
This result can be deduced from a consideration of the
linear motion of the weight W shown in Fig. 3.

The linear acceleration of W along the circumiference of
a circle of radius R is

S=—o. asinw.t . . @

Assuming that the masses of the comnnecting arm and of
the shaft are negligible, and that the mass of the bob-weight
is concentrated at its centre of gravity, which is at radius R
from the axis of oscillation, the tangential force due to vibra-
tion of W is

Force = mass X linear acceleration,

ie. P=~%V w2, xsin .t

* Throughout this work ts of inertia of oscillating masses are

WEK*
expressed in Ibs.-ins. sec.? or lbs.-ft. sec.? units. ie. J = ——, where WK*
is defined as the “* fiywheel effect ”” of the mass, not its moment of inertia.
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Hence the torque on the shaft due to this force is

M=P.R=——V?V.R.m*.ocsinw.t,

but c=a.R,

ie.

Now {%V .

=—%].R"wi.asinw.t.

Rﬂ} is the polar moment of inertia of a mass

i concentrated at radius R

Let
then

w
=2 R,
T=%

=—J. 0 asinw.i,

or torque = moment of inertia X angular acceleration.
At the position of maximum displacement,

M,=].0%.a

Since there is no external exciting torque acting on the

system and the frictional resistances are assumed to be
negligible,
M = M,
Le. I—’—{’i:_].w’.a,
or m“:(z.w.F)“:IIf'?':.
s 0. G

__ fan
Hence, FNZ.WVJ’—.f’ . . . . . (6)
where F = natural frequency of torsional vibration

in vibrations per second,
I, = polar moment of inertia of cross-section
of shaft in inches* units

= 512 . @, for a solid circular shaft,

d = diameter of shaft in inches,
G = modulus of rigidity in 1bs. per sq. inch
= I2,000,000 for steel,



TORSIONAL VIBRATION I3

J = moment of inertia of disc
W.K?

ra

W = weight of disc in Ibs.,

K = radius of gyration of disc in inches,
£ = 386 ins./sec.?,

L = length of shaft in inches.

From Equation (1) it is seen that the quantity (I"I:G) in

Equation (6) is the torque per radian of twist.
This quantity is termed the forsional rigidity of the system.

Let C= I,.G _ torsional rigidity of the system in Ibs.-ins.

L per radian *

1 [C_.
Then F = 5——-‘”\/ 7 vibs. [sec.

=9‘55«/§ vibs./min. . . . . G

Equation (7) can also be derived directly from Equation (5)

as follows :—

_ 1 [ acceleration

= 2. Y displacement’ (5)
restoring torque
moment of inertia
acceleration __ restoring torque per radian
displacement moment of inertia

Now acceleration =

and

C

T

Hence F=-1 \/9 vibs./sec., as before.
’ 2. J

Equation (6) shows that the frequency is independent of
the amplitude of vibration, and that an increase of the moment
of inertia of the disc, or of the length of the shaft, or a reduction

M
* Note.— 8, = ©
where 8, = angular twist produced by torque M applied statically.
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in the diameter of the shaft, will reduce the natural frequency
of the system. Thus, a heavy disc carried by a long slender
shaft will execute natural vibrations of much lower frequency
than a comparatively light disc carried by a short stiff shaft.
This can be verified experimentally by suspending a disc by
means of a fairly long length of wire. As ti\"”; length of the
wire is shortened the natural frequency of the disc increases,
and vice versa. - :

Equation (7) is based on the assumptions that the connect-
ing shaft has no mass, and that there are no exciting or resist-
ing forces acting on the system.

The dirictional resistances which oppose vibration are
termed damping forces, and are usually assumed to be pro-
portional to the velocity, since this assumption appears to be
reasonably correct for practical purposes. The effect of a
damping force proportional to the velocity and a restoring
force proportional to the displacement is to reduce both the
natural frequency of the vibration and the amplitudes of
successive cycles.

In practice, since the amplitudes and therefore the velocities
of natural torsional vibrations are small, the effect on the
frequency of vibration of a damping force proportional to the
velocity is unimportant (see Chapter 7).

Correction for Mass of Shaft.—If the mass of the
shaft is not negligible, but is small compared with that of the
disc, the amplitude of vibration at any section of the shaft
between A and B (Fig. 1) is proportional to the distance from
the fixed end A.

Let this distance be 2, and let J, be the moment of inertia
of the shaft, V its angular velocity at the free end, and v its
angular velocity at distance  from the fixed end.

V.l
Then V= T

The kinetic energy of an element of length 8I, distant / from

the fixed end, is
Jo. 802  J,.VELRL§L
z. L~ 2,18
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and the total kinetic energy of the shaft is
Lo u=p3.0.v

ie. the moment of inertia of the shaft is dynamically equivalent
to one-third of the same amount at the free end of the shaft,
and may be taken into account if necessary by adding one-
third of J, to the moment of inertia of the disc.

In cases where the mass of the shaft is not negligible the
system must be treated as a heavy shaft system. The solution
for a two-mass heavy shaft system is given in Chapter 8,
Equation (402}, Vol. IL

P

ExampLE r.—Calculate the natural frequency of torsional
vibration of the system shown in Fig. 1, assuming the
following dimensions :—

Weight of disc = 16,500 1bs.
Diameter of disc = 204 ins.
Length of shaft = 830 ins.
Diameter of shaft = 16 ins.

Also calculate the maximum torque, the maximum stress,
and the strain energy of the vibration, assuming that a point on
the surface of the shaft at the centre line of the disc vibrates
with an amplitude of + % inch.

(i) Natural Frequency of Torsional Vibration.
C _. .
F=gs55 \/; vibs./min, . . . (9)

C= & il” Ibs.-ins. per radian,

where G = modulus of rigidity = 12,000,000 Ibs. per
sq. in. for steel,
I, = polar momient of inertia of cross-section of
shaft

=’1§”i d = dia. of shaft = 16 ins.

_ 31416 X 16% — 6434 ins 4,

= length of shaft = 830 ins.,
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ie. C — 12000000 X 6434 _ 93,020,000 Ibs.-ins.
830
per radian,
J = moment of inertia of disc
W.K?

i

W= weigght of disc = 16,500 lbs.,
K2 = (radius of gyration of disc)?
= Tx for a solid circular disc, where D is the
diameter
= 2—0;’: = 5202 ins.?,
£ = 386 ins. per sec: per sec.,
_ 16500 X 5202

s P .

ie. J . = 222,400 Ibs.-ins. sec.2,
=0 93020000 _ 1 x.g vi i

Hence, finally, F = 935 «/ 292400 1953 vibs. /min.

Effect of Mass of Shafi—The mass of the shaft may be
taken into account by adding one-third of the moment of
inertia of the shaft to the moment of inertia of the disc.

. 2
Weight of shaft — &M
0-283 X 07854 X 162 X 830
47,250 1bs.

K?of shaft = & = 20 sainss,

It

*i.e. moment ofinertia of shaft = ], = ‘lvé—Kf = 17‘253??‘"‘532
; = 3920 Ibs.-ins. sec.2.
/ Hence, the equivalent moment of inertia of the disc is
L=J+%—’=222,400+39—3—z°
‘( = 223,707 Ibs.-ins, sec.?,
[ @ad the natural frequency of torsional vibration becomes

93020000
223707

‘=955 = 194-8 vibs./min.
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This is a difference of only } per cent. As a general rule
the mass of the shaft can be neglected if the product of the
length of the shaft in feet multiplied by the frequency in
vibrations per second does not exceed 1000. In the present
example this product is only 225, a frequency of 867 vibs./min.
‘being required to make the product 1000. The moment of
inertia of the disc corresponding to a frequency of 867 vibs./
min. is 11,280 Ibs.-ins. sec.?, whilst the correction for the
mass of the shaft lowers this frequency to 820 vibs./min., a
difference of 5 per cent. The value obtained by applying
the method given in Chapter 8 is 823 vibs./min.

(i) Maximum Torque.
The amplitude of vibration at surface of shaft, radius
8 ins, is + 3 in.
ie. angular amplitude = =+ 0-25/8
= "4 003125 radian.

Now M=i9'_‘£:ie. e

12000000 X 0:03E25 X 6434
=+ 830

= 4 2,070,000 lbs.-ins.

Alternatively  torque = moment of inertia X acen.
M=4+] w.a
where w = phase velocity of vibration

_2.n.F di

= 60 Ta anspersec.
_ 2 X 377416 X 105

- 60

= 205 radians per sec.,
ie. M = 3 222,400 X 20-5? X 003125
= =+ 2,930,000 Ibs.-ins.
(i) Maximum Stress.
M.d

fi=+ Fye N . . . . . ()
_ ., 2970000 X 16 et
=+ X6 = = 3620 1bs.-ins.2

VOL. I.—2
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(iv) Strain Energy.
This is equal to the maximum potential energy of strain at
either extreme position of the movement of the disc,
ie. strain energy = § . M .a = } X 2910000 X 0-03123
= 45,500 ins.-lbs.
Alternatively, it is equal to the maximum Kkinetic energy of the
disc at the mean position of the vibration, viz. . —
strain energy =4 .J . (w . 4)?
=} X 222400 X 20-5? X 0:03125%
= 45,500 ins.-lbs.

Note that the strain energy is directly proportional to the
square of the amplitude and to the square of the frequency.

Special One-Mass Systems.—The following special
arrangements are occasionally found in practice, and can be
handled by the elementary relationship :—

F = 9:554/C/J vibs./min.,
where F = natural frequency in vibs./min.,
C = restoring torque per radian deflection,
J = moment of inertia of oscillating system about
axis of oscillation.

It is important to take care that the correct units are used
throughout the calculations. If C is expressed in Ibs.-ins.
per radian, J must be expressed in lbs-ins. sec.?; if C is ex-
pressed in Ibs.-ft. per radian, J must be expressed in lbs.-it.
sec.?

Also, when 1bs., in., and sec. units are employed the value
of the gravitational constant g is 386 ins. per sec.?, ie.
J =W .K?386 lbs.-ins. sec.? When lbs., ft., and sec. units
are employed g = 322 ft.jsec.?, ie. J =W .K?32:2 lbs.-ft.
sec.

In Fig. 4(a) the system consists of a shaft fixed at each
end, with a disc of moment of inertia J attached at a point
where the torsional rigidity of the right-hand and left-hand
portions of the shaft are C, and C, respectively. The two-
node frequency of a geared radial aero-engine can be estimated
from a system of this type.
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Since C, = torque per radian for left-hand portion of shaft,
C, = torque per radian for right-hand portion of shaft.
Total restoring torque for one radian deflection of mass

= (C; + Cy).

F1e. 4—Special one-mass systems.

Hence, F= 9-55\/(:—! +G vibs./min. . . ]
Also, if = frequency of J on C, = 955 v/C,/J,

F2 = frequency of J on C, = 955 v CyfJ,
them  F= (F2-F. . . ©)

Fig. 4(8) shows a system consisting of a disc of moment of
inertia J, mounted freely, for example, on ball bearings. A
weight W is attached to the disc at radius R by a flexible cord,
and the motion of the disc is controlled by a spring of inch
rate k acting at radius 7.
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In this case % = load to extend spring T inch,
ie. for a small circumferential deflection e, the spring
force is k., and the torque due to the spring
force is A. a.7.
The corresponding angular deflection is «/r.
Hence, C = restoring torque per radian displacement

7
=k a.7.-=k."
o

The moment of inertia of the weight, W about the axis of
oscillation of the disc is W. Rz,
ie. effective moment of inertia of system = J + W . R2/g.

Hence, _953\/ J +W Rz/ - vibs. /min. . . (10)

If the mass of the spring is not negligible, an approximate
correction is to add one-third of the moment of inertia of the
spring about the axis of oscillation to the effective moment of
inertia of the system,

i.e. effective moment of inertia of system

w . 12

4

where w = weight of spring.

Fig. 4(c) shows a system consisting of a light lever hinged
at one end and carrying a heavy weight' W at the other end.
The motion of the weight is controlled by a spring of -inch
rate & attached to the lever at radius 7.

In this case, restoring torque for a linear displacement « at
radius 7 is k. « .7,
ie. C = restoring torque per radian = % . 7%

Moment of inertia of weight W about axis of oscillation
=W.R¥g.

kr? k.8
F=9os\yqp = 9% Vv - ()

Note that the actual values of » and R are not required,
provided the ratio #/R is known, and that the frequency

Hence,
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increases as the point of attachment of the spring is moved
towards the weight.

If a second spring is attached to the lever as indicated by
the dotted lines in Fig. 4(c), and if the initial tensions of the
two springs are adjusted so that there is always some tension
in the springs even when the lever is at either extremity of
its motion, the restoring force for a linear displacement o is
2k. a.

The frequency equation is then

F=g35. 5" vibs./min. . . (12)

If the masses of the lever and springs are not negligible,
an approximate correction is to add the moment of inertia of
the lever plus one-third the moment of inertia of the springs
about the axis of oscillation to the moment of inertia of the
weight, W, about the axis of oscillation.

ExaMPLE 2.—Obtain an expression for the natural frequency
of torsional vibration of the system shown in Fig. 4(a)
in terms of the total shaft stiffness between the fixed ends
and the ratio of the stiffnesses of the. portions of shaft on
either side of the flywheel.

Let C = total shaft stiffness,
R = ratio of stiffnesses = C,/C,.

If a torque T is applied at one end of a shaft of torsional
rigidity (i.e. stiffness), C, the resulting twist is

6 = T/C radians,
or 8, =T/C,, and 8, = T/C,,
but 6 =(0; +0,).
C,.C
Hence, 1/C = (1/C; + 1/Cy), or C = C11+ éz,
and since C,=R.Cy,
_ R.C, . _(x+RC
C-—{T_{_—),l.eAC,-— R

From Equation (8), F= 9-55\/(-:—%'—9-” = 9-55\/93(—13—-')'12),
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or, by inserting the above value for C, in terms of C, and re-

arranging,
F = gs5(1 + R)«/R;J vibs./min.

If the fiywheel is placed at the middle of a plain shaft, ie.
if C, = C, or R = 1, the frequency equation becomes

F = 1914/C[J vibs./min.

g This is the lowest
J2 fiequency which can be
E obtained by altering the

T

position of the flywheel
in Fig. 4(a), and is twice
the frequency of the sys-
tem shown in Fig. 1,
where the flywheel is
fixed to the free end of
a shaft which is secured
against rotation at the
other end.

If the flywheel in
Fig. 4(a¢) is moved in
either direction from the
mean position the fre-
quency increases, as
shown by the above
equation.

Two-Mass -Sys-
tems.—Fig. 5 shows a
simple two-mass system
consisting of a length of
shafting with a heavy

F16. 5.—Two-mass system. disc at each end.

In this case, if the shaft is supported in frictionless bearings
which permit rotary motion and the discs are given small
angular twists in opposite directions and then released, the
system will be put into a state of torsional vibration.

@ A

1| .
-
o
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At any instant when the disc at end A is moving in a clock-
wise direction, the disc at B is moving in a counter-clockwise
direction so that the node or point where there is no vibratory
disturbance is situated somewhere between the two discs.

The system can therefore be reduced to two simple one-
mass systems, as shown at (¢) in Fig. 5.

In the case of a shaft transmitting power, provided the
applied and resisting torques are perfectly uniform, and the
attached masses have a constant moment of inertia about the
axis of rotation, the only effect of the elasticity of the shaft is
to cause the end from which power is taken to lag behind the
end at which power is applied. Under these conditions there
is nothing to excite vibration once the shaft has taken up the
initial torsional deflection corresponding to the torque trans-
mitted, and as soon as any initial vibrations caused by setting
the system in motion have been damped out the motion becomes
uniform.

It does not, however, require a very high degree of torque
variation, either at the driving end or at the driven end of the
shaft to set up and sustain torsional vibration, particularly at
speeds where the frequency of the periodic torque variations
coincides with the natural frequency of torsional vibration of
the system. These vibrations are quite independent of the
steady rotation of the shaft, and for practical purposes the shaft
may be assumed to be at rest and the system to be oscillating
about the node.

Referring to Fig. 5, let
- J1 = moment of inertia of disc at end A.

J» = moment of inertia of disc at end B.
L = length of shaft.
4 = diameter of shaft.
L, = distance from end A to node.
L, = distance from end B to node.

Then, natural frequency of one-mass system to left of node,
from Equation (6),

_ 1 [I,.G.
=i Ly T - 3)



24 TORSIONAL VIBRATION PROBLEMS

Natural frequency of one-mass system to right of node, from
Equation (6),

e (9
The natural frequency of the whole system is therefore
F=F=F,.
Hence, L.G M,
! z.7 Jl L, 2.7aV],. L,
and since =, I, and G are constants,
= % . . . . (15)

i.e. the node divides the length of the shaft L inversely as the
moments of inertia of the discs.

Also L={L+1)=L[r+%]

_ 7 J..L
o L=[555)
Hence, finally, from Equation (13),
o LG+ L)

F Tz.a Ji-Je. L
=5 ﬂ«/ ¢ J‘ + J’ vibs. [sec.
= Q55 M vibs. /min., . . (16)
Ji-Ja
where C= G L_ torsional rigidity of shaft.

It should be noted that if the moment of inertia of one of
the discs is very large compared with that of the other disc,
the node is situated very close to the larger disc, and when the
moment of inertia of the larger disc can be considered as infinite
compared with that of the other disc, the node is situated at the
larger disc. The system shown in Fig. 5 then reduces to the
simple one-mass system shown in Fig. 1.
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A practical example of a system of this type is a light
radial aeroplane engine direct-coupled to a very heavy airscrew.

When the moments of inertia of the two discs are identical,
the node is situated mid-way between them, and the frequency
equation reduces to

F= 9-55\/2;? vibs./min. . . (1)

where J is the polar moment of inertia of each disc.

Comparing this with Equation (7), it is seen that the effect
of replacing the single heavy disc shown in Fig. 1 by two equal
discs, each having the same moment of inertia as the single
disc, one situated at each ‘end of the shaft, is to increase the
natural frequency of the system to

F=+vz.F,
where F’ == natural frequency of system with single heavy
disc,
, F = natural frequency of system with two equal
! discs.

I the total moment of inertia remains unaltered, i.e. if the
moment of inertia of each of the two end discs is one-half the
moment of inertia of the single disc shown in Fig. 1, the
natural frequency of the system is doubled, assuming that the
shaft stiffness is unaltered.

To obtain the same frequency, the moment of inertia of
each of the two end discs in Fig. 5 must be twice the moment
of inertia of the single disc shown in Fig. I, with the same

. shaft stiffness.

Alternatively, the shaft stiffness must be halved if the
moment of inertia of each end disc in Fig. 5 is the same as the
moment of inertia of the single disc shown in Fig. 1.

Correction for Mass of Shaft.—The mass of the shaft
may be taken into account in the case of the system shown
in Fig. 5 by adding one-third of the moment of inertia of
-the length L, between the node and end A to the moment of
inertia of the disc at end A; and one-third of the moment of
inertia of the length L, between the node and end B to the
moment of inertia of the disc at end B.
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ExampieE 3.—Calculate the natural frequency of torsional
vibration of the system shown in Fig. 5, assuming the
following dimensions :—

Moment of inertia of disc at A, J, = 22,400 lbs.-ins. sec.2.
Moment of inertia of disc at B, J, = 728 lbs.-ins. sec.2
Length of shaft L = 45 ins.
Diameter of shaft & = 7} ins.

(i) Assuming that the moment of inertia of the disc at end
A is infinitely latge compared with that of the disc at end B.
From Equation (7),

C
F= 9'55‘/1_2’
where C= G.1, Ibs.-ins. per radian,

G = 12,000,000 Ibs. per sq. in.,
I, = polar moment of inertia of cross-section of shaft
_7- d* 31416 X 725t

32 32
= 2#T ins.4,
ie. C= W‘——(;—X—ZE = 72,300,0001bs.-ins. per radian.
= g-g54]72300000
Hence, F = 955J 728
= 3010 vibs./min.

(i) Assuming a two-mass system.,
From Equation (16),

sl G

—gss 72300000(22400 -+ 728)
9 22400 X 728
= 3060 vibs./min.
The error involved in the assumption of a one-mass system
is therefore only about 1} per cent. in this example.
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Special Two-Mass Systems.—The following special two-
mass systems are occasionally found in practice and can be
handled by the torque summation method.

Fig. 6(a) shows 2 two-mass system consisting of a shaft
fixed at one end and carrying two masses of moments of inertia
J: and J,. The torsional rigidity of the portion of shaft
between the fixed end and J, is C,, whilst between masses J,
and J, it is C,.

The frequency equation is obtained as follows :—

Torque to left of mass J; = M, = o,
Angle of twist at mass J, = a,,
Torque to right of mass J, = M,,

where M, = M, + torque to accelerate mass J,
=0+ Jw?. a,
and w = phase velocity of the vibrations in radians per
second
=2z2.7.F,
F = frequency of vibrations in vibs./sec.

From Equation (1),

2
Angle of twist between J; and J, = M,/C, = J‘—'E"—al.
1
2
Hence, angle of twist at mass J, = 4, = @, — J—‘-‘é’—a‘

1
Torque to right of mass J,

= M; = M, + torque to accelerate mass J,
Lw?.a
=J;. .00+ ], 2<aleJ‘—C1-—-‘),

Angle of twist between mass J, and fixed end

_Jieetiay  Jeeet  Ji.0f.ag
= (@ o )

Hence, angle of twist at fixed end = a; where

Ji.ota Jiea Jo.otr o Jiowt.ay
41 1_J1 - 1 . \al C‘ >’

Ay = @y
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but twist at fixed end = 0, i.e. ag=0; ie. equating the above
expression for a, to zero, dividing throughout by ,, and
rearranging terms, the following frequency equation is
obtained :—

J1~Jz'°’4_
AR e oule

Normal Elastic Curve
locle

-

Normal Elastic (urve
2-Node

Jz Normal Elastic Curve
1- Node

Normal Elastic Curve
® 2- Node

Fic. 6—Special two-mass systems.

This equation has two roots, indicating two possible modes
of vibration. Note that if J; = o, the above expression reduces
to

I—w.J/Co=0, or w?®=C,y/J,

Similarly, if J, = o, the above expression reduces to

C,+C 1/ C.C
—w? bt S ) R CR 12
I— o 'Jl(Cl.C, 0, Or J1(Cx+cz .

The last two expressions are the frequency equations for
a simple torsional pendulum. '

Also, if J;=]J,=7], and C;= C;=C, Equation (18)
becomes

3Jéw’+J“.w‘=O,

T (0
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and the roots of this equation are
w?=0382.C/] or 2:618.C]).
Fig. 6(b) shows a two-mass system in which a shaft is fixed
“at both ends and two masses of moments of inertia, Jiand Jo,
are attached at positions which divide the shaft into three
portions of torsional ngxdmes, C,, Cp, and C,.
The frequency equation is obtained as follows :—
Torque to left of mass J, = — M,, where — M, is the fixing
couple at the left-hand end of the shaft.

Angle of twist at mass J, = %’ (since angle of twist at
1

fixed end is zero).

Torque to right of mass J, = — M, +Jl ot My

Angle of twist between masses J; and J,
_ M, J.et M,
I A o e
) M, ]\_I_,,__Jl.w‘.M,,
Angle of twist at mass J, = G + (o R ou
Torque to right of mass J,

— g, D oM, M, Jy 2 M)

=g gyl e - Bt

Angle of twist between mass J, and right-hand end of
sha.ft

J, . 0t M,

u, Lot ot
=-&t oG e :

R P oo

Angle of twist at right-hand end of shaft
J1~w'-Mo I"L:_Jlo“’g-Ma
c1 - FoN Por Pl s S N
Lot Mo ] et I
C G "Gy C,.C, J
But angle of twist at end of shaft is zero, hence the f_re~
quency equation is obtained by equating the above expression
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to zero. Dividing through by the common facter M,, and
rearranging terms, the frequency equation becomes

Gréra el { ol
{cl""cﬁcs} "’[ Ton c2 (o
Jo 0t _
+3 GGG
This equation has two roots, indicating that there are two
possible modes of vibration

Note thatif J, =0, and + C— =z (where Cis the torsional

rigidity of the portion of sha.ft between the left-hand end and
mass J,), then the frequency equation reduces_to

ferel-llsl-o
ctey

2
which is the same form as Equation (8).
Also,if C; = Cy = Cy =C,and J, = J, = J, the frequency
equation becomes

n ITRa\

or w? =

4] ot J et

st o

The roots of this equation are
2o oo 3
ot =5 or T

The foregoing methods can be applied to systems having
more than two masses, but-the resulting frequency equations
are very cumbersome, and their solution is tedious. It is
preferable to deal with multi-mass systems by the tabulation
method described later.

Three-Mass Systems.—Fig. 7 shows a simple three-mass
system consisting of three heavy discs of moments of inertia
Ju Je and J, connected together by two lengths of elastic
shafting of torsional rigidity C, and C,.

The mass of the shafts is assumed to be negligible compared
with that of the discs.
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Let w = phase velocity of the vibrations in radians per
second
=2.7. F
F= frequency of vibration in vibs. fsec.,
@, = maximum amplitude of vibration at mass J, in
radians.

(@)Simple 3-Mass System,

(3) Deflection Diagram.
( One-Node Vibration.)

(c) Deﬂec’mon Diagram.
(Two-Node Vlbétmn)

Frc. 7.—Three-mass system.

For equilibrium at the instant when the system is at the

position of maximum displacement the elastic resisting torques
due to twisting the shafts must exactly balance the torques
due to the movements of the masses, since when a system is
performing free torsional vibrations no external torques are
required to keep it in motion,

torque to left of mass J; =M, =o,
angle of twist at mass J, = a,,
torque to right of mass J, = M,,
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where M, =M, + maximum torque to accelerate mass J,
=0+ ], 02 a.
From Equation (1),

Angle of twist between J, and J, = %— = J.l.c_al.
1

L0t a
b,

Hence, ' angle of twist at mass J, = @, —
Torque to right of mass J, = M,,
where M, = M, 4 maximum torque to accelerate mass J,
=J.0t. a4+ J,. o l:a -Il__u!]
1- 1 2> 1 C
=0 (J,. 41+ Jz- @) — cu_________J,_ Ji- 0
Angle of twist at mass Js,
J1~m2-al_[w’(lx-u1+1z-d) S

Gy =a, —

1
R W P La1 Js-a o] T, Ly
e ke i Tl B
Torque to right of mass J g == M;,
where
M, = M, 4 maximum torque to accelerate mass J;

=], 4+ Js- a)_“’___JL.L*_“_l_;_Js w?ay
w.[Jl Js- a1+J1 Js ﬂ1+J5 Js ’11:|
ws Ji-Jo-Js- “1

12
and, since there are no external torques acting on the system,
My=o,

ie. @ aJy+Ja+ Ja)
_04’%[J1 Jl_'_Jl Ja+J1 J3+Js Js]

+‘° @1 Ja-Js- Js=

1+
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Divide through by w?. g,,

Gt Jot 30 —of el dey Dudey JoJo]

. w'_»%_::i-__h: o, (19)

Cy
and Cy=S1y
2

G.1,

where C,=

1
G = modulus of rigidity,
I, = polar moment of inertia of cross-section of
shaft = w.dt
32
d = diameter of shaft,
L, and L, = lengths of shaft between masses.

3

It should be noted that if any one of the masses is assumed
to have zero moment of imertia, Equation (19) reduces to
the expression already determined for a two-mass system,
Equation (16).

Thus, if
Ti=o, ‘= Cn(Ja‘;Js),
e e =T

2
i Ja=o, ‘= CiCo(Ja+Js) _ C{:+Ta)
N ! B (C1+CZ)J1‘J3 JI'JS ’
where -(C—’_I_—C— = C, the torsional rigidity of the whole
N d of the shafting between masses J,
and J;.

Equation (1g) has two real roots, so that there are two
principal modes of vibration of a simple three-mass system.

The first or fundamental mode of vibration occurs when
one of the end masses moves in one direction whilst the other
two masses move in the opposite direction, i.e. there is a node
somewhere between one of the end masses and the other two
masses. The fundamental mode of vibration may therefore
be defined as vibration with one node.

VOL. I.—3
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The second mode of vibration occurs when the two end
masses move in one direction whilst the centre mass moves in
the opposite direction, i.e. there are two nodes, one between
each end mass and the centre mass. This second mode of
vibration may therefore be defined as vibration with two nodes.

The positions of the nodal points can be determined from
the expression for the angles of twist at the masses.

Thus

:—::r——l%:)—i ... . (20)
and :%"I [Jl‘f‘L‘f'h]-l-w NE L - (o)

Since the mass of the shafting was assumed to be negligible,
the deflection curve consists of straight lines, as shown in
Fig. 7, so that the positions of the nodes can be obtained by
assuming unit amplitude at mass J; and setting down the values
of 4, and a, given by Equations (20) and (21) at masses J, and
J 5 respectively. The nodes are situated at the points where
the deflection curve crosses the axis of the shaft.

A special case arises when the three discs have equal moments
of inertia, and the torsional rigidities of the two sections of

shafting are also equal.
In this case the frequency equation reduces to
' C 3.C
2= or =i,
v 73 J

where J=Ji=Ja=Js dnd C=C,=0C,
i.e. for the fundamental or one-node frequency

F= 6 =9 55\/‘ vibs. /min.

This is the same as Equatmn ), mdmatmg that the node
is situated at mass J,.
For the two-node vibration

F=g935 vibs. /min.,
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i.e. the two-node frequency is 4/3 times the one-node frequency
in this case.

The amplitudes of vibration, assuming unit amplitude at
mass J,, are
.C

—

At mass J,, 43 = I — X~ =0, i.e. the node is at mass J,
J for the one-node fre-
quency,
or Gy =1— 3—’—(% = —2 for the two-node
frequency.
.J.C 2.C?
At mass Js, 43=I_3CJ.-J +%%
= — I for the one-node frequency,
.J.C LJE.CR
or Gg==1— 'TJ—J— + 9—(:‘217

= 1 for the two-node frequency.

ExaMpLE 4.—Calculate the natural frequencies of torsional
vibration of a system consisting of three flywheels A, B,
and C (Fig. 7), weighing 2000 Ibs., 1000 Ibs., and 1500 lbs.
respectively. The radius of gyration.of each fiywheel is
20 ins., and the shaft connecting A to B is 3 ins, diameter
and 2o ins. long, whilst the shaft connecting B to C is
3 ins. diameter and 30 ins. long.

Also calculate the relative amplitudes of vibration at
each flywheel for the two principal modes of vibration.
In this example

I

2 2
= W.K® 2000 X 20° == 2073 Ibs.-ins. sec.?,

g 386
1000 X 202 . .
Ja 38 = 1036 Ibs.-ins. sec.?,
_ 1500 X 20% r )
Is =% = 1554 lbs.-ins. sec.?,
G. 1.

C=
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where G = 12,000,000 Ibs. per sq. in. for steel,
I, =7L3—214-u—4—;—2—x—§-——7-95ms‘
= length of shaft in inches,
ie. Ci= —Iﬂ)—q‘:—le—gs = 4,770,000 Ibs.-ins. per radian,
Cy= m———og%fﬂé = 3,180,000 Ibs.-ins. per radian.

The natural frequencies are obtained from Equation (19),

Jy+Ja+Ta) _w[Jl Js_I_Jl Js+J1 Js Ja. Ja]
4
e w
ie. (2073 4 1036 4 1554)
_2[2073X 1036 | 2073 XX354 , 2073 X1554 & 1036 XI554
et [ 47790000 + 4770000 * 3180000 + 3180000 :|
w* X 2073 X 1036 X I554
4770000 X 3180000

=0,

+
or 4663 — 2:6471 X w? 4 0°00022 X w* = 0,
Now, the roots of the expression
a.m+b.m+c=o0

"m =

—~bL VP —4.a.c
2.a ’

andin this case #m = w2

26471 £ V264712 — 4 X 4663 X 0-00022
2 X 000022 -
= 2140-for (QIO,s4 2140
@ = 46+4 or 9g-5 radians per sec.,
60 X @
F=X2Xa
2X#

Hence, w? =

= 443 oT 947 vibs. min.
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Relative Amplitudes.
At mass J, (Equation 20),

4y __ Ji. 0?
P I - . . (20)
i.e. for one-node vibration,
@ _ . __2073X2140 _
= I -———-4770000 = 0'070 ;
Jor two-node vibration,
Gy 2073 X 9910 .
a; I 4770000 3307-

At mass Ja .(Equa:tion 21),

Byl dry iy Jo] . et Ju
P [cl et 2x)
i.e. for one-node vibration,
a4y _ 2073 2073 1036
ay T 2140 4770000 + 83180000 + 31800006
4580000 X 2073 X 1036 _ . .
+ 4770000 X 3180000 3723
Jfor two-node vibration,
as_ . _ 2073 2073 1036
ay 1 9910[4770000_: 3180000 + 3180000]6
i 210000 X 2073 X 1036 _ oo,

4770000 X 3180000

The deflection curves are shown in Fig. 7 for both one- and
two-node modes of vibration.

The positions of the nodes can be obtained from the relative
amplitudes as follows :—

(i) For the One-node Mode of Vibration (Fig. 7b).

The node is between mass B and mass C.

Let L, = length of shaft between B and C,.

L, = distance of node from C, and assume that
a,=1
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=L % ] _ 30X1372
Then L= L’[a, = a:,] = 0070 + 17372
= 2854 ins.

(ii) For the Two-node Mode of Vibration (Fig. 7¢).

Let L, = length of shaft between A and B,
L, = distance of one of the nodes from A, and assume

that ¢, = 1.
_ @y _20XTI o
Then L= L1|:a———1 — aa:l =¥ 464 ins,
Let Ly = distance of the other node from C.
[ ] 30X g
Then Li= L"[ag = ﬂa] =330 Fogi 653 ins.

\/ Multi-Mass Systems.—The method just described can be
extended to systems having four or more masses, but the
frequency equations which are obtained are very cumbersome,
and their solution is extremely tedious.

The tabulation method of dealing with multi-mass systems
described in the next chapter is therefore a better practical
way of carrying out the frequency calculations, and moreover
is a convenient method for obtaining the relative amplitudes of
vibration at the various masses.

In certain cases, especially where the masses form a sym-
metrical arrangement, a good approximation to the funda-
mental or one-node frequency of torsional vibration of multi-
mass systems can be obtained by reducing the actual system
to an equivalent two- or three-mass system.

Fig. 8 shows a seven-mass system treated in this way, the
actual system being shown at (), and the approximately
equivalent three- and two-mass systems at (§) and (c) respec-
tively. This arrangement is typical of marine installations,
where the closely grouped engine masses Jy, Ja, Js Ja J5» and
Js are separated from the propeller mass J, by a long length of
intermediate shafting.
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Exaupis 3.—In Fig. 8, let
Jo=Js = Ja= Jo = 44,000 Ibs.-ins. sec.2,

J.=17s = 22,000 lbs.-ins. sec.?,

2 = 53,000 Ibs.-ins. sec. “
Li=L,=L;=Ls=  4oins,
Ly=L, = 45 1115;
= 4200 ins.,

diameter of shaft = d = 16§ ins. throughout.
Then, Equivalent Three-Mass System (Fig. 8b),
Ja=Js=(J:.+J2+Ja) = (J¢+Js+16)

=110,000 lbs.-ins. sec.?,
J» = 53,0001bs.-ins. sec.?,
(Lz‘l‘La +L¢+Ls)—170ms:
Ly = (Lg + L;) = 7240 ins,

Equivalent Two-Mass System (Fig. 8¢),

Jwo= (Je + J») = 220,000 Ibs.-ins. sec.?,
53,000 Ibs.-ins. sec.?,

L= Lot3.Le)= 73251ns.
Natural Frequencies of Torsional Vibration.
(i) Two-Mass System (Fig. 8c).

In this case, from Equation (16),

F=o055 CoolJ1o + Ja) vibs. /min.,
G I JIO . J1
h Cio= 2
where w="T_%
" 1, = polar moment of inertia of cross-section of
shaft
a* 1416 X 16-75% .
= —3—5— = §_4_32__7i = 7750 ins.t
ie Cyp= 12000000 X 7750 12,700,000 Ibs.-ins. per

7325
radian.
12700000 (220000 -+ 53000)
955‘/ 220000 X 53000
= 165 vibs. /mm

Hence,
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Position of Node (Fig. 8).
From Equation (x3),
J: Lo _ 53000 X 7325
T Ur+ 7w (33000 F 220000
= I420 ins.
Also, if amplitude at J,, = 1, the amplitude at J, is
o= IX (Lio— %) _ 1 X (7325 — 1420)
1= A 1420
= — 4I5.
(ii) Three-Mass System (Fig. 85).
In this case, from Equation (19),

Tt o+ T —afdide g e B Jey Jo Jr]
“" Js - Js J1

R oA
_G.I, 12000000 X 7750__
where Cy = T, T me 547,500,0001bs.~
ins. per radian.
C = G.I, __ 12000000 X 7750 _ 10 850,000 Ibs.-

ins, per radian.
Hence,

110000 X ITI0000
(110000 -+ 110000 + 53000) — w“l:———————

547500000
. TX0000 X 53000 | 110000 X 53000 | II0000 X 53000:,
547500000 12850000 12850000
n w?! X _II0000 X II0000 X 53000
547500000 X 12850000 -
ie. 273000 — 940 X @? - 00912 X wi = 0,
ot MO 10407 — 4 X 0°0912 X 2773000
2 X 00912

= 300 Or 10000,
o = 17-32 or roo radians per sec.,

60 X w . .
F = T = 1655 or 955 vibs.[min.
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Relative Amplitudes and Positions of Nodes (Fig. 89).
Let
= amplitude at Js,
@, = amplitude at J,,
a, = amplitude at J,.

Then from Equation (20),

@ =1 — :]-_8_'__(1_’__2
ag [oN

For one-node vibrations : ? = 300,
ay 110000 X 300 _

2~ T 347500000 019395

For two-node vibrations : w? = 10,000,

ag II0000 X I0000
- /= - ——————— = — I‘01.
ag 547500000

From Equation (21),

[ S <Js+ _I_Js‘) +w JSCSJQ

ag
For one-node vibrations : w? = 300,
<7

110000 II0000 110000
e 300[547500000 12850000 + 12850000]
3002 X IXI0000 X II0000
547500000 X 12850000
" =1 — (300 X 0:0173) + (300% X 0-00000172)
= — 4:035.

For two-node vibrations : w? = 10000,

a
Zzlz I — I0000 X 0-0I%3 -+ I00002 X 000000172
8

= 0.

This value of g—’ indicates that there is a node at mass J,
8

which is not correct. The actual value of ;ﬁ obtained by the
8
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tabulation method described in the next chapter is 0-02x. The
degree of accuracy necessary for obtaining the true value of
this ratio when using the three-mass method cannot be obtained
with the ordinary slide rule or four-figure logarithms.
Positions of Nodes (Fig. 8b).
Assuming that @ = 1, then
@y = 0-9305 for one-node vibrations
= — 1-0I for two-node vibrations,
@, = — 4-035 for one-node vibrations.
For one-node vibrations, node at A in Fig. 85,
Ly X a, 7240 X 0'9395 ;
= = = 1365 ins.
= =) ~ oozgs  ao3s) 18
For two-node vibrations, nodes at B and C in Fig. 85,
Ly X ag _ IjoXTI
(as—ag)  (r + 1701)
15 cannot be obtained accurately by the three-mass method
using the ordinary slide rule or four-figure logarithms.

L=

= 845 ins.

SUMMARY.
Natural Frequency (Vibs./Min.).
Method. &
One-Node. Two-Node.
Two-mass . 1650 —
Three-mass . 165'5 955
Tabulation . 1655 1041

The above summary shows that in this case both the two-
mass and the three-mass methods give close approximations to
the value of the fundamental or one-node frequency of torsional
vibration.

The two-node frequency cannot be calculated by the two-
mass method ; but an approximate value can be obtained by
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using the three-mass method, the error in the present example
being nearly I0 per cent.

In multi-mass systems there are as many principal modes
of vibration as there are spaces between the masses, ie.
in the example shown in Fig. 8 there are seven masses, and
therefore six principal modes of vibration. The natural

Jg Js Jg Jg Ja
U G -
{:Lyi:-szﬁ-La*eL‘,-»t-QjeL;!—.—-L7
5 . Nodel Node.
(@) = i e
Node
-qL- <+ 4}- -+ -4} 4
\ ,
Jg' Jz %
]
———T R I
® ) gy —
Jo Jg
Lg
|~ Node
© ¥

* *

Fre. 9.—Multi-mass system.

frequencies corresponding to vibrations with three and more
nodes cannot be calculated by the three-mass method.

The arrangement shown in Fig. 9 is similar to that shown
in Fig. 8, except that there are eight masses instead of seven.
This arrangement is typical of a marine installation having six
closely grouped cylinder masses J; to Je; a heavy fiywheel
J, immediately after the last cylinder mass Je; and the

propeller mass J,.
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The equivalent two-mass and three-mass systems are
obtained as already described, care being taken to allow for the
difference in the moments of inertia of J, and J, in determining
the equivalent length L, for the two-mass system.

Thus, in Fig. gb—three-mass system,

Js=(J1+J2+Js+L+J5+Ja):
Ly=@3Ly+L,+L;+ L.

In Fig. gc—two-mass system,
Ju={Js+ J7)y

- Ls-Jo
S A )

The approximate values of the one- and two-node natural
frequencies of torsional vibration ; the relative amplitudes of
vibration at the various masses ; and the positions of the nodes
are then determined from the equivalent two- and three-mass
systemns exactly as already described.

The arrangement shown in Fig. 10 differs from that shown
in Fig. 8, since there is only a short length of shafting between
masses Jsand J,.

This arrangement is typical of multi-cylinder oil engines
direct-coupled to electrical generators where the flywheel effect
necessary for satisfactory electrical operation is either incor-
porated in the rotating parts of the dynamo itself or where an
auxiliary flywheel is so rigidly connected to the dynamo arma-
ture that the two can be regarded as one large mass.

ExampLE 6—In Fig. roa, let
JTi=l=Tli=Ji=]s=Js= 1651bs.ins. sec?,
Jz = 23,500 Ibs.-ins. sec.?,
Li=L=Ly=L,=L,=z27ins,
Ly = 32ins.,
diameter of shaft d = 8% ins. throughout.

Jp 415
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(i) Equivalent Three-Mass System (Fig. 10D).

Jo=1 9—(J1+Jz+13)—(J4+Js+J) (165+165+I65)
=403 [bs.-ns. sec.?,

J = 23,500 bs.-ins. sec. 2,
=L+ Ls+ Ly =(27+27 +27)="81 ins.,
= (Ls + Lo = (27 + 32) = 59 ins.

L, A U ~'.7

gy Jdp
- _j» 4+ 4+ +
L, 4—L1«><-L3-><—L4 ST
= + Nodes
(@) et
Node i\ —
PETEE T l
Y i
] : Js
Ly s
®) N Nede Nodles,
LIy . g L3
4 e e
Jm‘ i/
L,
¥ ™ Node
()

r‘ 1g—

Fie. 10.—Multi-mass system (close-coupled).

mo G =%

where G = 12000000 Ibs. per sq. in.,
m.d¢ 31416 X 8-25* :
_3 j_gz__i — 455 ins.

L=",
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ie. C, = Izoooog_ﬁ:x_‘;@ = 67400000 lbs.-ins. per
radian,
Ce= G.L_ 12000000 X 455 _ 92500000 Ibs.-ins.
L 39
per radian.

Then, from equation (1),
ot Jot 3o —e Bele s Jode Jode g Tu i)

‘"“-Js~Jan1=0
C,.Cq ’
(495 + 495 + 23500)
_w?[495%495 | 495X23300 | 495X 23500 , 495X 23500]
67400000 '~ 67400000 92500000 92500000
! X 495 X 495 X 23500 __
67400000 X 92500000
or 24490 — 04275 X w? 4+ 0°00000024 X w = 0,
w2 4275 £ /01830 — 0-0905
0000001848
= 67000 or 396000,
w = 2585 or 629 radians/sec.,

F= 620—': = 2470 or 6000 vibs./min,

»

Relative Amplitudes.
From Equation (20),

i.e. for one-node vibrations,

2 495 X 67000 _ e
@~ 17 o000 T 1T 040 =0510;
for two-node vibrations,

@ _ _ _ 495 X 396000

ay 67400000 1~ ¥9r0=— I'9L
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From Equation (21),

a To Jo Jo] o Js-Jo
R R IR bt R oy o

ag 8

For one-node vibrations,
Gy _ 495 495 495
3 ' 66800[67400000 + 92500000 + 92500000]
66800% X 495 X 495
67400000 X 923500000

668002
=1 — (66800 X 0-00001805) + 73430000600
= I — I'2050 4 0-I750 = — 0-0300.
For two-node vibrations,
a : 3060002
= I — 396000 X 0-00001805 + 2——————5450000000

=1 —415+ 615 = 0.

The actual value of 22 is 00096 (obtained by the tabulation

method described in the next chapter), but the accuracy neces-
sary for obtaining the true value of this ratio cannot be obtained
with the three-mass method when using the ordinary slide rule
or four-figure logarithms.

Positions of Nodes (Fig. 10b).
Assume that a3 = 1, then for one-node vibrations,

_LgXa _ _s9xos10 .
h= @ —a) — (0510  00300) — 203 1ns-
For two-node vibrations,
L, X a, 81 X I
I, = 2 s 8IXI e
Tm—w e U

I3 cannot be obtained accurately by the three-mass method,
using the ordinary slide rule or four-figure logarithms.
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(ii) Equivalent Two-Mass System (Fig. roc).

49

Jio = (Js + Jo) = (495 + 495) = 990 lbs.-ins. sec.?,

J, == 23500 lbs.-ins. sec.?
= (Lo + IL;) = (59 + 40°5) = gg-siins.,
and C, _ G-I, _ 12000000 X 455
L, .99'5
= 54850000 lbs.-ins. per radian.
Then from Equation (16),

syl

BT T (T T
= 935 \/54 50000 (990 + 23300)
990 X 23500
= 2290 vibs. fmin.
Position of Node (Fig. 1oc).

— _Ji-Le _ 23500X 995

(B + JID) (23500 -+ 990)
= 955 ins.,

and if amplitude at mass J;y = 1,

(995 —

amplitude at mass J, =1 X £ =1 X

@y — L)
Iy
= 0:042.

SUMMARY.

Natural Frequency (Vibs,/Min.).
Method.

One-Node. Two-Node,

Two-mass . 2290 —
Three-mass . 2470 6000

Tabulation . 2520 7325

95°5)
95'5

This summary shows that in this example the approximate
values of the one- and two-node natural frequencies of torsional
vibration determined by the two- and three-mass methods are

VOL. I.—4
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not so close to the actual values as in the case of the arrange-
ment shown in Fig. 8.

In systems of this type, where there are several equally
spaced minor masses direct-coupled to one large major mass, a
closer approximation to the fundamental or one-node frequency
can be obtained by means of the following correcting factor :—

Let F, =F[K,
where F = one-node frequency calculated by the two-mass

method,

F, = corrected one-node frequency,

K = correcting factor which depends on the number of
minor masses as follows :—

I ‘Number of Minor Masses, 1. 2. 3. 4 5 6. oc.

X . . . .| 1700 | 093 | ogz| o9r| ogr| ogr| o-go

In the present example
F = 2290 vibs. /min.
The number of minor masses is 6, hence K = 0-g1,

ie. F, = 2290 2520 vibs./min.

09I
(see also Table 6).

The corrected value therefore agrees with the value obtained
by the tabulation method.

In general, if the transmission shaft between a multi-
cylinder engine and the driven machine is very much more
flexible than the engine crankshaft, the crankshaft masses can
be replaced by a single mass equal in magnitude to the sum of
the crankshaft masses and located at the centre of the engine
as shown in Fig. 8. The fundamental or one-node natural
frequency of torsional vibration can then be calculated from
Equation (16) without much error.

The transmission system of a marine installation where the
propeller is separated from the engine by a long length of inter-
mediate shafting is an example of an arranigement of this type.
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When the stiffness of the transmission shaft is increased so
that it is comparable with the stifiness of the crankshaft, as in
the case of multi-cylinder engines direct-coupled to electrical
generators (Fig. 10), the error introduced by reducing the system
to a simple two-mass arrangement is considerable.

This error can be minimised by introducing a correcting
factor, the value of which depends on the number of engine
cylinders and the relative stiffness of the crankshaft and the
transmission shaft.

The value of the natural frequency of torsional vibration
with two nodes cannot be obtained by the two-mass method,
but an approximate value can be obtained by the three-mass
method.

Since, however, the stifiness of the engine crankshaft, and
the disposition of the crankshaft masses have considerable
influence on the value of the two-node natural frequency, it is
necessary to consider the whole of the crankshaft masses acting
at their respective points in order to obtain a more exact
solution.

The tabulation method described in the next chapter is a
convenient way of carrying out the more exact calculation.

This method enables the natural frequencies of torsional
vibration with one, two, or more nodes to be obtained for
any given system, as well as the relative amplitudes of vibration
at the different masses and the specific vibration stresses at
different points in the shaft system.

The calculations can be carried out on a ro-inch slide
rule with sufficient accuracy, and by adopting a standard form
for the tabulation the work becomes automatic, which is an
advantage from the point of view of drawing office routine.

Incidentally the data contained in the frequency tabula-
tion is also required for the determination of vibration
amplitudes and stresses.
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CHAPIER 2.
NATURAL FREQUENCY CALCULATIONS.

It has already been shown that a shaft carrying a series of
masses may have several modes of free vibration, which are
usually distinguished by degree numbers, ie. vibration with
one node is referred to as of the first degree ; vibration with
two nodes as of the second degree, and so on.

In general, when there ate several attached masses there
are as many principal modes of vibration as there are spaces
between the masses.

The number of free vibrations per minute increases pro-
gressively with the number of nodes, and in practice only the
first two principal modes of vibration are usually investigated
since the serious critical speeds associated with vibrations with
three and more nodes are well above the operating speed range
of the engine in all normal installations.

Fig. 11 shows the normal elastic curves corresponding to the
four principal modes of torsional vibration of a typical five-mass
system. Since there is only one mass on the right-hand side
of the node nearest to the right-hand end of the equivalent
system, the natural frequencies are inversely proportional to the
square roots of the nodal distances L;, L,, Lg, and L. -

Frequency Tabulation.—This method is based upon the
work of Giimbel and others, and depends upon the following
theoretical considerations.

Referring to Fig. 12, consider a length of plain circular
shafting AB, free at the ends A and B, and with a line #-# on
the surface parallel to the axis when the shaft is unstrained.

‘When executing simple harmonic torsional vibrations, the
shape of the line m-n at the instant of rest at the extreme
positions of vibration is shown by the dotted line m,-n
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Fi6. 11.—Principal modes of
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Consider a small section of the line #,-n, of length 4L, and
let the angle of twist in length dL be 46 radians.

Then the circumferential movement of one end of line of
length 1 with respect to the other end is

de=R.db,

and the shear strain at surface is Rj#
da _g %

or I= T

da. G
=i

Hence, shear stress, f=

W Wy Wy Wy

n

Heanfd
\
\
\
\

| PR P lz__,*é_Lé__J
F1G. 12.—Torsional vibration.

But from Equation 1,

or =gXGxXgp - . . (22)

where M = torque and I, = polar moment of inertia of
cross-section of shaft.

Now consider a weight W Ibs. on the surface of the shaft,
radius R, executing simple harmonic torsional vibrations of
linear amplitude , and frequency F =2—(i— where o is the

. T

]

phase velocity of the vibration in radians per second. Then,



NATURAL FREQUENCY CALCULATIONS 55

maximum linear acceleration of W at the extreme positions
of the oscillations = w? X ¢, ft.[sec.?,

ie. force on W = % X w? X a lbs.
and torque on shaft M = Yg—v X w? X & X RIbsft.

_ L da
=g X G X T
Now, assume that the shaft is reduced to an equivalent length
of uniform diameter divided into sections, and that the
weights of the shaft and its attachments are concentrated at
these sections. If the weights are Wy, W,, Wy, etc, and are
assumed to act at a common radius R, then
Maximum torque to right of W,
due to oscillation of W,
Maximum torque to right of W, W£
due to oscillation of W, XX e X R
Maximum torque to right of W, wn R
and W, due to oscillation of W, = Z(Wy.a; + W, . a9).
and W,
For the whole length of the shaft, the torque to the right
of the last weight, i.e. at B, due to the oscillation of all the
masses is

vzlxwxalxR,

2 B
M= BZAW. a (23)

Since the natural frequency of torsional oscillation corre-
sponds to a condition of equilibrium between the elastic forces
available from the deflection of the shaft, and the forces gener-
ated by the oscillating masses, the torques at the ends of the
shaft, i.e. at A and at B, must be zero.

It has already been shown that

I,.G _ da
M="p Xz -« - . (2)
) da _MxR
or SPE=TTLXxG

at surface of shaft, i.e. the torque is zero when the slope is zero.
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At the end of the shaft
da w?. R?
E_I,_G.ngW'“‘ PR . (24)
There are two unknowns in this equation, @ and w. Since
@ appears on both sides of the equation, its absolute value is
immaterial, and may be assumed of any convenient magnitude.
 must be chosen by trial and error, so that there is zero
torque at the end of the shaft,
R o? R B
i.e. so that mzAW .a=o0. . . . (25
When this condition is fulfilled, the selected value of o
corresponds to one of the natural frequencies of torsiomal
vibration and the frequency is

60 X w

F=2X1r

vibs. per min. . . (26)

2
In the foregoing equations WR is the moment of inertia

of the masses about the axis of the shaft assumed concentrated
at each section of the shaft.

It - WR
g
then slope at any section C is
da @ v
i I—W.GZ‘JAa, . . . (29)
and for zero slope, and hence zero torque at the end of the shaft
reeJe=o . . . (@)

The trial and error process of determining the natural
frequencies of torsional vibration is best carried out by tabula-
tion.

In Equation (27) ¢ is the amplitude at the surface of the
shaft, i.e. it is a linear amplitude.
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Now 6 = angular amplitude = 4/R,
or z=R.6,

ie. Equation (27) can be written

da R €
K—mZAJ.wz.&

From Equation (22)

_ _L.G da
M = torque = R I
Hence, M=F37T.et.8,
and for zero torque at the end of the shaft,
B
2. J.oet =0 . . . (29)

This is the form which is used in the frequency tables.

Tables 1 to 4 are typical examples of the tabulation method
applied to two different types of installation.

Tables 1 and 2 are the one- and two-node frequency calcu-
lations for the seven-mass system shown in Fig. 1o. This
arrangement is equivalent to a six-cylinder oil engine -direct-
coupled to an electrical generator in which the actual masses
have been reduced to seven exact masses connected by sections
of weightless shafting. The moments of inertia of the seven
exact masses and the elasticities of the connecting shaft
sections have been obtained by the methods to be explained in
Chapter 3 so as to reproduce the dynamic and elastic properties
of the actual system as closely as possible.

The following dimensions were assumed in building up
Tables 1 and 2 :—

" Dimensions of engine: 6 cylinders, 4-stroke cycle, single-
acting, x34-in. bore X 18-in. stroke, 310 r.p.m., direct-coupled
to a 275 kw. direct-current generator. The equivalent system
is shown in Fig. 13.

Tables 1 and 2 are built up as follows : all calculations being
made on an ordinary To-inch slide-rule, using Ibs., ins., seconds,
units throughout.
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Column A ~This column gives a description of the various
masses of the equivalent system (see Fig. 13).

Column B.~This column contains the diameters of the
sections of shafting between the masses. In cases where the
diameter of the shafting is not uniform throughout the system,
it is usual to replace the actual lengths of shafting between
each pair of \masses by an equivalent length of shafting of
some standard diameter such as the diameter of the crank-
shaft journals, as explained in Chapter 3.

i Sener:
165 I 765 165 2400

| I -‘-!—Lbs ns. Secz-|—"
e

Normal Elastic Curve
One Node Vibns.

NodeZt
| I

Dla
I
M’dgr I‘Iorvnall ElaszlcC‘u'Ne , -
waNade Vm’i P

i-<—27—>|-<—z7—>{<—27—>|<—27—-l<-—27——l-—32——-—1

Fie. 13.—Equivalent syst: di

Columm C.—This column contains the eqmvalent lengths of
the different sections of the shaft system, i.e. the lengths of
standard diameter shafting having the same torsional rigidity
as the corresponding lengths in the actual system (see Chapter 3).

Column D.—This column contains the moments of inertia of
the various masses in lbs.-ins. sec.? unmits, calculated by the
methods explained in Chapter 3.

Colummn E.—This column contains the products of the
moments of inertia of the respective masses, and the square of
the phase velocity of the vibration in radians/sec., ie. the
torque per unit deflection at each mass,
ie. M=J.w?.8Ibs.-ins.

= J . o? when 0 = 1 radian,
or (column E) = (column D X w?),
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where o = phase velocity of the vibration in radians /sec.
_2.n.F

T 60
F = natural frequency in vibs./min.

The value of w is assumed in the first instance until by trial
and error a value is found which makes the last torque summa-
tion in column H zero. This value corresponds to one of the
possible modes of free torsional vibration.

The final tables only need be recorded, i.e. Table 1 is the
final table for the one-node frequency, and Table 2 that for the
two-node frequency.

Colwmn F.—This column contains the deflection at each
mass starting with an assumed deflection of one radian at No. ©
mass, i.e. at the forward or free end of the crankshaft.

The deflections at other masses are obtained as the calcula-
tion proceeds by subtracting the change in deflection tabulated
in column J from the corresponding value in column F, as
follows - —

Deflection at No. 1 cyl. . = 10000 (line 1, col. F).
Change in defin. between cyls I & 2 = 0-0570 (line 1, col. J).

Deflection at No. 2 cyl. . . =09430

This value is entered in line 2, column F.

Deflection at No. 2 cyl. . . = 09430 (line 2, col. F).
Change in defln. between cyls. 2 & 3 = o-1r05 (line 2, col. J).

Deflection at No. 3 cyl. . . =038325

This value is entered in line 3, column F, and so on.
Column G.—This column contains the torques due to the
oscillation of each mass, i.e. the products of columns E and F,

ie. M=7J.0?.6 lbs-ins,
or (column G) = (column E) x (column F).
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Column H.—This column contains the total torque up to
the next following mass, i.e. the algebraic sums of the torques
tabulated in column G,

ie. (line 2, col. H) = (line 1, col. H) -+ (line 2, col. G)
' = I'I500 X 107 4 r-0850 X 107
= 22350 X 10".
(line 3, col. H) = (line 2, col. H) + (line 3, col. G)
= 22350 X 107 4 09575 X 107
= 3:1925 X 10", and so on.

The final value of the total torque is zero when the selected
value of the angular velocity w corresponds to one of the
natural frequencies of torsional vibration.

Colwmn I —This column contains the torsional rigidities
of the respective sections of the shaft system, calculated as
follows :—

Since ¥_G.0
I, L’
or M= G i; I
the torsional rigidity, i.e. the torque per unit deflection, is
_G.I,
C= i

where G = modulus of rigidity in lbs. per sq. in.,
I, = polar moment of inertia of the cross-section of
the shaft, in ins.# units
7. @

=
d = equivalent diameter of shaft in inches (column

»

L= equix;alent Jength of shaft in inches (column C).
In the present example,

G = 12,000,000 Ibs. per sq. in., for mild steel,
4 = 8% ins. throughout,
I, = 455 ins%
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6 X 107
Hence, €= 1200001:)[? X 455 _ 54 I>_,< i

i.e. between cyls. 1 and 2, where L = 27 ins,,
C= 546—;;—1—27 == 20'2 X 107 Ibs.-ins. /radian.

This value is entered in line 1, column 1.

Column J~This column contains the change in deflection
up to the next following mass, and is obtained by dividing the
values in column H by the corresponding values in column I,

. @ J.o
e A6
_J.erdl ],
or dﬁ——m;—__c
__column H
" column I

EXAMPLE—
Total torque between cyls. T and 2
== 11500 X 107 (line I, col. H).
Torsional rigidity between cyls. 1 and 2
=202 X 107 (line 1, col. I).
. N II500 X 107
Change in deflection between cyls.1& 2 = o X 10T
= 00570 radian.
This value is entered in line 1, column J.

Columm K —This colurn contains the stress at each section
of the shaft system for one-degree deflection at No. 1 cylinder,
ie. at end A in Fig. 13. Column K is completed after the
natural frequency has been determined and the final values
have been inserted in the frequency table. .

The values contained in this column show the relative
magnitudes of the vibration stresses at various sections of the
shaft system, the diagrammatic representation of this specific
stress variation being illustrated by Fig. 14.

The maximum vibration stresses occur at the nodes where
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the slope of the normal elastic deflection curve is a maximum,
and for the system shown in Fig. 13 the maximum values are
= 7600 and -+ 23,350 lbs. per sq. in. per one-degree amplitude
at No. 1 cylinder for the one-node and two-node modes of
vibration respectively, based on a shaft diameter of 8} ins.

<

) Q

. > = P > 4 3 H
3 5 S o g o g g
s = S 2 S g g $
& < g 3 g = “ e
§ s |
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One-Node Vibrations.

~Lbs.perSy.

240001
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8000
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Vibration Stress
&
8
Q

.

|7 P 7
~ < Normal 1 3StIc CUN.F o d{

Two-Node Vibrations,

Fie. 14.—Vibration stresses per 1° deflection at No. 1 cylinder—
direct-coupled generator.

The values in column K are obtained as follows —

. M _of
Since T=7 (Eqn. 1),
hence, f= LELI per sq. in.,

2.1,
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where M = torque in lbs.-ins.,
d == diameter of shaft in inches,
I, = polar moment of inertia of shaft cross-section
in ins.* units
7. d*
32’
16. M
1.e. f = m

The total torque acting in any given section of the shaft
system is tabulated in column H in Ibs.-ins. per radian deflection
at No. 1 cylinder, and since I radian = 57-3 degrees, the total
torque per I-degree amplitude is

(values in column H)

M= ’
+ 573
_, 16 X (column H)
o f= e X g
_, {column H)
T T rres X a4f

In this equation 4, is the actual diameter of the shaft at the
respective sections of the shaft system, which may differ
materially from the equivalent diameter used in setting down
the equivalent system shown in Fig. 13.

Marine Installation.—Tables 3 and 4 contain the one-
node and two-node frequency calculations for the marine
installation shown in Fig. 15.

The engine dimensions are: 6 cylinders, 620 mm. bore X
1300 mm. stroke, rated at 2750 B.H.P. and 138 r.p.m.

These tables are similar to Tables 1 and 2, except that the
units are tons, feet, and seconds instead of Ibs., ins., and seconds.
It is generally preferable to work with the larger units in the
case of large installations in order to obtain figures which are
easily handled.

The following points should be noted in connection with
Tables 3 and 4 —

Column B.—Enter shaft diameters in feez.

Column C.—Enter equivalent lengths of shaft in feet.
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Column D.—Enter moments of inertia of masses in fons-f.
sec.2, )

Column I.—The torsional rigidity C must be expressed in
tons-ft. per radian,

ie. C= G]"I” tons-ft. per radian,
where G = modulus of rigidity in fous per sq. ft.,
1, = polar moment of inertia of the cross-section
of the shaft in feef* units
. dt
=5

d = equivalent diameter of shaft in feef (column
B),
L = equivalent length of shaft in feef (column C).

In the present Example
G = 772,000 tons per sq. ft., for mild steel,
4 = 1-3958 ft. throughout,
I,=o0-3731ft4

__ 772000 X 0373 _ 288000
Hence, C= B S

Between cylinders 1 and 2, where L = 33333 ft.,
__ 288000
T 33333
This value is entered in line 1, column 1.
Column K.—Since the total torques in column H are
expressed in tons-feet, the expression for the stress per degree
is

= 86,500 tons-ft. per radian,

f~(valuesi11 column H) X 2240 X 12 X 16
7 X 57:3 X d;® X 1728
= Eﬂ_(goxl._‘“nﬂl{_) Ibs. per sq. in.,
1 . .
where  dy = actual diameter of the shaft in fees.

Fig. 16 shows the relative magnitudes of the ﬁbraﬁon
stresses at various sections of the shaft system, plotted from
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the values contained in column K of the frequency tables.
The maximum vibration stresses occur at the nodes, where the
slope of the normal elastic curve is greatest. For the system
shown in Fig. 15 the greatest vibration stress occurs in :the
intermediate shaft for one-node vibrations, and in the crank-
shaft for two-node vibrations. The values in column K of
Table 3 are therefore based on the intermediate shaft diameter

%
£
/

!

!

7 !

E % % / |
s %2747 7 B S |
B -

N ! Normal Elastic Curve. AN Wodle

Two-Node Vibrations.
Fi1e. 16.~Vibration stresses per 1° deflection at No. x cylinder—
marine installation.
of 12 ins., whilst the values in column K of Table 4 are based
on the crankshaft diameter of 16§ ins.
The actual value of the stress per degree at a particular
point in the shaft system is
e
Fei(3).
where d = diameter used for calculating the stress values, f
given in column K of the frequency table and
+ plotted in Fig. 16,
d, = actual diameter at the point under consideration,

4
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In this example, therefore, the stresses in the 16-73-in.
diameter crankshaft for the one-node mode of vibration are
(12/16+75)® = 0-37 of the values given for the crankshaft
sections in column K of Table 3. Hence the maximum specific
stress in the crankshaft due to one-node vibration is

+ (2645 X 0:37) = = 980 Ibs. per sq. in. per 1°, »

which is small compared with the specific stress in the inter-
mediate shaft, namely, + 3260 lbs. per sq. in. per 1°

In the case of two-node vibrations the specific stress in the
intermediate shaft is (16:75/12)% = 2-7 times the value given
in column K of Table 4, i.e. + (250 X 2-7) = + 675 Ibs. per
sq. in. per 1°, compared with a specific stress of = 18,270 lbs.
per sq. in. per 1° in the crankshaft.

The two-node stress in the intermediate shaft is therefore
negligible compared with that in the crankshaft, even when
allowance is made for the reduced size of the intermediate shaft.

General Remarks—In building up the frequency tables,
it should be noted that columns A, B, C, D, E and I can be
completed at the start, the remaining columns being filled in as
the calculation proceeds.

The labour involved in the trial and error process can be
minimised by plotting the last torque summations in column H
of the frequency tables in the form of a curve on a base of
assumed frequencies, as shown in Fig. 17. The points where
this curve crosses the axis are the required natural frequencies
of torsional vibration. Fig. 17 shows the curve completed to
just beyond the two-node frequency, but in practice it is
unnecessary to draw the complete diagram. One or two spots
above and below each frequency value are sufficient to establish
the correct values of the matural frequencies and enable the
final frequency table to be completed.

The shape of the curve shown in Fig. 17 is a useful guide in
carrying out the frequency calculations.

For one-node vibrations, if the residual torque in column H
of the frequency tables is positive, the assumed frequency is
too low ; if this torque is negative the assumed frequency is

too high.



70 TORSIONAL VIBRATION PROBLEMS

For two-node vibrations, a positive residual torque indicates
that the assumed frequency is too high, whilst a negative
value indicates that the assumed frequency is too low.
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Fia. 17.~Curve showing variation of residual torque with frequency of

vibration:

A knowledge of the torsional vibration characteristics of
an individual type of engine is also a very useful aid in reducing
the labour of building up the frequency tables, since the natural
frequency of the installation can usually be surmised beforehand.

N
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Another useful method of searching for the frequency of a
given system by the tabulation method is to assume a value
for the frequency, and complete the frequency table down to the
last mass. Then adjust the moment of inertia of the last mass
so that the final torque summation in column H is zero. This
process is repeated for two or three different frequencies, the
values obtained being plotted to give a graph showing the
relationship between frequency and moment of inertia of the
last mass. The required frequency, i.e. the frequency corre-
sponding to the actual value of the moment of inertia of the last
mass, is then read from the graph.

Normal Elastic Curve.—The values tabulated in column
F of the frequency tables represent the torsional deflections
at the respective masses for unit deflection at No. T mass when
the system is executing free torsional vibrations of the corre-
sponding normal mode, i.e. they are the relative amplitudes of
vibration at various points in the system.

If these values are plotted as shown in Figs. 13 and 15, a
curve of specific deflections is obtained, and this will be referred
to as the mormal elastic curve for the various modes of free
vibration. The normal elastic curve is also called the swinging
Jorm of the vibration.

Since the masses have been assumed concentrated at
definite points in the system, connected by weightless lengths
of shaft, the normal elastic curve consists of a series of straight
lines. The points where the curve crosses the shaft axis are
the nodes.

Fig. 18 shows the normal elastic curves corresponding to
four typical engine aggregates, viz. two types of direct-coupled
generator, Fig. 18 #and b ; and two types of marine installation,
Fig. 18 c and d.

Direct-Coupled Generating Sets.—The one- and two-
node normal elastic curves for two typical direct-coupled
generator arrangements are shown at ¢ and b in Fig. 18. In
arrangement « the generator mass is separated from the flywheel
mass so that an intermediate bearing can be introduced between
the flywheel and the dynamo.

For fundamental or first degree vibrations, the node is
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situated in the shaft section between the flywheel ‘a.nd ‘the
dynamo, whilst one of the nodes of the second degree vibrations
is also situated at this point.
Cylinders. Flywheel.
d Generator.
> 4 4 4

] s
> 9 & & -

, Combined Flywheel
Cylinders. ¥ and ’&energtor.
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Fie. 18 —Types of normal elastic curves.

In the arrangement shown at b (Fig. 18) the bearing between
the flywheel and the generator has been eliminated, so that the
flywheel and generator masses can be regarded as a single large
mass in setting down the equivalent system, i.e. the system
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reduces to one having only a single major mass. An alternative
method of altering arrangement a would be to place the
generator between the engine and the flywheel.

The node for first degree vibrations and one of the nodes for
second degree vibrations are situated very close to the major
mass.

Arrangement 5 is preferable to arrangement a for the
following reasons :—

(i) The fundamental frequency is higher for arrangement
b due to the closer grouping of the masses, and the
ratio between the one- and two-node frequencies is
also greater for arrangement 5.

Itisan advantage to have as high a value as possible
for the natural frequency, with the object of placing
all serious critical speeds above the normal operating
speed.

(i) A comparison of the normal elastic curves for one-node
vibrations shows that the slope at the node is very
much greater in arrangement . This implies a
greater vibration stress in the section of shafting
between the flywheel and the dynamo, and many
failures of dynamo shafts at this point, due to nmning
the engine in the neighbourhood of a serious critical
speed, are on record.

(iii) Theratio between the first and second degree vibrations
is greater for arrangement &, e.g. in the case of a six-
cylinder standard Diesel engine direct-coupled to a
275 kw. generator, the one-and two-node frequencies
for arrangement & were 1450 vibs./min. and 1830
vibs. /min. respectively, whilst the corresponding values
for arrangement b were 2520 and 7325 vibs./min.
respectively.

The very high two-node frequency associated with
arrangement b ensures that only critical speeds cor-
responding to very high order harmonic components
of the engine torque curve will be present in the operat-
ing speed range, so that critical speeds of the two-node
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frequency can be neglected, as explained in Chapters
6 and 7.

In arrangement &, however, the two-node frequency
is not very far above the one-node frequency, so that
it is possible for two-node criticals of appreciable
magnitude to occur within the operating speed range.

(iv) Since the nodes are situated very close to the combined
generator and flywheel mass in arrangement b, the
actual magnitude of this mass does not appreciably
affect the values of the natural frequencies. This is
especially important in the case of engines direct-
coupled to alternators, where a very large flywheel
effect is required to ensure satisfactory parallel
operation.

In general, therefore, the oscillating system o.f a direct-
coupled generator should be designed to have as high a value
for the one-node frequency of torsional vibration as possible,
by grouping the cylinders as closely together as possible so
as to obtain maximum stiffness in the shaft connections, and
by making the crankshaft masses as light as possible, The
arrangement shown at & in Fig. 18 should be adopted so as to
obtain a favourable shape for the normal elastic curve and the
highest possible value for the two-node natural frequency.

No difficulty should then be experienced in placing all
serious one-node criticals above the normal operating speed ;
whilst for engines having up to six cylinders two-node criticals
can be neglected. For engines having more than six cylinders
it is advisable to imvestigate two-node as well as one-node
vibrations.

The flywheel effect necessary for satisfactory operation of
electrical generators is very much greater than that required
for marine installations, but in the case of alternators running
in parallel it is generally possible to incorporate the whole of
the required flywheel effect in the revolving mass of the alter-
nator itself. In the case of direct-current machines where an
auxiliary flywheel is usually required, this fiywheel should be
Pplaced as close to the generator as possible, and the coupling be
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made so rigid that the generator and fiywheel masses may be
regarded as one.

This requirement can be met by avoiding the use of an
intermediate bearing between the flywheel and generator, and
by making the connecting shaft of generous dimensions. The
omission of an intermediate bearing makes it a little more
difficult to check the alignment of the engine and generator,
but this difficulty can be overcome by testing with a special
lining-up mandril before adding the weight of the fiywheel.

An intermediate bearing is sometimes desirable in engines
with few cylinders to help in supporting the weight of the
relatively heavy flywheels necessary for satisfactory electrical
operation. In such cases, however, the natural frequencies of
torsional vibration are so high, due to the small number of
cylinders, that no critical speed of practical importance occurs
near the operating speed.

Methods of calculating the dimensions of flywheels for A.C.
and D.C. generators are given in Chapter 12.

The following table contains approximate values of the
natural frequencies of first degree or one-node torsional vibra-
tions for direct-coupled generating sets of the four-stroke cycle,
single-acting type arrangement as shown at b in Fig. 18 :—

TABLE 3.
No. of 10-in. Bore, 20-in. Bore. 30-in. Bore.
Cylinders. 15-in. Stroke. | 30-in.Stroke. | 43-in. Stroke,
3 4200 2100 1400
4 3600 1800 1200
5 3200 1600 1100
6 2900 1500 000
7 2700 1400 900
8 2600 1300 850
Vibs. /Min,

A preliminary approximate calculation of the one-node
frequency can be made by reducing the system to a simple
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two-mass system, as shown in Fig. 10, using Equation (x6),

viz, —
C . .
F= 9-55«/%%2—) vibs. jmin.,
where C= GLI” Ibs.-ins. per radian,

G = modulus of rigidity
= 12,000,000 lbs. per sq. in. for mild steel,
4

Ip =TI 3
32
d = equivalent diameter of shaft in inches,
L = equivalent length of shaft from combined

fiywheel and generator mass to centre of
cylinder group, in inches,

J. = total moment of inertia of crankshaft masses
in Ibs.-ins. sec.? units

=un.J,
J = moment of inertia of crankshaft masses per
~ cylinder,

7 = number of cylinders,

J. = moment of inertia of combined generator and
flywheel mass in Ibs.-ins. sec.? units.

A closer approximation is obtained by applying the following
correcting factors :—

TABLE 6.
Number of Cylinders. x. 2. 3. 4o 5. I 6. Inf.
X 1-00 | 0-93 | 092 | 09I | 09T | 09T | ©-90
ie. corrected frequency F; = e vibs. /min.

See also Chapter 1. .
The difficulty of placing all serious criticals above the
operating speed increases with the number of cylinders, par-
ticularly in the case of four-stroke cycle, single-acting engines,
where half-order as well as whole order harmonic components
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of the engine torque curve must be avoided; although it
should usually be possible to avoid having any serious major
harmonic below the running speed in the case of four-stroke
cycle, single-acting engines with six or less cylinders.

For a given size of cylinder, any increase in the number of
cylinders not only lowers the natural frequency slightly, but
also increases the number and range of critical speeds in the
vicinity of the running speed. The congestion of one-node
criticals is also liable to be augmented in the case of an engine
having a large number of cylinders by the appearance of
two-node criticals capable of causing vibrations of disturbing
amplitude, and in all such cases it is necessary to investigate
two-node as well as one-node vibrations.

In investigating the torsional vibration characteristics of
a range of engines of given cylinder dimensions, therefore, the
principal dimensions, bore, stroke, shaft diameter, and revolu-
tions per minute should be selected to eliminate disturbing
criticals in the engine having the largest number of cylinders.

‘Where a preliminary examination shows that some altera-
tion of natural frequency is desirable, the following relationships,
deduced from the shape of the normal elastic curve and Equa-
tion (16), should be kept in mind :—

(@) Since the nodes are very close to the combined flywheel
and generator mass in Fig. 18b, an alteration in the
moraat of inertia of the flywheel will not appreciably
alter the natural frequencies.

(8) Assuming that the masses are already as closely grouped
as possible, and that the cylinder masses are as light
as possible, the only effective means of raising the
natural frequency is by increasing the size of the
crankshaft.

The crankshaft stiffness is best increased by
enlarging the journals, or by widening the webs,
because this provides increased stiffness without an
appreciable increase of the polar moment of inertia
of the rotating masses.

The amount of stiffening which can be obtained
in this way and its effect on the natural frequency of
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the system are matters which can only be determined
by trial. If, however, only the crankshaft journals
are increased in diameter the one-node frequency is
approximately proportional to the square of the
journal diameter within reasonable limits.

The increase in stiffness due to alterations of
crankpin diameter is generally offset by the increased
weight and polar moment of inertia of the crankpin
and rotating part of the connecting rod. For this
reason it is possible for an increase of crankpin
diameter to lower the natural frequency in extreme
cases. In general, it is inadvisable to increase the
crankpin diameter with the object of increasing the
natural frequency, unless it is possible to retain the
original weight of the crankpin and the rotating part
of the connecting rod, for example, by reducing the

"length of the pin and increasing the size of the hole
bored through it.

(¢) In cases where the frequency cannot be altered suffi-
ciently to remove a troublesome critical away from
the operating speed, the amplitude of disturbing
minor criticals can often be reduced to negligible
proportions by changing the firing order, as explained
in Chapters 6 and 10.

Alternatively, the same result caipsometimes be
achieved by altering the positions of the major masses,
e.g. by placing the auxiliary flywheel at the opposite
end of the crankshaft to the generator ; by distributing
part of the required flywheel effect in the form of
counterweights attached to the crankwebs ; by placing
a generator at each end of the crankshaft; or by
placing the gemerator in the ceptre of the engine.
These methods, however, are unorthodox, and in the
majority of cases a well-designed nofihal arrangement
of engine and generator will yield a perfectly satis-
factory solution to the torsional vibration problem.

(@) Insimilar engines, i.e. in engines having the same stroke/
bore ratio and of similar design, the natural frequencies
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are inversely proportional to the bores of the cylinders
and inversely proportional to the square roots of the
numbers of cylinders.

Incidentally, if two similar engines having the
same number of cylinders are running under equiva-
lent conditions, i.e. piston speeds equal and indicator
cards identical, the natural frequencies are directly
proportional to the revolutions per minute. Hence,
if the disposition of criticals is satisfactory for one
engine it will also be satisfactory for the other.

In a given engine the natural frequency is approxi-
mately inversely proportional to the stroke, other
dimensions remaining unaltered, i.e. the critical speeds
occur at constant piston speeds.

For example, if an engine has a stroke of 3-75 ins.
and a critical speed at 3500 r.p.m., the effect of
reducing the stroke to 3+5 ins. is to raise the critical
speed to about 3750 r.p.m., the piston speed being
2187 ft. per minute in each case.

If the mean effective pressure is unaltered there-
fore, this implies that alterations in engine stroke do
not alter the positions occupied by the critical speeds
on the power curve. Thus if a critical occurs at
full power with the original stroke it will occur at
full power when the stroke is altered provided the
mean effective pressure remains unaltered. This
conclusion. should, however, be used with caution.

It should also be noted that if two engines are
geometrically similar but of different sizes the natural
frequencies are inversely proportional to their lengths.
Also, if each throw of a crankshaft is fitted with
balance weights which completely balance the rotating
parts and only one-half of the reciprocating parts,
then the polar moment of inertia of each crank mass
is doubled and the natural frequency is reduced to
I/V" 2 or o707 of the frequency with an unbalanced
shaft.
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ExaMpLE 7.—The one-node natural frequency of a six-
cylinder engine, 133-in. bore X 18-in. stroke, direct-
coupled to a dynamo is 2520 vibs./min. The crank-
shaft journal diameter is 8} ins. Estimate the
probable natural frequencies, (i) when the crankshaft
journal diameter is increased to g ins.; (ii) when the
stroke is altered to 20% ins.

(i) Since frequency is directly proportional to the
square of the crankshaft journal diameter,

Estimated frequency with g-in. __ 972
shaft = 2520 X [@]
= 3000 vibs. [min.

(ii) Since frequency is inversely proportional to stroke,

Estimated frequency with 20}~ 87 .
in. stroke = 2520 X [2—0;]
== 2240 vibs.[min.

Exampre 8—The one-node frequency of a six-cylinder
engine, 133-in. bore X 20}-in. stroke, direct-coupled to
a dynamo is 2240 vibs./min. Estimate the probable
natural frequency of a similar engine having eight
cylinders, 15-in. bore.

Since frequency is inversely proportional to bore,

= 2240 X [%J
= 2015 vibs. jmin.

Estimated frequency of 15-in.
bore, six-cylinder engine

Since frequency is inversely proportional to the
square root of the number of cylinders,
Estimated frequency of 15-in. 6
bore, eight-cylinderengine — 2°%5 X \/ 3
= I745 vibs. min.
Marine Installations.—The one- and two-node mormal

elastic curves for two typical marine installations are shown at
¢ and 4 in Fig. 18.
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In both these arrangements the node for one-node vibrations
is situated in the intermediate shafting between the engine and
the propeller, and the shape of the normal elastic curves shows
that the cylinder masses vibrate with approximately equal
amplitudes whilst the amplitude of vibration at the propeller is
much larger. In normal marine installations, therefore, a very
close approximation to the one-node frequency can be obtained
by reducing the system to a simple two-mass system, as shown
in Figs. 8 and 9, and using Equation (16), viz.,

F= 9-55«/%1:% Vibs. min.

In dealing with marine installations, it is usually preferable
to work with foot, ton, second units,
ie. C== GI'JI”

tons-ft. per radian,

G = modulus of rigidity in tons per sq. ft.
= 472,000 tons per sq. ft. for mild steel,
7 .dt

P 4
@ = equivalent diameter of shaft in feet,
L = equivalent length of shaft from propeller to centre
of cylinder group in feet,
J1 = total moment of inertia of crankshaft and flywheel
masses in tons-ft. sec.?,
Jo = moment of inertia of propeller in tons-ft. sec.2

In this case no correcting factor is required.
An examination of the one-node normal elastic curve and
Equation (16) shows that—

(@) The one-node frequency of marine installations is not
appreciably altered by alterations in the moment of
inertia of the flywheel, since the flywheel mass is not
a very large proportion of the total engine masses.

(%) The one-node frequency is also not appreciably altered
by alterations of crankshaft stiffness, since the crank-
shaft is considerably more rigid than the intermediate
shafting between the engine and the propeller.

VOL. L.—6
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(¢) The one-node frequency can be altered appreciably by
altering the diameter of the intermediate shafting;
being directly proportional to the square of the inter-
mediate shaft diameter.

(d) Any alteration in the moment of inertia of the propeller
will also appreciably alter the one-node frequency.

(¢) The one-node frequency is inversely proportional to the
square root of the length of the intermediate shafting
if all other dimensions remain unaltered.

ExaupLE g.—The one-node frequency of a marine installation
having 160 ft. of T2-in. diameter intermediate shafting is
1655 vibs./min. Estimate: (i) The one-node frequency
when the length of intermediate shafting is reduced to
50 ft. (i) The diameter of 50 ft. of intermediate shafting
for a fréquency of 400 vibs./min.

(i) Since the one-node frequency is inversely proportional to
the square root of the length of the intermediate
shafting,

Estimated one-node frequency with \/1'6_0_

50 feet of shafting, 12-in. diameter = 1655 30
= 296 vibs.[min.

(ii) Since the one-node frequency is directly proportional to
the square of the diameter of the intermediate shafting,

F,=F X [%]ﬁ,

where F, = one-node frequency corresponding to dia. d,,
F = one-node frequency corresponding to dia. 4.

In this example F = 296 vibs. /min. when 4 = 12 ins.

Hence, for F; = 400 vibs. /min.,
4,72
400 = 296[5 ,
ie. d, = 139 ins.

So far as one-node frequencies are concerned, there is not
much difference between arrangements ¢ and 4 in Fig. 18,
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since the normal elastic curves for one-node vibrations are
similar in shape, and the magnitude of the flywheel mass does
not appreciably influence the value of the one-node frequency.

The one-node frequency of marine installations varies from
150 to 200 vibs./min. when the engine is installed amidships ;
and from 300 to 400 vibs. /min. when the engine is installed aft.

The problem of avoiding serious one-node criticals in a
normal marine installation is not usually very difficult. There
is usually only one serious critical speed to be considered, and
this is generally well below the operating speed range in amid-
ships installations, and well above it in after-end installations.
Any adjustment of natural frequency which may be necessary
can be made by an appropriate alteration of intermediate shaft
diameter (see also Chapter r0).

In marine practice it is usually the two-node frequency
which is the crux of the torsional vibration problem, mainly
because critical speeds of the second degree (two-node) are
more numerous than those of the first degree (one-node), and
because the vibration stresses in the engine crankshaft at
certain of the two-node critical speeds can be very severe.

Fig. 18 shows that the normal elastic curves for two-node
vibrations differ according to the characteristics of the crank-
shaft masses. At ¢ (Fig. 18) there is a heavy flywheel at the
after-end of the engine and one of the nodes of the two-node
mode of vibration is situated between the flywheel and the
aftermost cylinder. The other node is situated close to the
propeller. The amplitude of vibration is different for each
cylinder, and is very small at the propeller.

At 4 (Fig. 18) there is no separate flywheel, the required
flywheel effect being distributed along the crankshaft in the
form of counterweights attached to the crankwebs.

In this case the crankshaft node has been shifted to a position
very close to the centre of the cylinder group, whilst the other
node has been moved closer to the propeller.

The shape of the normal elastic curve is very nearly sym-
metrical for the cylinder group, i.e. the crankshaft node divides
the crankshaft into two parts; the amplitudes of vibration at
the cylinders situated on one side of the node being nearly
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equal in magnitude but of opposite sign to those of correspond-
ing cylinders on the other side of the node. This is an advan-
tage, since it will be shown later that it implies almost cornplete
cancellation of the major and some of the minor two-node
criticals. The amplitude of vibration at the propeller is very
small.

As a general rule the flywheel effect incorporated in marine
installations should be the minimum necessary for satisfactory
starting and manceuvring, so as to provide as high a value as
possible for the two-node frequency. The actual flywheel effect
to be adopted in any specific installation should be adjusted to
keep all important critical speeds clear of the normal running
speed.

The size of flywheel necessary for satisfactory starting and
manceuvring of a marine oil engine installation may be deter-
mined by the method given in Chapter 12.

Approximate methods of calculating the two-node fre-
quencies can be deduced from the shapes of the normal elastic
curves.

(i) Engine with Flywheel (Fig. 18c).

If the moment of inertia of the flywheel is large compared
with that of the crankshaft masses, the node will be situated
close to the flywheel, ie. the shape of the two-node normal
elastic curve for the cylinder group in arrangement ¢ is similar
to that of the one-node curve in arrangement 4. The two-node
frequency for arrangement ¢ can therefore be estimated by the
method employed for estimating the one-node frequency of
arrangement b, viz.,

F =955 “/C%II.-‘-TP vibs. fmin.,

where
_G.I,
C=%x
G = 772,000 tons per sq. ft. for mild steel,
_m.a.
I,= 3 ft.4,

4 = equivalent diameter of shaft in feet,
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L = equivalent length of shaft from flywheel to
centre of cylinder group in feet,
J1 = total moment of inertia of crankshaft masses in
tons-ft. sec.?,
Ja = moment of inertia of flywheel in tons-ft. sec.2
The frequency calculated by the above expression should be
corrected by means of the correcting factors already given
(Table 6).

(ii) Engine without Flywheel (Fig.18d).

In this case the two-node frequency can be estimated by
assuming that the node is situated at the centre of the cylinder
group and applying Equation (7), viz.,

F=ogs33 \/ }3 vibs./min.,

_G.I,
where C= T
G = 472,000 tons per sq. ft. for mild steel,
L="" a*
=g

d = equivalent diameter of shaft in feet,

L = equivalent length of shaft from node to
centre of cylinders on left-hand side of
node,

J = total moment of inertia of crankshaft
masses on left-hand side of node, in tons-
ft. sec.2.

The calculated frequency should be corrected by means of
the correcting factor corresponding to the number of cylinders
on the left-hand side of the node.

ExAMPLE ga.—Estimate the two-node frequency for the marine
installation shown in Fig. 15.
=X 1-3958¢
2T 32
754 . —
L= [ 5 T3 3333:| 70833 ft.,

In this case = 0373 ft.4,
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ie. C= 17290 X 0373 0,700 tons-ft. per
e 70833 407 radig.n,

J = (1635 + 0-8175 + 1-635)
= 408735 tons-ft. sec.®

Hence, F =955 0573
== 098 vibs. /min.
Since there are three cylinders on the left-hand side of the
node, the correcting factor is 0-9z,

ie. Corrected frequency = 998/0-92
= 1085 vibs.[min.

This is 4 per cent. higher than the value obtained by the
tabulation method, and is a much closer estimate than that
obtained by the more elaborate three-mass approximation.

The estimated value would have been closer to the true
value if the three masses on the left-hand side of the node had
been of equal magnitude.

Since the margin between the normal operating speed and
one of the two-node criticals is often very small, it is necessary
to calculate the value of the two-node frequency as accurately
as possible, and the tabulation method should always be
employed for the final calculations.

An inspection of the normal elastic curves in Fig. 18, ¢ and
d, and the foregoing approximate expressions for two-node
frequency, reveals the following characteristics of marine in-
stallations :—

(@) Since the amplitude of vibration at the propeller is
small, and the rigidity of the crankshaft is very large
compared with that of the intermediate shafting,
alterations in the moment of inertia of the propeller
or in the diameter of the intermediate shafting do .
not appreciably alter the two-node frequency.

(6) The two-node frequency is appreciably altered by altera~
tions in the diameter of the crankshaft or in the dis-
position of the crankshaft masses.
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(¢) Within reasonable limits the two-node frequency of
marine installations is directly proportional to the
square of the crankshaft journal diameter.

(@) In similar engines the two-node natural frequencies are
inversely proportional to the bores of the cylinders.

The two-node frequency of marine installations usually
varies from 500 to 1500 vibs./min., according to the dimensions
and number of cylinders, and the disposition of the major
masses. An average value for installations of moderate power
is 1000 vibs./min,

The two-node frequency for a given engine does not vary
appreciably with the position of the engine in the ship, since
the influence of the intermediate shafting is very slight ; whilst
the increase of frequency as the number of cylinders is reduced
is not as much as might be anticipated due to the relatively
heavier flywheels which are required to ensure satisfactory
starting and manceuvring in engines having a small number of
cylinders.

In general, the arrangement shown in Fig. 184 is preferable
because—

(i) There is an appreciable increase in the value of the two-
node frequency compared with arrangement ¢, and
this generally enables all serious two-node criticals to
be placed above the normal operating speed ranges.

(ii) The symmetrical shape of the normal elastic curve

‘implies that the major and certain of the minor
critical speeds are eliminated. This considerably
lessens the congestion of criticals in the lower speed
range.

The shape of normal elastic curve shown in Fig. 184 is
obtained when the engine masses are uniformly or symmetrically
distributed along the crankshaft. This implies that the fly-
wheel effect necessary to emsure satisfactory starting and
manceuvring must be secured by a system of counterweights
attached to the crankwebs. In multi-cylinder engines this
method of incorporating flywheel effect has the additional
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advantage of improving the internal balance of the engine by
providing partial primary balance of the individual cylinders.

In the case of opposed-piston marine engines having four or
more cylinders, the revolving and reciprocating parts of the
engine are sufficient to provide all the flywheel effect necessary
for satisfactory running without an auxiliary flywheel or crank-
shaft counterweights.

The symmetrical two-node normal elastic curve shown in
Fig. 184 is also obtained when an auxiliary flywheel is placed
at the forward end of the crankshaft.

The diameter of the intermediate shafting and the moment
of inertia of the flywheel, whether concentrated at one point or
distributed along the crankshaft, provide means for adjusting
the values of the one- and two-node frequencies respectively,
ie. an alteration in the diameter of the intermediate shafting
alters the one-node frequency without appreciably affecting the
two-node frequency ; whilst an alteration in the moment of
inertia of the flywheel alters the two-node frequency without
appreciably affecting the one-node frequency.

The procedure recommended for dealing with marine in-
stallations is therefore to determine from previous experience
the probable value of the two-node frequency. The two-node
frequency tabulation can then be completed down to the fly-
wheel, leaving only the last two lines to be filled in by adjusting
the moment of inertia of the fiywheel to the value which makes
the last torque summation in column H, zero.

In installations of the type shown in Fig. 184, ie. where
the flywheel effect is obtained by counterweights on the crank-
webs, a light turning wheel is still necessary at the after-end of
the engine, so that small adjustments can be made by altering
the moment of inertia of this wheel.

The one-node tabulation can then be taken in hand. This
is a less sensitive calculation, and if necessary small adjustments
can be made by altering the diameter of the intermediate shaft-
ing without seriously affecting the value already determined
for the two-node frequency.

Automobile Transmission Systems.—Fig. 19 shows a
typical automobile transmission system in which the major
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masses are the engine crankshaft with its attached rotating
and reciprocating masses, the engine flywheel, and the road-
wheels. :

An approximate calculation of the natural frequencies of
this system can be made by replacing the actual system by
the equivalent three-mass system shown in Fig. 19. In this
equivalent system J, is the total moment of inertia of the
crank masses about the axis of rotation, J, is the moment of
inertia of the flywheel and its attachments, and J, is the moment
of inertia of the road-wheels reduced to crankshaft speed by
the methods described in connection with geared drives in
Chapter 5. C, is the torsional rigidity of the crankshaft, i.e.
the torque required to twist this portion of the system through
1 radian, and C, is the combined torsional rigidity of the pro-
peller and axle shafts.

Since the road-wheels cannot oscillate without causing a
corresponding oscillation of the chassis, the value of J, is not
strictly that of the moment of inertia of the road-wheels only.
Actually, the correct assessment of road-wheel inertia is very
complex. It involves questions of tyre and road-spring
flexibility, the influence of tyre inflation pressure, and the
coefficient of friction between the wheels and the ground.
Fortunately, however, the road-wheels have a negligible effect
on the value of the natural frequency of the crankshaft system,
and it is therefore not necessary to assess their inertia with
any- great degree of accuracy.

The natural frequencies of the three-mass system shown in
Fig. 19 can be calculated by Equation (19), viz. :—

Tot ot J) - Veden Bacde s Bodoy Jo Ty

As a general rule the value of C, is very much larger than
Cs, so that a further simplification can be used for preliminary
estimates of the natural frequencies of the system, ie. the
actual system can be assumed to be composed of two simple
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two-mass systems, the crankshaft system and the propeller
shaft system, as shown in the bottom diagram in Fig. 19.

The natural frequencies of these systems are found by
applying Equation (16).

For Engine Cramkshaft System,
Fe 9A55x/9%-'-‘§2—m vibsjmin. . . (30)

The node is situated in the crankshaft, usually close to the
flywheel. -

For Propeller Siifi System,

e T D e 69

The node is sitnated in the axle shafts, as a general rule.
ExaMPLE 10.—The following values may be taken as fairly
representative of light car practice :—
=05 Ib.-in. sec.?; J,=251bs.-ins. sec.?; Jy=50 Ibs.-ins. sec.?;
C,=1,200,000 Ibs.-ins. per radian ; C,=4000 lbs.-ins. per radian.
For the three-mass system shown in Fig. 19 the frequency
equation becomes
0015625 w* — 45026 w? 4 63600000 = 0,
whence w? = 2880256 or 1408,
or F = 16200 or 358 vibs./min.
For the separate systems shown at the bottom of Fig. 19,
(i) Crankshaft system from Equation (30)—
_ 1200000(0-5 4 2°5)
9 55\/ 05 X 25
i.e. F = 16,200 vibs./min., which agrees with the value ob-
tained from the three-mass system.
(ii) Propeller shaft system from Equation (31)—
4000(0°5 + 2°5 + 50)
F = g554) T 3T 227,
TSN o5 F 2350

)
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ie. F = 358 vibs./min., which also agrees with the value ob-
tained from the three-mass system.

Since the moment of inertia of the road-wheels, Js, cannot
be calculated with any great degree of accuracy, it is interesting
to notice that large changes in this quantity do not produce
much change in the value of the natural frequency of the
propeller-shaft system. For example, if, in the above example,
the value of J, is reduced to 25 1bs.-ins. sec.?, the frequency
becomes 368 vibs./min., i.e. an ncrease of only 3 per cent. for
a 50 per cent. reduction in the moment of inertia of the road-
wheels.

Conversely, when J, becomes very large, Equation (31)

reduces to
-_— . Cz
F=9NT 7

ie. the frequency of the propeller-shaft system when the
inertia of the road-wheels is increased towards infinity becomes

) 4000 . .
F=9 55\/—————0.5 T2 348 vibs./min.
This is only 3 per cent. reduction in frequency for an infinite
increase in the moment of inertia of the road-wheels.

The important practical significance of the foregoing results
is that in any system where the torsional rigidity of one section
is very much larger than that of another, close agreement with
the actual frequencies is obtained by treating each part of
the system separately. This confirms that in an automobile
transmission system the general practice of neglecting the
influence of all parts to the rear of the fiywheel in calculating
crankshaft frequencies is unlikely to cause serious error. Tt
also indicates that alterations in the characteristics of the
propeller shaft part of the system are not likely to effect the
frequencies of the crankshaft system appreciably.

In the case of the propeller-shaft system, since the moment
of inertia of the road-wheels is very large compared with that
of the fiywheel and clutch, large errors in estimating road-wheel
inertia do not make any appreciable difference to the value
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obtained for the natural frequency of the propeller-shaft
system.

It should also be noted that large alterations in the inertia
of the flywheel, J,, do not produce correspondingly large
changes in the value of the crankshaft frequency. For example,
if, in the foregoing example, J, is reduced to 1-25 Ibs.-ins. sec.?,
the frequency becomes 17,500 vibs./min., an increase of only
8 per cent. in frequency for a 50 per cent. reduction of flywheel
inertia.

Conversely, if the moment of inertia of the flywheel is very
large, Equation (30) becomes

F= 9~55«/§—: vibs. /min.

Thus, in the foregoing example for very large values of
flywheel inertia, the frequency of the crankshaft system becomes
14,800 vibs./min., a reduction of only 8 per cent. in frequency
for an infinite increase of the moment of inertia of the flywheel.

The principal characteristics of a typical automobile trans-
mission system are therefore—

(i) A low-frequency vibration which is below the frequency
of engine impulses for all normal operating conditions.
In a four-cylinder four-stroke engine, for example, the
dominating impulse frequency is two impulses per
revolution, so that the synchronous condition arises
at an engine speed of not more than about 200 r.p.m.
In six- and eight-cylinder engines, where the dominat-
ing impulse frequencies are three and four per re-
volution respectively, the conditions are even more
favourable, because the critical speeds will then occur
at not more than 130 r.p.m. for the six-cylinder engine
and 100 r.p.m. for the eight-cylinder engine.

These engine speeds are sufficiently far below the
normal operating speed range to render a more
detailed investigation of this mode of vibration
UNNECESSary.

This low-frequency vibration is the one-node mode
of vibration for the system as a whole, the node being
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situated in the propeller shaft or rear axles. Large
alterations in the moment of inertia of the road-wheels,
or in the torsional rigidity of the crankshaft, do not
appreciably alter this frequency, but alterations in
the moments of inertia of the flywheel or engine, or
alterations in the torsional rigidity of the propeller
and axle shafts have an important influence.

(i) A high-frequency vibration which can be calculated
with sufficient accuracy by neglecting all parts of the
oscillating system to the rear of the flywheel. This
vibration is a two-node mode of vibration for the
system as a whole, with one node situated in the
crankshaft near the flywheel, and the other in the
propeller or axle shaft. Alterations in the moment of
inertia of the flywheel or in all parts to the rear of the
flywheel do not produce any appreciable change in
the natural frequency of this mode of vibration, but
alterations in the moment of inertia of the crankshaft
masses, or in the torsional rigidity of the crankshaft,
have an important influence. For example, a reduc-
tion in the number of main bearings and the consequent
reduction in the length of the crankshaft produces an
appreciable increase of the natural frequenicy.

The calculation of this mode of vibration and the
evaliiation of the corresponding torsional vibration
stresses is the crux of the torsional vibration problem
of automobile engine crankshafts.

The procedure recommended, therefore, for calculating the
natural frequency of the crankshaft system of an automobile
engine is to obtain the equivalent oscillating system for the
crankshaft masses and flywheel, by the methods described in
Chapter 3, neglecting all masses to the rear of the fiywheel.
The tabulation method is then applied to this system to obtain
the value of the natural frequency, the normal elastic curve,
and the specific vibration torques acting in each section of the
crankshaft,

The main characteristics revealed by applying the tabulation



NATURAL FREQUENCY CALCULATIONS 95

method to an automobile crankshaft system are similar to those
already described for direct-coupled generator sets, and the
same remarks apply to both types of installation. Asa general
rule the higher modes of vibration of an automobile crankshaft
system are mot of practical interest, because only high order
criticals of small amplitude occur within the running range in
the case of these higher modes.

Typical values for the natural frequencies of the funda-
mental mode of crankshaft vibration of automobile engines are
17,000 to 24,000 vibs./min. for four-cylinder engines; 12,000
to 17,000 vibs./min. for six-cylinder engines; and gooo to
13,000 vibs./min. for eight-cylinder engines.

Aero Engine Crankshaft and Air-screw Systems.—
From the point of view of torsional vibration aero engines can
be divided into two main classes, namely, radial and in-line
engines.

The simplest type of radial engine is the single-row arrange-
ment in which the cylinders are all in one transverse plane,
the lines of stroke being equally spaced round a single crankpin,
as shown in Fig. zo.

The simplest type of in-line engine is the single-bank type,
in which the cylinders occupy different transverse planes and
there is a crankpin in each line of stroke, as shown in Fig. 21.

Radial engines are not, however, confined to the single-row
type. Two-row, and three-row radials have been developed
for the higher power outputs. In multi-row radials there is a
crankpin to each row. For the purpose of calculating natural
frequencies, therefore, a multi-row radial engine can be regarded
as an in-line engine with as many cranks as there are rows of
cylinders, the moment of inertia at each crank being the sum
of the moments of inertia of the reciprocating and revolving
masses of all the cylinders, connecting rods, etc., in each row.

Similarly, in-line engines are not confined to a single bank
of cylinders; engines with two-, three-, and four-banks of
cylinders in ‘ Horizontally Opposed,” ““ V,” *“ Fan,” *“ X,”” and
“H ” formations having been developed for the higher powers.
For the purpose of calculating natural frequencies, the effect
of adding banks of cylinders to an in-line engine is merely to
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increase the moment of inertia of the oscillating mass at each
crankpin.

There is thus a tendency for the two classes to merge,
although the majority of present-day radial engines are of the
single-row or two-row types, and the majority of present-day
in-line engines are of the single-bank or two-bank (V-formation)
types.

The air-screw is driven either directly from the engine
crankshaft or through reduction gearing, but the present
discussion will be limited to ungeared engines. Geared aero
engines are dealt with in Chapter 5.

Radial Engines—Fig. 20 shows a typical ungeared single-
row radial engine/air-screw combination.

The equivalent system is shown at the bottom of the diagram
and consists of two major masses, the moment of inertia of the
air-screw being very much larger than that of the engine
rotating and reciprocating parts.*

The natural frequency of this system is given by Equation
(16), viz.,

B = 9,55\/(%’% vibs./min.,

where C = torsional rigidity of shaft between engine and
air-screw in lbs.-ins. per radian,
J» = moment of inertia of air-screw in Ibs.-ins. sec.?,
J. = moment of inertia of engine in Ibs.-ins. sec.2.

The moment of inertia of the air-screw is large compared
with the moment of inertia of the engine masses, so that
alterations in the moment of inertia of the air-screw do not
appreciably change the natural frequency of the system.

Hence, a first approximation to the natural frequency is
obtained by neglecting J, in the numerator of the foregoing
equation,
ie. F = 9-35 4/C/J, vibs./min.

* It is shown in the Appendix to Volume I that air-screw blade flexibility
can have an important influence on the torsiomal vibration characteristics of

aero-enginefair-screw combinations. In this chapter, however, the air-screw
blades are regarded as rigid.
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An alteration in the torsional rigidity of the connecting
shaft, C, or in the moment of inertia of the engine masses, J,,
however, can producea considerable change of natural frequency.

The shape of the
normal elastic curve
is shown in the
bottom diagram of
Fig. 20. Due to the
large air-screw inertia
the node is very close
to the air-screw and,
as already explained,
it is usually suffi-
ciently accurate to
assume that the in-
stallation reduces to
.a one-mass system
with the engine
masses swinging
about a node at the
air-screw.

ExaMpPLE 11.—In the
system shown in
Fig. 20, J, =750
lbs.-ins. sec.?;
Je=35 Ibs-ins.
sec.2; and C=
4,000,000  lbs.-
ins. per radian.
Calculate the
natural fre-
quency of vibra-
tion and the

Airscrew
.

Jp Je

Normal Elashc Curve

Equvalenl
Node | Jystem

i

Fi1G. 20—Radial aero-engine/air-screw system.

effect of the following alterations on the characteristics of
the oscillating system :—

(i) Increasing J, to roo lbs.-ins. sec.2.
(if) Reducing J, to 25 Ibs.-ins. sec.
Ed

VOL. 1.—7
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(iii) Increasing J,. to 6 Ibs.-ins. sec.®
(iv) Reducing C to 3,000,000 lbs.-ins. per radian.

The natural frequency of the system is obtained from the

equation
C
—gss «/ J,, + J )

ie = ¢-55 \/4000000 0+ 5) = 8950 vibs./min.
e 9 = X3 )

@) If J, = oo, F = 8750 vibs./min.

M) If [, = 25, T = 9350 vibs./min.

(i) If Jo=6. F = 8250 vibs./min.

(iv) If C = 3,000,000, F = 7730 vibs./min.

The foregoing calculations show that the effect of doubling
the moment of inertia of the air-screw is to reduce the natural
frequency by only 2-3 per cent., whilst the effect of halving
the moment of inertia of the air-screw is to increase the natural
frequency by only 4-5 per cent.

This result is important from the practical point of view
because it implies that an appreciable error in estimating the
moment of inertia of the air-screw does not make any appreciable
difference in the frequency calculation.

The calculations also show that an increase of 2o per cent.
in the moment of inertia of the engine masses causes an 8 per
cent. reduction of natural frequency ; whilst a reduction of
25 per cent. in the torsional rigidity of the connecting shaft
causes a 13-5 per cent. reduction of natural frequency.

In general, therefore, changes in air-screw inertia, within
practical limitations, do not appreciably alter the natural
frequency of the oscillating systems of these engines, and the
only effective methods of changing the frequency are either to
alter the inertia of the engine masses or the stiffness of the
shafts connecting the engine to the air-screw.

Ii the system is treated as a simple ome-mass system
swinging about a node at the air-screw, the following results
are obtained :—
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F =935 W/m vibs. /min,

When C = 4,000,000 and J, =5,
F = ¢55/4000000/5 = 8550 vibs./min.

When C = 4,000,000 and J, = 6, F = 7800 vibs./min.

When C = 3,000,000 and J, = 5, F = 7400 vibs, /min.

N, By

These values are only from 2-5 to 5 per cent. less than the
values obtained by using the two-mass method.

The oscillating systems of multi-row radial engines are
preferably dealt with by similar methods to those employed
for in-line engines.

In-Line Engines—Fig. 21 shows a typical single-bank
in-line engine air-screw combination.

The equivalent system is shown at the bottom of the dia-
gram and consists of a series of comparatively small fiywheels,
representing the moments of inertia of the engine masses,
connected to one large flywheel representing the moment of
inertia of the air-screw. The moment of inertia of the air-
screw is large compared with that of the engine masses, and
the torsional rigidity of the air-screw shaft is usually smaller
than the torsional rigidity of the crankshaft sections between
each line of parts.

The general characteristics of the system shown in Fig. 21
are similar to those of the direct-coupled generating sets already
discussed in this chapter.

The fundamental or one-node frequency can be calculated
with a good degree of accuracy by means of the simple two-
mass system shown at the bottom of Fig. 21, where

J = total moment of inertia of engine masses
= N. J, Ibs.-ins. sec.?,
N == number of cylinders,
J. = moment of inertia of one line of parts,
J, = moment of inertia of air-screw, in Ibs.-ins. sec.?,

C = torsional rigidity of equivalent shaft between air-screw
and combined engine masses, assuming the engine
masses are concentrated at the middle of the engine
aggregate, in Ibs.-ins, per radian.
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Fic. 21.—In-line aero-engine/air-screw system.
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The value of C is obtained as follows :—
1_x , (N-—1
c=ct e,
2.C,.C,
Le. C= 2.CF (N=1C, . (32)
Hence, the fundamental or one-node frequency of the
system is given by the usual equation for a two-mass system,

F =935 ot D) ivsjmin, . . (33)
R
where K is a correcting factor which depends on the number
of cylinders as shown in Table 6.
Also, ifC,/C, = A, and J»/Jp =3B,
2.A.C;? 7 2.A.C,
2.C,+N—-1)AC, 2z+AN-1)
and the frequency equation becomes
95%/ 2. AB+N) C,
AN —ON.B T, G
For a four-cylinder engine K = o-gr and N = 4.

Hence, F =105 Z—-c‘]‘;—((]:—————_m gvﬂ)s/mm. . (35)

For a sis-cylinder engine K = 0-91 and N = 6.

. B+6 C,
Hence, F=10 3\/3—-—-——]3(2 AT vibs./min. . (36)‘
As a general rule J, is very large compared with J,, so
that the ratio J,/J, is also very large. This implies that N
in the numerator of Equation (34) is practically negligible
compared with B.
Hence Equation (34) reduces to

_955 2. A .
=K VN +AN T TS -7

then C=
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i.e. when the air-screw moment of inertia is very large compared
with the moment of inertia of one line of cylinder masses, large
changes in air-screw inertia do not have any appreciable
influence on the value of the fundamental frequency of the
system. The frequency is, however, altered appreciably by
changes of shaft stiffness, or changes in the moment of inertia of
the cylinder masses.
For a four-cylinder engine, Equation (37) becomes
A C,

“105J2(2+3‘A)'Je' . . (38)

For a six-cylinder engine, Equation (37) becomes

- A
F= Io-sx/m T . . (39)

ExaMPLE 12.—Calculate the fundamental or one-node fre-
quency of torsional vibration of the system shown in
Fig. 22.

This is a six-cylinder aero-enginefair-screw combination,
where
N =6, J,=o0151b-in. sec?; J, = 250 Ibs--ins. sec.?
C, = 2,800,000 lbs.-ins./radian ;
Cp = 2,020,000 Ibs.-ins./radian.

Hence, A=C,/C,=0y2; B=],/],=167.
From Equation (36),
— 0'72(167 + 6) 2800000

3X 167(2+5%x 0%2)° 0I5
= 9570 vibs. [min.

Alternative solution, using Equation (39),
F= Io-gn/ 072 2800000
3(z+s5x072)" oxs
= 9400 vibs./min., which is about 2 per cent.
less than the more accurate value.
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ExaMpLE 13.—Calculate the fundamental frequency of the
system shown in Fig. 22 when the following alterations
are made :—

250 o o5 015 015 015 0
Moment of Inertia in Lbs. Ins. Sec?

Airscrew

%g////% * Torsion
e

7al Rq‘;ijitg in Lb;]ni/-l?adrhp
—»-I-(—-»-<— —44-
2009009 SN ’/‘/_H
/

2,800,000

Normal Elastic Curve

1- Node Mode ' Vs
F= 9550~/Min. "
e [P
e L
\hode ] ‘ /ml\Node i
\ s ‘
\ Normal Elastic (urve
\ ! / . 2- Node Mode
\\ /' F= 28000 ~/Min.
~ |- l

Fic. 22.—Equivalent system : six-cylinders in-line aero-engine/air-screw
syste:

(@) Moment of inertia of air-screw increased to 30 lbs.-ins.
sec.?

(b) Moment of inertia of each line of engine masses in-
creased to 0-30 Ib.-in. sec.®.

(¢) Torsional rigidity of air-screw shaft increased to 4,040,000
Ibs.-ins./radian.
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In each case the remaining characteristics of the system
are unaltered—
(@) When J,=1501bs-ins. sec.2; B=J,/J,=50/0-15=7334.
Hence, from Equation (36),
-10 072(334 + 6) 2800000
3 X 334(2 + 5 X 072) . 015
= 9430 vibs./min.
(6) When J,==0-30 Ib.-in. sec.?; B=J,/J,=25/030=834.
Hence, from Equation (36),
=105 0-72(83:4 +6) 2800000
3 X 83:4(z+5 X 072) * 030
== 6870 vibs./min.

(¢) When C, = 4,040,000,

_ __ 4040000 __
A=ClCe = Bon0m0 — T 44
Hence, from Equation (36),

1-44(167 -+ 6) 2800000
—105“/3><1672+5><144) 015
= 10,550 Vibs./min.

The foregoing calculations show that doubling the inertia
of the air-screw only reduces the frequency by about 2:5 per
cent., whereas doubling the inertia of the engine masses reduces
the frequency by 28 per cent., whilst increasing the stiffness
of the air-screw shaft increases the frequency by 10 per cent.

As a general rule the most effective method of altering the
fundamental or one-node frequency of systems of this type is
either to alter the moment of inertia of the masses furthest
from the node, i.e. furthest from the air-screw, or to alter the
stiffness of that section of the shaft mearest to the node, i.e.
the air-screw shaft. Alterations to masses near the node or
to shafts remote from the node do not make much alteration
in natural frequency. These are the basic rules to be observed
when frequency alterations are under consideration.
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There are other possible modes of vibration of the system
shown in Fig. 22 although it is usually the fundamental or
one-node mode which is the crux of the vibration problem in
installations of this type. .

The two-node mode of vibration can be evaluated approxi-
mately by the method described in Chapter 1 in connection
with the system shown in Fig. 1o, ie. the actual system is
reduced to an approximately equivalent three-mass system
from which both one-node and two-node frequencies can be
calculated, using Equation (19). The value obtained for
two-node frequency is, however, very approximate and should
only be used as a means' of judging whether there is likely
to be any troublesome two-node critical speeds in the operating
range of the installation. If an accurate value of the two-
node frequency is required the tabulation method should be
employed.

Normally, there are no troublesome two-node criticals in
the operating range of an in-line aero-engine fair-screw system,
because only high-order harmonics are present in the operating
range and these are comparatively feeble in intensity. Two-
node frequencies should therefore be of interest only in abnormal
cases, when the engine is very large or has a high normal
operating speed, or when there is a very flexible shaft or coupling
between the engine and the air-screw. In the laiter case,
however, the two-node frequency with a very flexible air-screw
shaft will have approximately the same value as the one-
node frequency with a comparatively rigid air-screw shaft.

In cases where both one-node and two-node vibrations
have to be considered it should be noted that the most effective
method of changing the two-node frequency is to alter the
moments of inertia of the masses remote from the nodal points,
or, alternatively, alter the torsional rigidities of the sections
of shafting in the vicinity of the nodal points.

Alterations in the moments of inertia of masses near to the
nodal points or in the torsional rigidities of shaft sections
remote from the nodal points do not alter the frequency
perceptibly.

Furthermore, an inspection of the normal elastic curve
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for the system shown in Fig. 22 shows that the one-node
frequency can be altered without appreciably altering the two-
node frequency by altering the moment of inertia of the crank
masses in the vicinity of the right-hand or crankshaft node in
the diagram at the bottom of Fig. 22. Alterations in the
moment of inertia of the mass at the left-hand nodes, i.e. the
air-screw, do not appreciably alter either one-node or two-
node frequencies.

When the approximate values of the one-node and two-node
frequencies have been determined by approximate methods,
the more accurate values should be calculated by the tabulation
method, especially if it is required to evaluate the vibration
stresses at critical speeds, because the frequency table contains
data which is necessary for the evaluation of stresses.

A typical frequency table for a six-cylinder in-line aero-
enginefair-screw system is given 'in Table 7. This table is
based on the system shown in Fig. 22, and its construction is
similar to that described in connection with Tables 1 and 2.

The stress for + 1° deflection at the free end of the crank-
shaft, column J in Table 7, is obtained by dividing the torque
summations in column F by the modulus Z of the shaft
section at which this torque acts

where Z="1 D?
16

- 7Dt — )
T 16.D
D = outside diameter of shaft in inches,
4 == inside diameter of shaft in inches.

ins.? for solid circular shafts

ins.? for hollow shafts,

The smallest value of Z in each section should be used.
In the case of crank elements this is usually the crankpin
section. The specific stresses given in column J of Table 7
are nominal stresses, i.e. no allowance should be made for stress
concentrations at fillets, splines, key-ways, etc. This is be- "
cause the damping factors which will be used for calculating
vibration stresses have been deduced from nominal specific
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stresses. The concentration factors are applied to the vibration
stresses themselves.
The natural frequencies of the fundamental or one-node
TABLE 7.

. FRrEQUENCY TABULATION: AERO-ENGINE SYSTEM.

(i) One-Node Mode: F = g550 Vibs.[Min.; of = 1,000,000,

4 B c D E F G H 1 J
Moment | T Dot | Torgue i chnage o0l B2
e | o | hlhne| rduelt | Total | Shasy |Chasee| of |rp
per Unit [inPlane| Plane of o : in- | Swction 3 285
Inertia, | Defiection. [of Mass.| Mass, | 107due. |Stifiess.| pog, |~ of D:{imn
Mass. shaft. | o a
g Joot g 2.0 | el G Ll 4 f
Lbs. | Tt gl | fpie? | F1ia? s g™ "c e
ns, Sec.t| Radian, |Rodian.| Lbslns. | Lbs-los. |"poci | podipe | Ins®. [Lbs/Ins2
INo. z ¢yl.| o015 150,000| 10000 150,000 150,000 | 2,800,000 |  0-0535 5 |t L5
No.zeyl| o1s 150000 09465\  Ti2,000|  202,000|2800000] 0202 | TS | 3400
[No.3 eyl.| o1s 150000 oB4a3| 16300|  418300(2800000( omes| TS | 4860
No. 4 cyl.| oxs 150,000 06928 104,000 322,300 | 2,800,000 0-1865 | 15 §070
No.seyl.| o015 350,000] 05063 76,000|  5908,300(2,800,000{ 02140 | T5 6,950
No.G eyl | o15 150,000/ 02023 43900  642,200{2,020000| o3180 [ 20 5,570
Alrsciew | 2500 | 25,000,000 [—00257| —642,200 o - - —_ —
(i) Teo-Node Modz : F = 28,000 Vil [Min. ; o = 8,580,000,
No.xesl.| o135 | 128%000| Toooo| 1,288000| 1,288,000 (2800000 o4beo| 5 [+z5,000
No, 2 ¢yl.| o015 1,283,000 ©5400 6p5,000| 1,983,000 |2,800,000( 07080 15 23,000
No. 3¢5l o5 1,288, Bt 216,500| 1,766,500 |2,800,000( 06300| 15 20,500
No. 4oyl o35 | a8 Bo| r025,000| 741,500 |2800000] 02645 3 | 8,620
No.scyl| o5 | 1,283,000|—vokos|~1,370000|~ 628,500 2,800,000 —caz4s| T3 | 7,300
No.6cyl| o015 | 1,283,000 |~08380|— 1,080,000 |~ 1,708,500 2,020,000 ~0B4b0| 20 | 850
Airsoraw | 25700 |214500,000| ocoBo] 108500 o - — | = =

mode of torsional vibration of aero-engine/air-screw combina-
tions varies from about 18,000 vibs./min. for small ungeared
four-cylinders in-line engines to about 4500 vibs./min. for
large six-cylinders in-line geared engines with two or more
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banks of cylinders. Average values for single-bank four-
cylinders in-line engines are 12,000 t0 14,000 vibs./min., and
for single-bank six-cylinders in-line engines from 10,000 to
12,000 vibs./min. The two-node frequency of these engines is
generally about three times the one-node frequency.

The natural frequencies of the fundamental mode of vibra-
tion of radial engines varies from about 8000 for small ungeared
single-row engines to 3000 vibs./min. for large two- and three-
row geared engines, average values being 4000 to 6000 vibs./min.
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CHAPTER 3.
EQUIVALENT OSCILLATING SYS‘[‘EMS.

THE oscillating systems of actual installations are usually much
more complex than the ideal systems discussed in the preceding
chapters.

To facilitate calculation it is necessary, therefore, to replace
the complex system by a simpler system, consisting of a series
of exact masses connected by sections of weightless shafting,
which retains as closely as possible the dynamic and elastic
characteristics of the original arrangement.

The accuracy with which the simplified system reproduces
the vibrational characteristics of the original system depends,
to some extent, upon experience and judgment, so that the
results of torsiograph investigations are a valuable aid in deter-
mining the allowances which should be made for each individual
type of installation (see Chapter 8).

In the case of vibrations of the second degree, or two-node
vibrations, of 2 multi-cylinder engine direct-coupled to a marine
propeller, for example, where the clear speed range between
two consecutive critical speeds is sometimes restricted to ten
revolutions per minute of the prime mover, an error in convert-
ing the actual into the equivalent system can easily result in
one or other of these criticals occurring so close to the
running speed that an alteration to the system after it has
been put into service is necessary for satisfactory operation.

Figs. 23 and 24 show the actual and equivalent systems for
a typical direct-coupled marine installation, and a typical
direct-coupled electrical generating set, respectively.

In Fig. 23 the actual system is reduced to an equivalent
system comsisting of eight exact masses connected by sections
of shafting of uniform diameter.
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In Fig. 24 the equivalent system consists of eight exact
masses, since the armature of the dynamo is so rigidly connected

NI NP3 2 N1 SeaviAlr

Cyl Gl Cul. Gyl Pump.Comp™
[a} 4 rfrf

Propeller.
v

-‘- b{m 0 &
Fi6. 23—~Equivalent system—~marine installation.

to the fiywheel that the two can be regarded as one mass without
much error.

N1 N2 N3 N4 N5 NeB

G O cQ[b ot l? ol oy

AipCom- 7
pressor | | | J&]. Flgwheel,
- ‘ﬁ} i H, Generd
- engrator:
i i) it | ,

=

|

k L7, Combined Flywhes!

&Generator Mass,

Fi6. z4.—Equivalent system—direct-coupled generator.

The problem of converting a complex system into a simpler
one can be divided into two main parts, viz.: I. Determination
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(i) Cramkpins (Fig. 25).
For Solid Crankpins,

W=Z—".Dg.B.S 1bs.,
K2 = 1_)82: + R? ins.?,
where D, = diameter of crankpin in inches,
B = length of crankpin in inches,

R = distance of centre of gravity of crankpin from
axis of rotation, in inches,

ie. W.R'=T.D2B. s[%}f +Re] bseins.,

- Dyt i
ad  J=.D2.B As[ 2+ R"] Ibs.ins. sec®  (45)
Forsteel S =0283,
. _ D2.B
e J="5s

I:D’ + Rﬂ] Ibs.-ins. sec.? . (46)

The foregoing expreésions also apply to any solid cylindrical
_ mass of uniform diameter, whose centre of gravity is situated
at a distance R from the axis of rotation, e.g. eccentric pulleys.

For Hollow Crankpins,
W= ";:(D,’ —dg).B.Slbs,

o [ L ] s

where d, = Diameter of hole through crankpin in inches,
: D,? + 4.
e 2= - B. 2 __ 4.2 2 2 2
i W.K'=T.B.SDs —ds ){[ :l + R}
1bs.-ins.2,
- o gD+ 4" .}
and J= ;% B.SOs d,){[ 1+r

lbs -ins. sec.®.  (47)
VOL. 1.—8
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For steel S = 0283,
2. 4.
T B (Dg? — dzi){]:DZ_';'_Z_] + Rz}

le.

T 1733
Ibs.-ins. sec.?.  (48)
(ax{BxR'i)
T
-4
4A|’=‘e§(ux8x/?a)d'l?

F1g. 26.—Moment of inertia of crankweb.

The foregoing expressions also apply to any hollow cylin-
drical mass of uniform cross-section, whose centre of gravity is
situated at a distance R from the axis of rotation, e.g. eccentric

sheaves.
4] e 12—

TR T T

0 o 20 30
(o xBxRY)>

Fre. 27.—M t of inertia of

(ili) Cranmkwebs (Figs. 26 and 27).
. Referring to Fig. 26, consider a small piece of the web of
width B feet, and thickness SR feet, at radius R feet, sub-
tending an angle « degrees at the centre of rotation,
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The moment of inertia of this piece relative to the axis of
rotation XX is
J_z.fr.R.B.af.S.R“.BR
= so.g
where S = specific weight of material in Ibs. per cu. foot,
g = 32-2 ft. per sec.2,
Then, for the whole crankweb,

_2.7.85¢ . 2 .

J 0.2 Z(e®. B . R%IR Ibs.-ft. sec.?

The quantity 3(a® . B . R%)SR is the area A under the curve
shown at the right-hand side of Fig. 26.

This curve is obtained by plotting values of («° . B . R3) at
different radii. Note that «® is 360° for all values of R less
than C in Fig. 26 ; also that when the radius R cuts the web
boundary in more than two places, as at «, o, and «; in Fig.
26, o°= (&% + o’y + a’y).

Let A = area under curve by planimeter in sq. ins.,

x = horizontal scale, ie. I in.=x units of
(2°.B.RY; R and B being measured in feet,
and « in degrees,

= vertical scale, i.e. T in. = y ft.

Ibs.~ft. sec.?,

Then the area scale is 2=%x.9,
ie. Isq.in.= x.y.units of («°.B. RYSR.
Hence, finally, moment of inertia of crankweb,
_2.7m.S.A.x.y )
J= 60,4 Ibs.-ft. sec.2 . (49)
For steel S = 490 Ibs. per cu. foot,
ie. J= Aéf;f Ibsft.sect . . . (50)

ExaMPLE 14.—Obtain the moment of inertia of the crankweb
shown in Fig. 27 by the method just described, and check
the result by direct calculation.

By the Graphical Method.
The values of (¢° . B. RY) at different radii are given in the
following table :—
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Inches,

124

These values were plotted using a horizontal scale of
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Feet.

0042
o125
0-208
0292
0375
0458
0°542
0625
0-708
0792
0875
0958
1-042

TABLE 8.
R3 B

TFeets, Feet.
0-000T 0333
00019 0'333
0-00g0 01333
0°0250 0333
0:0527 0333
0°0961 0333
0-1592 0333
0:2441 0333
03549 0333
04968 0333
06699 01333
08792 0333
11314 0333

Degrees.

& .B . R3,

0012
0228
1°080
3'000
5340
8-710
8-810
8-700
10650
13100
15-600
18-400
21850

Iin. = 5 units of («°. B.R¥,ie x=75; and a vertical scale
of 1 in. = 1/6th ft., ie. y = 01666 ft.

The area, measured by planimeter, was found to be 1275

sq. ins.

Hence,

J

377

= 2-82 Ibs.-ft. sec..

By Direct Calculation.

Weight of web W = 4 ins. X 171ins. X 12 ins, X 0283
= 231 lbs.,
K® = (17 4 127) + 4'5°
= 56-33 ins.?
= 0-301 ft.2

Hence,

W. K2=231 X 0301 = 905 lbs.-ft.%,

322

_A.x.y_ 1275 X5 X 01666
377

=95 _ 58 1bs.~ft. sec.®.

This value agrees with that obtained by the graphical method.
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(iv) Crankshaft Balance Weights.

These can be treated as forming part of the crankwebs to
which they are attached.

(v) Revolving Part of Runwing Gear.

The revolving parts of the crankshaft have already been
dealt with in the crankshaft calculations. There remains the
revolving part of each connecting rod which may be assumed
to be equivalent to three-fifths to two-thirds of the total weight
of the connecting rod, concentrated at crankpin radius.

This figure can be determined experimentally by suspending
the rod horizontally with the big end resting on the table of
a weighing machine. The weight registered is that of the
revolving part of the rod, ie. that portion of the total weight
below the centre of gravity. The reciprocating weight can be
determined in a similar manner, the rod being suspended hori-
zontally as before, but with the small end resting on the weighing
machine table. The result may be checked by adding together
the revolving and reciprocating weights. The sum should be
equal to the total weight of the rod.

This method is not strictly accurate for connecting rods of
normal design, since it neglects the effect of the oscillatory
motion of the rod, but it is quite accurate enough for practical
purposes (see Chapter 6).

Let W = total weight of connecting rod in Ibs.,

then revolving weight = LEE,

2
and moment of inertia | — 3 VR Ibs ft. sect, . (51)
where g = 322 ft. per sec.?,

R = crank radius in feet.

In the case of reciprocating steam engines, the revolving
part of the valve driving gear must also be taken into account.
The moment of inertia of the eccentrics and eccentric sheaves
can be calculated by the methods already given for solid and
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hollow crankpins, whilst the revolving part of the eccentric rod
may be assumed to be that portion of the rod which lies below
the centre of gravity.

(vi) Reciprocating Pari of Rummning Gear.

The reciprocating parts follow the crank movements at
mid-stroke, but remain practically stationary whilst the crank
is turning over top and bottom dead centres, i.e. the influence
of the reciprocating parts on small rotational vibrations is a
maximum when the crank is at the position corresponding to
mid-stroke, and disappears when the crank is on top or bottom
dead centres.

It is common practice to allow for this variation of the
inertia of the reciprocating parts throughout the stroke by
including only one-half of the weight of the reciprocating parts
with the weight of the revolving part of the connecting rod
to give an equivalent rotating mass concentrated at the
crankpin.

The average value of the moment of inertia of the reciprocat-
ing parts may, however, be determined as follows :—

Let v = linear velocity of the reciprocating parts at any
instant when the crank angle is o degrees,
measured from top dead centre,

w = angular velocity of the crankpin, assumed con-
stant,

R = crank radius,

L = length of connecting rod,

# = the ratio L/R.

Then an approximate expression for v at the crank angle « is

v=w.R<sina+_;1{—I_-‘.sh12u>.

Hence, the kinetic energy of the reciprocating parts at
crank angle «, assuming that their weight is W, is

K‘—W ot Rz(moﬁ—l— P smzu).
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Now K¢=J‘—2wg or J= :

2 .
Hence, - J= W.R (sin o -+ EEE .sin 2a>2. . . (52)

If the obliquity of the connecting rod is neglected, this
expression reduces to

W.R?

J= (sin o) = W ?2(1 —cosza). . (53)

. R?
2.8
independent of the crank angle o, and represents the average

value of the inertia of the reciprocating parts for one revolution.
(W.R2. cos za)

In the above expression the first term, viz. ,1is

The second term, viz. , may be regarded as

excess inertia of the second degree. The complete expression
gives the instantaneous value of the inertia of the reciprocating
parts corresponding to any crank angle «, and indicates that
this value is zero at dead centres, and a maximum when the
piston is at mid-stroke.

A more exact expression for the instantaneous value of the
inertia of the reciprocating parts at any crank angle « is
obtained by writing the equation for kinetic energy in the
form of an expansion in terms of multiples of cosines of «, thus :

2
K, = V—"{ﬁ—"—'—RZ(A0 + A;.cosa+ A, . cos 2,

2.8

+ A, cosso:—l—A. cos 4 + ... ),
(Ao—i—A1 cos o + Ay . cos za

+ A cossu+A4 cos 4o 4. . ). (54)

W.

ie. J=

The coefficients Ay, A;, A, A, etc., vary with the ratio
# = L/R as follows (see “ Balancing of Engines, Steam, Gas
and Petrol,” by Archibald Sharp, page 126) :—
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TABLE o.
I I
il R T +
x 1 15 _
Ay = z.n t5os tae.s T
-t R -
Ay = 2 32. 0%
= T -3 27
Ay = 2. 16.%° 256 . nb
s -t —
A= §nt 16. 0t
1 ! 15
Ag = 16 .23 +256.n“ +
I
Ay = 32.n4 +
-3 _  _
Ay = 256 . #°

The values of these coefficients for several different con-
necting rod/crank ratios are given in Table ro.

Table 10 may be checked by noting that when the crank is
on dead centres, i.e. when o« = o, the velocity and the kinetic
energy of the reciprocating parts are both zero, or, in other
words, the sum of the coefficients in Table ro must always be
zero, whatever the value of the connecting rod/crank ratio #.

It should also be noted that the values given in Table 10
confirm the approximate expression previously developed, and
show that a very close approximation to the instantaneous
value of the inertia of the reciprocating parts at any crank angle
o may be obtained by using the simple expression

2 B
= “; ? « (x — cos 2«) Ibs.-ft. sec.?, . . (53)
where W == weight of reéiprocatirig parts of one cylinder in
1bs.,

R = crank radius in feet,
g 32-2 ft. per sec.?, -
== crank angle measu.red from’ top dead centre.
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TABLE 10.

COEFFICIENTS FOR KINETIC ENERGY AND MOMENT OF INERTIA OF
RECIPROCATING PARTS.

# = Length of Connecting Rod/Crank Radius.
Coefficients.
4 5. 6 7 5.
Ay 05080 05051 0:5035 05026 05019
Ay 01270 01010 00839 0+0718 0'0627
A, —~0'5001 ~0r5001 —0°5000 —0°5000 —0°5000
Ag —o1280 —0'1016 —~0°0842 —0°0720 —0°0628
Ay —0°0081 —0'0051 ~—0-0035 —0+0026 —0'0019
Ag 00010 00005 00003 00002 00001
Ag 0-000L 0:000T 00000 00000 0°0000

The total moment of inertia of the reciprocating parts for
single-cylinder and multi-cylinder oil engines, neglecting the
obliquity of the connecting rod, can be calculated from the
simple expression

W.R?

J= 2.8

For Single-Cylinder Engines,
J = o, when « = 0 and 180°

2
w. R-, when « = go and 270°,

. (T — cos 24). <. (53)

R N . CRE L
i.e. the moment of inertia varies from o to w twice in

Rﬂ
every revolution,

This mean value is equivalent to assummg one-half of the
weight of the reciprocating parts to be concentrated at crankpin
radius.

For Two-Cylinder Engines.

Two Cranks at 180°.

Ji= Vk; ? (1 — cos z«) for No. I cylinder,
2
J,-—W2 Re . [ — cos 2(« + 180)] = W.R . (1 — coszx)

for No 2 cylinder,
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= (Ji+ J) = g (I — cos 2a) for the two cylinders
= 0, when « = 0 and 180°
=% VZ R , when a = go and 270°,

ie. the total moment of inertia varies from o to 2
i . .. W.R?
twice in every revolution, the mean value being ra

This mean value is equivalent to assuming one-half of the
weight of the reciprocating parts of each cylinder to be con-
centrated at crankpin radius.

Two Cranks at 9o°.
W.R?

Ji= =z (x — cos2a) for No. 1 cylinder,
J“—':\Z'? [ — cos 2(x + go)] = W—-B- . (1 + cos 20)
) for No. 2 cylinder,
W.R? .
J=0i+J)= z for the two cylinders,

i.e. the total moment of inertia is constant throughout a revolu-
tion, and is equivalent to assuming one-half the weight of the
reciprocating parts to be concentrated at crankpin radins.

For Three-Cylinder Engines.
Three Cranks af 120°.

Jl——“;‘f.(x—-cos 2a) for No. 1 cylinder,
W.R? W.R?
T = Y . [T — cos 2(e + 60)] = 72 i
. [1 + 4 (cos 2x + +/3 . sin 2a],
W.R2 W.R?
Js= 7.2 . [T — cos 2(a + 120)] = z 37

. [T+ (cos 2¢ — 4/3 . sin 24)],

J=Ui+ T+ J) = §M for the three cylinders,
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i.e. the total moment of inertia is constant throughout a revolu-
tion, and is equivalent to assuming one-half of the weight of
the reciprocating parts of each cylinder to be concentrated at
crankpin radius.

For Four-Cylinder Engines.

Cranks in Pairs at 180°.
By the foregoing method,
W.R?

J=Git Tt Dot gy =20
= 0, when « = 0 and 180°
_4.W.R

. (1 — cos 20)

, when « = go and 270°

2
i.e. the total mement of inertia varies from o to 4 W.R twice

2
in every revolution, the mean value being 2.W.R .
This mean value is equivalent to assuming one-half of the
weight of the reciprocating parts to be concentrated at crankpin
radius.

Cranks Equaily Spaced at go°.
. 2. W.R?
In this case J=(JI+JQ+JS+JG)=_g-:

i.e. the total moment of inertia is constant throughout a revolu-
tion, and is equivalent to assuming one-half of the weight of
the reciprocating parts of each cylinder to be concentrated at
crankpin radius.

In general, the total moment of inertia of the reciprocating
parts of multi-cylinder engines having more than two cylinders
with equally spaced cranks is constant throughout a revolution,
and is equivalent to assuming one-half of the weight of the
reciprocating parts of each cylinder to be concentrated at
crankpin radius, neglecting the obliquity of the connecting rod.

The effect of the obliquity of the connecting rod can be
taken into account by using the factors given in Table 10.

The total moment of inertia of the reciprocating masses
then consists of a constant term, calculated by using the appro-
priate value of the factor A, from Table 10, and one or more
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harmonically varying terms, calculated by using the appro-
priate values of the factors A,, A,, etc., from Table ro.

In single-cylinder engines harmonically varying terms of
all orders are present, but Table 10 shows that the first, second,
and third orders (factors A,, A,, and A;) are predominant.

In multi-cylinder engines with equally spaced cranks, the
only harmonically varying terms which are present are those
whose order numbers are integral multiples of the number of
equally spaced cranks, and the magnitude of any such order is
its magnitude for one cylinder multiplied by the number of
cylinders.

EXAMPLES.—
Two Cylinders with Cranks Equally Spaced at 180°.
2. W.R?
=%
Three Cylinders with Cranks Equally Spaced at 120°.
_3.W.R:
J —

Four Cylinders with Cramks in Pairs at 180° (Four-Cycle
Engine).

_4.W.R?
J g

Four Cylinders with Cranks Equally Spaced at 9o°.
_4.W.R?
J g

. (Aq+ Agcos za + A, cos 4a).

(Ag + A; cos 3 4 Ag cos ba).

. (Ay + Ay cosza + A, cos 4u).

. (Ap + A, cos 4a).
Six Cylinders with Cranks in Pairs at 120° (Four-Cycle
Engine).
6. W.R?
T=2t
Six Cylinders with Cranks Equally Spaced at 60°.

2
J= GWTR . (Ag + A4 cos bat).

(Ao + Ajcos 3¢ + Agcos ba).
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Eight Cylinders with Cranks in Pairs at 9o° (Four-Cycle

Engine).
8. W.R2
J==
Eight Cylinders with Cranks Equally Spaced ot 45°.
j= 8.W.R?

4
Effect of Variation of the Moment of Inertia of the Reciprocating
DMasses.

. (Ag+ Agcos4a -+ Agcos 8u).

. (Ag + Agcos 8a).

The variation of the moment of inertia of the reciprocating
masses during each revolution causes a periodic variation of the
natural frequency of torsional vibration. This is analogous to
the variation of the natural frequency of a railway bridge as
a locomotive moves from one end to the other.

This variation of natural frequency prevents the amplitude
of vibration from building up to the value which would be
obtained with a constant moment of inertia and comstant
natural frequency, and increases the speed range over which
resonant effects are experienced. The influence of the variation
of the moment of inertia of the reciprocating parts on the
magnitude of the damping factor which determines the ampli-
tude of torsional vibration of four-stroke cycle engines is fully
discussed in a paper by V. J. Kjaer, reprinted in Motorship,
August, 1930, page 233.*

The variation of natural frequency is larger in engines
where the reciprocating parts are larger in proportion to the
revolving parts, e.g. fast-running engines with solid forged
crankshafts as compared with engines having built-up shafts ;
whilst the resultant effect in multi-cylinder engines depends
also upon the shape of the normal elastic curve and the crank
sequence.

In the case of one-node vibrations of marine installations,
for example, where the amplitudes of vibration are very neaxly

* See also M. Mancy: “ Oscillations de torsion des arbres,”” Mécanigue,
No. 273, July-August, 1937. M. Scheuermeyer: * Einfluss-de Zindfolge
auf die D; i Reih toren,” Werft Reederei Hafen, 1st March,
1933, page 69. :
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the same for all cylinders, the moment of inertia of the recipro-
cating masses for the engine as a whole is very nearly constant
throughout a revolution, and is equivalent to one-half of the
total reciprocating weight concentrated at crankpin radius.

In the case of two-node vibrations of marine installations
and one-node vibrations of direct-coupled generators, however,
where the amplitudes of vibration are not the same at all
cylinders, the variation of natural frequency might be appreci-
able, e.g. in a six-cylinder, four-stroke cycle engine with cranks
arranged in pairs at 120° direct-coupled to an electrical
generator, the mean frequency was 760 vibrations per minute,
whilst the variation of frequency was 754 to 466 vibrations per
minute, i.e. a variation of nearly - 1 per cent.

In the case of crankshaft vibration of automobile engines,
" and one-node vibration of direct-coupled Diesel-generator sets
and aero-engine/air-screw combinations, the shape of the normal
elastic curve is such that the amplitudes of vibration are not
the same at all cylinders. Moreover, the heavy masses, i.e.
the flywheel and clutch of an automobile engine, the combined
flywheel and generator of a Diesel-generating set, and the
air-screw of an aero-engine/air-screw combination are situated
near the nodal point. These heavy masses, therefore, do not
vibrate with any appreciable amplitude, so that the frequency
of the system is mainly determined by the moment of inertia
of the crank masses. In such cases the influence of the re-
ciprocating parts, especially if they form an appreciable pro-
portion of the total oscillating mass of each cylinder, in causing
a cyclic variation of natural frequency might be appreciable.
For example, Dr. Geiger has calculated that for an eight-
cylinder engine of this type the apparent damping due to
imperfect resonance represented about 20 per cent. of the
total damping, notwithstanding the small cyclic irregularity
of this engine.

The variation of natural frequency throughout a revolution
can be obtained by calculating the moment of inertia of the
reciprocating parts of one cylinder for a number of different
positions of the crankshaft. It is then necessary to make a
separate frequency tabulation for each crankshaft position,
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taking care to insert the appropriate values of the moments of
inertia of the reciprocating parts in column D of the frequency
table.

In practical calculations, however, it is sufficient to make the
usual assumption that the reciprocating parts can be taken
into account by including one-half of their weight with, the
weight ‘of the revolving part of the connecting rod, all acting
at crankpin radius, The effect of any variation of frequency
which might be present can then be taken into account by
adjusting the damping factor employed for determining the
amplitude of vibration at the critical speed so that the calculated
amplitude agrees with the observed value.

The subject of apparent damping will, however, be dis-
cussed in more detail in Chapter 7.

The external vibration of the engine frame which accom-
panies torsional vibration of the shaft system is also due to the
varying moment of inertia of the reciprocating parts, and would
not be present if the parts in torsional vibration consisted
entirely of rotating masses with the centres of gravity all
situated on the axis of rotation. Due, however, to the recipro-
cating parts, a vertical force F, and a rocking moment M, are
imposed on the engine frame.

If, for example, the shaft is given a vibratory motion,
(# =bsinw .?), the maximum values of F and M are as
follows :—

F=~V?V.b.R.w21bs.

= — 000034 . W.b.R.N21Ibs,, . . (55)
M=% 5 Re.wt. Ibs-t,
= — 000034 . W.b.R2. N2 lbs.-ft., . (50)
where W = weight of reciprocating parts in lbs.,

b = maximum amplitude of vibration in radians,
R = crank radius in feet,
= phase velocity of vibration in radians per
sec.
_2.n.N
- 6o
N = revolutions per min.,
& = 32-2 ft. per sec.%
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The unbalanced force F is felt as a reaction at the main
bearings, and is responsible for vertical vibration of the engine
frame and knocking at pistons and driving gear. It is possible
for this unbalanced force to cause a derangement of the piston
driving gear in serious cases.

The rocking moment M is responsible for transverse vibration
of the engine frame. )

In multi-cylinder engines, the average force during a re-
volution is one-half the values given by the foregoing expres-
sions, multiplied by the number of cylinders.

Reciprocating Paris—The reciprocating parts of each
cylinder of an oil engine consist of,

One-third to two-fifths total weight of connecting rod.

,» Diston head.

,, Piston skirt (if fitted).

,» Ppiston rod.

,» crosshead (if fitted).

,» set of piston cooling gear, including water or oil in
piston and rod.

Let W =total weight of reciprocating parts for one

cylinder in lbs.,
R = crank radius in feet,
g = 322 ft. per sec.2
Then effective moment of inertia of reciprocating partsis
W.R?
J= 2.8

In the case of steam reciprocating engines, it is also necessary
to take account of the reciprocating part of the valve gear.
This can be done by the methods just described for dealing with
the cylinder masses, and as a rule the effective moment of
inertia of the reciprocating parts of the valve gear is combined
with that of the nearest working cylinder.

(vii) Engine-Driven Auwiliaries.—Crank-driven auxiliaries,
such as air-compressors and scavenge pumps, can be treated as
an additional set of running gear, and the total moment of
inertia calculated by the methods already described for the
main cylinder running gear.

1bs.-ft. sec.? per cylinder. . (57)
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In the case of lever-driven auxiliaries—

Let W = weight of reciprocating parts of auxiliary in
Ibs.,
L = total stroke of auxiliary in feet.

Then effective moment of inertia of auxiliary is
W. L2
= ——— lbs.ft. sec. . . . (58
J=%3 sec. (58)

This value is added to the moment of inertia of the cylinder
from which the auxiliary is driven. .

Total Moment of Imertia of Cramkshafi and Runming Gear
of Reciprocating Engines—This is determined by summing up
the moments of inertia of the crankshaft and the revolving
and reciprocating parts of the running gear. The value per
cylinder is then obtained by dividing this total by the number
of cylinders.

In the case of reciprocating steam engines, however, where
the moment of inertia is not the same for all cylinders, each
cylinder must be dealt with separately.

Crank-driven auxiliaries are treated separately, whilst the
moment of inertia of lever-driven auxiliaries is added to the
moment of inertia of the cylinder from which the auxiliary is
driven.

These calculations should be tabulated as in Table 11.

The following expression may be used for determining the
approximate total moment of inertia of the crankshaft and
running gear of oil engines, in cases where working drawings
are not available :—

J =X .D2.S¢®lbs.~{t. sec.? per cylinder, . . (59)
where D = diameter of cylinder in feet,
S = stroke in feet.

The value of X depends on the type of engine, approximate
values being as follows :—

K = 35 to 7-0 for medium speed trunk-piston engines, such
as are employed for direct-coupled electrical generat-
ing sets. The lower value is for engines without

VOL. L.—9
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crankshaft balance weights, whilst the higher value
applies when crankshaft balance weights are fitted.

K = 5-0 to 100 for large crosshead engines, such as are
employed for marine propulsion. The lower figure
is for engines without crankshaft balance weights,
and the higher figure for engines with crankshaft
balance weights.

K = 35 for short-stroke opposed-piston engines, and 275
for long-stroke opposed-piston engines. In this case
S is the total combined stroke of the upper and
lower pistons, and the stroke bore ratio is 3 and 4
for short and long-stroke engines respectively.

TABLE 11.

MOMENT OF INERTIA OF CRANKSHAFT AND RUNNING GEAR OF A S1x-CYLINDER
Four-STROKE CyCcLE O ENGINE, 13}-INCH BORE X 18-INCH STROKE.

Welght of | yioh! R | WKL g
Ttem. No.of. | GoerLos. | WelBt | pii | 1peited. Lte. T e,

Journals . 7 144 1008 | 00595 60 1865
Crankpins . 6 114 684 | 06220 425 13150
Crankwebs . | 12 210 2520 | 0'3000 766 23800
Revolving part

of connecting

rod . B 6 192 1152 05625 648 20°100
Recip. part
—Eg— 6 225 1350 | 05625 760" 23600

Total moment of inertia = 82-515,
ie. moment of inertia per cyl. — 82515 = 1375 Ibs.-ft. sec.?
In the case of automobile and aero engines it is more
convenient to express the moment of inertia in lbs.-ins. sec.?
units,
2 3
ie. 7= hcinssect . . . (60)
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where J = moment of inertia of revolving and reciprocating
parts of one cylinder line,
D = bore of cylinder in inches,
S = stroke in inches,
k = 5000 for automobile engines with crankshaft
balance weights,
= 10,000 for automobile engines without crankshaft
balance weights ; and for in-line aero engines
with crankshaft balance weights,
= 20,000 for in-line aero engines without crankshaft
balance weights ; and for radial aero engines.

The values of J obtained by using these factors are approxi-
mate and should be used for general guidance only. In the
case of in-line engines with more than one bank of cylinders the
value of J obtained from Equation (60), using the above values
of &, should be multiplied by the number of banks to obtain
the approximate moment of inertia of each crank line.

In the case of radial engines the value of J obtained by
inserting the above value of %2 in Equation (60) should be
multiplied by the number of cylinders in each row to obtain
the approximate moment of inertia at each crank throw.

(5) Monfent of Inertia of a Marine Propeller or Air-
screw.—The propeller is first reduced to an equivalent disc
as follows (see Figs. 28 and 29).

Describe a radius # and determine the total cross-sectional
area of the blades at this radius. This total area divided by
(2. 7. x) is the thickness of the equivalent disc at radius .

The complete equivalent disc is obtained by repeating this
process at different radii.

The boss and that part of the propeller shaft contained in
the boss may be treated as a solid of revolution,

2 2
i.e. moment of inertia of boss = ﬂ—]# . % Ibs.-ins. sec.?,
@)
where D = diameter of boss in ins.,
L = length of boss in ins.,
S = specific weight of material in lbs. per cu. in.,
g == 386 ins. per sec.2.
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For bronze S = 0315 Ib. per cu. in.,
ie 7= 2L ins. sec.? .. (62
e rz2500
|
"-‘—7 Rp |
? dx 1 i
:_L——.z:-—: 1l
& A__dc l
D, . Q
Sl R

%-io WW‘[’
~

Y 1Ry =Rad ofBos: = D

< B

 a—

H 2.
I -

z

Fre. 28.—Equivalent disc.

The moment of inertia of the propeller blades is obtained
from the equivalent disc as follows :—

In Fig. 28 the full lines show the outline of the equivalent
disc for the propeller blades. SS is a line drawn parallel to the

=15 Depived Fi3,
B =20 oo,
/Sf',” do.

Fic. 29.—Moment of inertia of propeller blade.

axis ZZ at any desired radius (a position midway between the
points P and Q is convenient).
Let the distance of SS from ZZ be R, and rule any line AB

parallel to the axis ZZ, cutting the outline of the equivalent disc
at A and B.
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Project Aand Bonto SSat Cand D. Join C and D to any
convenient point O on the axis ZZ, cutting AB at A; and B,.
Then A, and B, are points on the “ first derived figure.”

Repeat this process for different positions of the line AB,
thus obtaining the outline of the first derived figure.
Treat the first derived figure as though it were the original
figure, and so obtain the ““ second derived figure.”
Finally, use the second derived figure to obtain the ** third
derived figure ” in a similar manner.
Let A = area of original figure in sq. ins.,
A, = area of first derived figure in sq. ins.,
A, = area of second derived figure in sq. ins.,
A, = area of third derived figure in sq. ins.,
S == weight of I cu. in. of the material.

Then
Ty 1 (B X
A=_[R°y.dx, A1=—R‘L"x,y,dx,
I (% . _ I (%
Ag:ﬁijﬂ‘y'dx’ As—ﬁjnoxs'y'dx'

where R, = radiusofboss; R, = extreme radius of blades,
i.e. weight of blades,

w S i dx Ib

=2z2.7. .J‘I%x.y. % 1bs.,

or W=z2.7.S.R.A lbs. . . . (63)
Moment of inertia of blades about axis ZZ,

j=2 Z S, Jz: 43,y . dy Ibs.-ins. sec?,
Le. J= 3—'%'—5 R A, bs-ins. sec?, . . (64)
where g = 386 ins. per sec.?.
Also 7=V “ng

i.e. radius of gyration K = R\/‘%f ins. . . . (65)
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If the equivalent disc is not drawn full size, care must be
taken to allow for the vertical and horizontal scalesin calculating
the values of A, and A,.

ExaumprLE 15.~Fig. 29 shows one blade of a three-bladed pro-
peller, 14 ft. 6 ins. diameter.

The equivalent disc for one blade of this propeller is also
shown in Fig. 29; the horizontal scale having been made five
times full size, and all thicknesses having been measured from
a vertical line to reduce the work entailed in drawing the derived
figures.

The thicknesses of the equivalent disc are tabulated below :—

TABLE 12.

Section. Cmsi'BS]es%x;ial S‘;nlans“ Orne | p.diusin Ins. Thxcknﬁl]issc ci!nl?’\llsijm!ent
b 44273 18 3907
2 180-7 24 1-200
3 166-6 36 0738
4 1386 48 0460
5 986 60 0262
6 513 72 0114
7 3175 78 0064
8 128 84 0024
9 ] 87 o

The equivalent disc was drawn to the following scales :—
Vertical scale (radii) : half full size (1 in. = 2 ins.).
Horizontal scale (thickness): five times full size

(rin. = 1f5in.).

Hence, area scale is I sq. in. = 2 X I1/5 = 2/5 sq. in.

The areas of the first and third derived figures for one blade
of this propeller, measured by planimeter on the drawing, were
600 and 56+ sq. ins. respectively.

Hence, A 2 % 6o 124 sq. ins.,
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i.e. assuming S = 0-315 Ib. per cu. in. for bronze,
R = 48 ins. (see Fig. 29),
W =2 X 3416 X 0313 X X 24
= 2280 Ibs. per blade.
Also
Ay= 3%69 = 22! sq. ins.,
‘e J= 2 X 31416 X 0315 X 48° X 22-8
- 386
= 12,900 Ibs.-ins. sec.2 per blade
_ 12900
T 2240 X 12
Boss.—The boss and that portion of the propeller shaft
contained in it is equivalent to a solid cylinder 33 ins. diameter
and 33 ins. long.

Hence, J

= 048 ton-ft. sec.? per blade.

DL _s3ix3
12500 12500
= 3130 lbs.-ins. sec.?
= 0'TI6 ton-ft. sec.?,
Total moment of inertia of propeller :—
Blades = 3 X 048 = I-440
Boss = 0116

Total = 1-556 tons-ft. sec.?.

The effective moment of inertia of the propeller is greater
than the foregoing calculated values due to the effect of the
entrained water. According to Frahm, the allowance for
entrained water varies from 20 to 30 per cent., with an average
of 25 per cent. for propellers of normal design, i.e. the calculated
moment of inertia should be increased by 25 per cent. before
using it for calculating natural frequencies and vibration
stresses. In the above example, therefore, the effective
moment of inertia is

J = 1536 X I-25 = 1-945 tons-ft. sec.?

The exact value of the allowance for entrained water cannot

very well be calculated mathematically, since it depends on the
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design of the propeller and the characteristics of the ship’s hull.
Previous experience with similar installations is the best guide
as to whether an allowance of 25 per cent. will be satisfactory
ornot. In this connection it should be noted that the moment
of inertia of the propeller mainly influences the value of the
one-node frequency of marine installations, and has relatively
small influence on the value of the two-node frequency, where
the amplitude of vibration at the propeller is small.

It should also be noted that the effective moment of inertia
of the propeller varies with the loading of the vessel, so that
there is usually some difference between the one-node frequency

—— ——Rp = 877~ -

5004500 000 ~—— — 1"‘I
1 r<—pb- 8- Blede Length = 69"
~ [ . 7R
2400 4000001
B < .
$ 3001 300000 5 . . .
3 N ; g(;irza % RY Curve \\ [
2 =
% 2001 200w & A el AR GR= 150000001
% Y A
3 100 F-100000 Moo L rea Curve -
S Ars j,’{Z’IA. dR - 8000 mf;
< o {
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30 40 S0 60 el 80 90 00
R= Radius in inches ~—»

Fie. 30.—Polar moment of inertia of air-screw or propeller blade.

of vibration when the vessel is fully loaded and the propeller is
fully immersed, and when the vessel is in ballast and the tips
of the propeller blades are projecting above the water.

An altemative method of obtaining the polar moment of
inertia of a marine propeller or air-screw blade is shown in
Fig. 30.

This method is probably more accurate than the equivalent
disc method just described, because it does not depend upon
the accuracy of a somewhat laborious graphical construction.
In the alternative method the cross-sectional areas of the blade
A, at different radii R, are calculated and entered in the
table shown in Fig. 30. In this table the first column contains
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the number of the section; the second column contains the
radii R, at which the various sections are situated measured
from the axis of rotation, in inches ; the third column contains
the cross-sectional areas A, of the various sections, in square
inches; and the last column contains the products (A . R?),
in inchest, i.e. the product of cross-sectional area and radius
squared at each section.

Fig. 30 is drawn for the example already worked out by
the equivalent disc method, i.e. the values of the cross-sectional
areas and radii are taken from Table 12.

Two curves are plotted from the values given in the table
in Fig. 30, namely, a curve showing the variation of cross-
sectional area with radius, and a curve showing the variation
of the product (A .R?) with radius.

The weight of the blade is obtained from the first curve, as
follows i—

Total volume of blade = j:: A . dR cubic inches.

= area under full line curve in Fig. 30
= A,

Weight of blade, W=S5.4A,

where S = weight of I cu. in. of the material in Ibs.

The area under the curve is obtained by planimeter and
care must be taken in determining the area scale.

If the area is measured by planimeter in square inches and
T in. on the horizontal scale represents x ins. radius, whilst
T in. on the vertical scale represents y sq. ins. of cross-sectional
area, then the area scale is

15q.in. = x.yins3

In Fig. 30, for example, assuming that the vertical scale is
I in. = 100 sq. ins. of cross-sectional area, and the horizontal
scale is I in.=710 ins. radius, then the area scale is
I sq. in. = 100 X I0 = I000 ins.2

The area under the full line curve in Fig. 30 measured by
planimeter is 8 sq. ins.
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Hence, A, =8 X 1000 = 8000 ins.%
The material is bronze, i.e. S = 0-315 Ib. per cu. in.
The weight of the blade is therefore
W=25.A;=0315 X 8000 = 2520 lbs.
This value is about 10 per cent. greater than the value
obtained by the equivalent disc method.
The polar moment of inertia of the blade is obtained from
the second curve in Fig. 30 as follows :—
Polar moment of inertia == J
S (B .
- A .R?.d4R lbs-ins. sec.?
glx,
=g3 (area under dotted line curve in Fig. 30)
= § . Az:
g

where S = weight of T cu. in. of the material in Ibs.,
g = 386 ins.[sec.
The area scaleis Isq. in. = %. 2,

where I in. on the horizontal scale represents # ins. radius, and

T in. on the vertical scale represents z units of the product

(AR?).

In Fig. 30, for example, assuming that the vertical scale is

I in. == 100,000 ins.* of the product (AR?), and the horizontal
scale is 1 in. = 10 ins. radius, then the area scale is

I sg. in. = 100,000 X IO = 1,000,000 ins.%
The area under the dotted line curve in Fig. 30, measured
by planimeter, is 16 ins.2.
Hence, A, =16 X 1,000,000 = 16,000,000 ins.b5.
The polar moment of inertia of the blade is therefore

_S __ 0315
J= z A, = 386 X 16,000,000

== 13,050 Ibs.~ins. sec.2
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This is only 1 per cent. greater than the value obtained by
the equivalent disc method, indicating that the difference in
the weight calculated by the two methods is due to a difference
in estimating the weight at the root end of the blade.

The radius of gyration K is easily obtained, as follows :—

K= ﬁ \/‘_2 inches.

In the present example, A, =

16 000,000 and A; = 8o000. .

Hence, X = J 16000000 _ i
“8ooo 4477 108,
16
15
7 /
g7 Vi
871 /
K10 Built T
; ) Bronz B/aJé.:,CIE\S;/ /
3 /
3 & So//d Bronze 74
£ N4
: & Soliel Cast Iron. -
Q
5
EW // A
EEN | /
23 L=
1 23456 780001239 6H61781020

Diameter of Propeller in Feet.
Fie. 31.—~Weight of four-bladed marine propellers, including C.I. tail cap.

The method just described can be used equally successfully
for determining the weight and polar moment of inertia of the
blade when a piece is cut off the tip. This is useful in the case
of air-screw blades where it is common practice to manufacture
different diameter air-screws from one standard blade by cutting

the desired amount off

the tips.
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For example, if the tip radius of the propeller blade of
Fig. 30 is reduced from 87 ins. to 8o ins., the weight and polar
moment of inertia of the shortened blade is obtained by stopping
the graphical integrations at 8o ins. radius. The curves will,
of course, require rounding off before calculating their areas,
as shown by the chain dotted lines o and §, to allow for the
rounding off at the tip of the shortened blade.

74 280

3 26
| azf 290

711, Peopel er'[)las=0to1oft, 7l ‘2?_11 Prapeller' Dnas=10tozlofb
1 L : uilt ( Bronze B/.:m’eﬁ, 2001 Buitt (. Bnanzeﬂlades,'_
Tﬁ 9 1 Boss. -7801‘5:- v/
s v’,s.’ﬁ‘a.st‘ 01 160 v+Solid astl .
g RSN/ e .74
I 7_“6‘0//!'Br'onze,\ 149 S1Solid Bropze ]
£ 6 120 l’
N 3
X 5 17009
=, PN

3 60

2 20

17 — 12

O T e s s 67 8 9N ZBIE B 16178 20

Diameter of Propeller in Feet.
Fre. 32.—WK:? of four-bladed marine propellers.

2
(Moment of inertia of propeller = W:{ + 25 per cent. to 30 per cent.

allowance for entrained water.)

As already explained the calculated moment of inertia of
a marine propeller must be increased by about 25 per cent.
to allow for entrained water, but this correction'is not applied
to air-screws.

Figs. 31 and 32 contain the weights and WK? values for
four-bladed marine propellers, and may be used for estimating
purposes.
 Figs. 33 and 34 contain the weights and WK?2 values of
metal and wooden air-screws. The values include the hubs,
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although as a general rule the effect of the hub on the polar
moment of inertia of an air-screw is negligible.

The curves are based on good average values for two-bladed
metal air-screws in the smaller diameters and for three-bladed

550,

$00

450

400

350

§

Duralumin

Variable Pirch ~U

Altscrew in 1bs
ey
&
[S]

200 +
> Duralumin
N \=Fixed Pich

! /.
£150
£ /|
100 74
Lw:od
LA
S0
L1 |41
//‘

1 23 4 56 7.8 9 1011 1213MK4I156
Diameter of Alirscrew in Feel ——>—

F1c. 33.—Weight of air-screws, including hub,

metal air-screws in the larger sizes. In the case of wooden
air-screws the values are for two-bladed designs throughout.
The curves for four-bladed wooden air-screws lie between
the curves for metal and for two-bladed wooden air-screws.
In using these curves it should be borne in mind that
considerable variation in the polar moment of inertia of
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air-screws of the same diameter and number of blades, but
of different designs, is possible. Nevertheless, the values ob-
tained from these curves will enable fairly accurate estimates
of torsional vibration frequencies to be made, because quite
a large variation in air-screw inertia does not make much dif-
ference to the frequency calculation in normal engine-air-screw
installations.

o 1" Arscrelw Dias =470 7Rt T Aliscrew Das = 700 5 it
e LT ™ T T
7500
T T e LT
wK? ! ‘ WEZ o2
6500 4= 55~ (b4 Ins Sec L J = g thsins SecZ
000 300
3500
So00 j 250,000 ? /
24500 / Y /
2 zoaooo-;. /
35005 timin Blades / / >; Duralumin
“imaob—é Steel Hub 150,000 "y -Biadles €,
2500 Fa
2000 / / 100000 y
500
100 /\ 50,000 A\___
Wood Wood
300 = ! -

78 8 100 125 5
Dismeter of Awscrew i Feel -

F1c. 34.—WEK? of air-screws.

It should, however, be kept in mind that air-screw blade
flexibility can have an important influence, especially in the
case of high duty metal air-screws where blade scantlings are
kept as small as possible to minimise weight (see the Appendix
to Vol. I).

Exsupie 16.—Estimate the weight and effective moment of
inertia of a solid bronze propeller, 16 ft. o in. diameter.
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From Fig. 31, weight = 4-35 tons. This weight includes
the boss and a cast-iron tail cap, but does not include that
portion of the propeller shaft contained in the boss.

From Fig. 32, WK?= 77 tons-ft.?,

- 1 2)p) = 125 X 77
1e. J = 125(WK%g) = [
= 2+99 tons-it. sec.2.

This value includes the propeller boss and a cast-iron tail
cap, but does not include that portion of the propeller shaft
contained in the boss.

Swmall Marine Propellers—The weight and polar moment
of inertia of small solid bronze three-bladed marine propellers
may be estimated from the following formule, in the absence
of specific data :—

Weight = W = D3/400 Ibs. . . . (66)
Radius of gyration = K = 0-27D ins,,
ie. WK? = D¥/5500 lbs-ins? (excluding entrained
water) . . . . (67)
where D = diameter of propeller in inches.

(¢) Moment of Inertia of Flywheel.—If the flywheel is
simple in form, e.g. a plain disc and rim, the moment of
inertia may be obtained as follows :—

2)
Rim—  J, = V% O ) st sect, .. (68)
where W, = weight of rim in Ibs.,

£ = 3272 ft. sec?,
D = external diameter of rim in feet,
d = internal diameter of rim in feet.

Disc—  Ja =y—g—" @—‘2—;——“ Ibsft. sec.?, . . (69)

where D, = external diameter of discin feet,
d, = internal diameter of discin feet,
ie. moment of inertia of iywheel = J = (J, + Ja)-
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If the flywheel is more complicated in form, e.g. a wheel
with arms, or a turning wheel of light, ribbed construction,
the equivalent disc method already described should be used
(Fig. 28).

Fig. 35 shows the equivalent disc and derived figures for
a typical combined flywheel and turning wheel of light ribbed
construction.

An experimental determination of the specific gravity of
the material of cast-iron flywheels indicated that the average
specific weight was only 025 1b. per cubic inch compared with
the value génerally employed, namely 0-26. The experimental
value of the radius of gyration was about 4 per cent. less than
the calculated value, indicating that the more open-grained

Anchoredl Hexagon
Bar, 17" overfiats
forming knife edfe.

F1c. 36.—Experimental determination of moment of inertia.

material was in the flywheel rim. If, therefore, a specific
weight of 0-26 is used for calculating the weight and polar
moment of inertia of a heavy flywheel, the variation of density
of material may be taken into account by reducing the calculated
weight by 4 per cent., and by reducing the calculated polar
moment of inertia by 12 per cent., to obtain the probable actual
values.

These corrections may be important in systems where
close tuning is necessary.

Experimental Determination of Moment of Inertia
of Rotating Bodies.—The calculated value of the moment of
inertia may be checked by experiment, using the compound
pendulum theory.

Fig. 36 shows the arrangement. The flywheel is suspended

VOL. L—I0
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from a knife edge and the natural frequency of oscillation deter
mined, taking care to avoid having too large an angle of swing.
The knife edge in Fig. 36 consists of a short length of hexagon
bar supported in V-blocks. Care must be taken to ensure that
the support is rigid. )
Let T = periodic time in seconds, i.e. the time for one
complete oscillation,
K =radius of gyration of wheel about the centre of
gravity (C.G.) in feet,
R = distance of C.G. of wheel from point of sus-
pension in feet,
g = 322 ft. per sec.’

Then ’1‘=2.4r.\/»Kz+R2 secs.,
g.R

or Kie T-E—S'gg_R _Re=[08I5(T*. R) — RA 62 (70)

Hence, J= %Y . K2 Ibs.-ft. sec.2,
where W = weight of fiywheel in Ibs.

Another simple method of determining the moment of
inertia experimentally is shown in Fig. 37.
In this case the rotating body is suspended by two light
wires so as to be free to oscillate in the horizontal plane.
Referring to Fig. 37,
Let ‘W = weight of body in lbs.,
L = length of suspension wires in feet,
R =radial distance of each suspension wire from the
axis of oscillation in feet.
W.R.0
T

Then restoring force F=W.sina=

2
restoring couple M = W.Re. 0

restoring couple per unit displacement
e M W.R®

i L
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Now T:z.n\/é,

where T = periodic time in seconds,
J = moment of inertia of body about axis of
oscillation in Ibs.t. sec.?,

. TJ.L
ie. I=2.n V%I.Rf
_W.R:.T* W.RLT
Hence, J= 7L ~ 39350 Ibs.~ft. sec.2. . (71)
|
R
~
A
7 4
1A i«lJ AT
By My

Fi6. 37.—~Experimental determination of moment of inertia of fiywheel.

It should be noted that the above expression is independent
of the number of suspension wires, so that three wires may be
used for supporting heavy bodies. Care must be taken to keep
the amplitude of the oscillations small.

ExXAMPLE 17.—(A) Amotor-carwheel, fitted witha 27-in. X 4-4-in.
tyre, was suspended on a knife edge, as shown in Fig. 36.
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The distance from the point of suspension to the axis of
the wheel was 8-688 ins., the weight of the wheel was
33 1bs., and the number of complete oscillations per minute
was 42. Calculate the moment of inertia of the wheel.

In this case, W = 33 lbs,,

8-688
R = —I—z—=o-7z4ft,
T=2= 1429 secs
Hence, K? = 0-815(T?. R) — R*
= (0-815 X I-429% X 0'724) — 0-724®
= 0-681 ft.2,
or J' = E K2 =313_>S_9£8_I

g 322
= 0'698 Ib.-ft. sec.?.

(B) The same wheel was suspended by means of two wires, as
shown in Fig. 37. The length of each wire was 55 ft.
and the radial distance of each wire from the axis of
oscillation was #-68 ins. The time for fifty complete

oscillations was 170 secs. Calculate the moment of inertia
of the wheel.

In thiscase W 3 1bs.,
-5 ft.,
-68

'l
N oW

I

= 0-64 ft.,

= 34 secs.

W.R2.T2 33 X 0:64% X 342
395 L 395 X 55
= 0718 Ib.~ft. sec.’.

This is within 3 per cent. of the value previously obtained.
(d) Correction for Mass of Shafting.—It was shown in
- Chapter 1 that as a general rule the mass of the shaft can be
neglected if the product of the length of the shaft in feet, multi-
plied by the frequency in vibrations per second, does not exceed
1000.

In the case of systems consisting of two masses, A and B,

il

— 3 "B
f
3I3 5|

Hence,
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separated by a length of shafting, the mass of the shaft can be
taken into account as follows. Estimate the position of the
node by the methods already given. Add ome-third of the
moment of inertia of the length of shaft between the node and
mass A to the moment of inertia of mass A ; and add one-third
of the moment of inertia of the length of shaft between the node
and mass B to the moment of inertia of mass B.

If there is more than one mass at one end of the system,
the appropriate proportion of the moment of inertia of the
connecting shaft should be equally divided amongst these
masses. -

When the inertia of the shaft cannot be meglected, eg.
very long shafts with light end masses, the methods given in
Chapter 8 should be used [see Eqn. (402)].

(¢) General.—Table 13 contains expressions for calculating
the weights and radii of gyration of a number of standard
solids.

Since most engineering structures are composed of standard
forms, this table and the following rules will be found useful for
estimating moments of inertia.

Rule 1.—The moment of inertia of a body with respect to
any axis is the sum of the moments of inertia of any constituent
parts into which we may conceive it divided,
ie. J=Z(J,+ J. + etc). . . . (72)

Rule z~The moment of inertia of any body about any
axis is equal to its moment of inertia about a parallel axis
through the centre of gravity, plus the moment of inertia which
the body would have about the given axis if all collected at its
centre of gravity,

ie. J¢¢=<Jm+g-Re), N )

where  J,, = moment of inertia about given axis ¥z,
Jsa = moment of inertia about a parallel axis
through the centre of gravity,
W = total weight of body,
R = distance of the centre of gravity from the
given axis aw.
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TABLE 13.
MOMENTS OF INERTIA OF SOLIDS,
Jo = W.Kix

Jix = Moment of Inertia about Axis XX, m Lbs, Ft, Sec®
W= Weight of Body, in Lbs. K= Radius of Ggpat;on in Feet.,
5 = SpecnﬁcWenghtofMatemal inlbs/Ft ¢=2322 Ft./Se

All Linear Dimensions to be measured in Feet.

WVeight, inLbs. Radius of Gyration, in Feet.

Parallelepiped. b b b .1-“2‘-
X: ey ——X o A F
w=S{abe) L %= X XLTR

p
&

~el« 2 e ok
Ky = S K&Fg;’;_b’ @oﬁéﬁﬂgi

Hollow Cylinder.

Wi
w=I(o~d)Ls

w=T0lLs,

Hollow Cylinder,

2 D)
W=T(D=d)Ls,

X X
2 (p4d?) (D48, 2
= K= —B—){—R
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TABLE 13. (continued)

Weiéht, inLbs Radius of Gyration, in Feet.

Cone. T - T
= AA L T EFA ?L;
=I.dLs. G = = WA RV &
A 2+ :‘D’,I3 . F(DL;I 2 X 5 215—12 X,
4
K=y kg(=AT3bl 2 __a.fL +DPHR
—»1

Cone. X Lxé};m —-i‘x i&
wa%.n?x_.s, AN

D
Razsat) ap* 2 3 o’mz
XX~ “40 xx= 30

Frustumof Cone - H_L . L‘!%
” a—x -9 -
X=Dr Kl T '{

W LS(CDdd
X
5 5\ 5 2
-d. ~d W-R
K2 -.1 K»zza(u!as

Paraboloid.

w=F.0\Ls,

.

Torus.

2
W=}. D.aZs.

Sphere.
W=-IL5%s (Solie) x
waT(o d3)s
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TABLE 3 (continued.)
Weight, in Lbs. Radius of Gyration, in_Feet.

Elliptical = Tm
Frna & x =214
c \ W%
b —_Jb ey
w=JT.a.b.c.§ K= dh b2 ’+b‘ , R2
Lamina with )
Serni - Curcudar ¢
Ends ZU
N s
- eS| w2 m2alert a) s 3nrlha) 2 _2amrial)s Inrrid)
wa(rr +2a)rc.S| K _C_,Z_r__if)dx ﬁm_m‘l
Semi- Cireular | .32 Shoner  3p-osar .
: T x T ) : 7t
Lamina o = 2 X -t x
gl cg] L .
2 o[ G2 X X
w=Ani2c. § |x=l5-%] , P

= o erl Ky=0-320% R2 Kxx
|y

ﬁi‘éfa VS

=]
W=1% ab.c 2
% a CSKxx=—+g4_ K;é<=—

Ttiangular
Lamina

Segment of ,
L‘zrcu[dr Lamina| )—\TX
- 240rsin T
Z- 29z J s
2o

ki 7 z2

Hexagonal /{\

Lamina X- \}4

“a v Al

W= 0-8664%c. S| Kix’g’;—.dz Ky a2 B2

NOTE:  If all linear dimensions are in inch units
N anad weight is in A:; H)en the moment”

of inertia is -y W = Kyx Lbs inssec?
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The following Table of Specific Weights of materials gives
average values for each class of material :—

TABLE 14.
SPECIFIC WEIGHTS OF MATERIALS,
Lbs. j:er Cubic Inch.

Aluminjum . . . . . 0097
Brass . . . . B . . 0300
Bronze and gunmeta.l . . . . . 0315
per . . . . B . . 07320
Duralumin . . . B . . . o102
Iron . B B - B . . . 0260
Lead . . . . . . 0412
Magnesium alloy (elektron) . . . . 0065
Monel metal . . . . . 0323
Steel . . . . . 0283
'J\mgstsn a]loy (heavy alloy) . . . 0-600
. . . . 0040

AIR-SCREW BLADE MATERIALS.

Birch . . . . 04023
Compressed and mpreg-nated wood . . 0050
Mahogany . . . 0032
Micarta . . . . . . . 0049
Qak . . . . . . . . 0-029
‘Walnut . . - . . . . 0023

Notes.—The specific weight of wood is subject to a wide
variation for varying moisture content.

L=

X

Fic. 38.—Moment of inertia of frustum of cone.

Tungsten alloy is a material recently introduced as the
result of investigations carried out at the General Electric
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Company’s Research Laboratories, Wembley. This material
has approximately the same physical properties as mild steel
and is readily machinable with ordinary tools. The material
has just over twice the specific weight of steel and has been
used successfully for balancing internal combustion engines
where space limitations prohibited the use of ordinary steels.
Its tensile strength is 40 tons per sq. in., yield-point 36 tons
per sq. in., Young’s modulus 32,000,000 Ibs. per sq. in., Brinell
hardness 230 to 2go.

The specific weight of rubber given in the above table is
an average value for material used in the manufacture of
transmission couplings.

Exampie 18.—FEstimate the moment of inertia of the conic
frustum shown in Fig. 38 about the axis x4. The material
is cast iron.

The moment of inertia of the frustum shown at (s), Fig. 38,
is the difference between the moment of inertia of the large
cone shown at (b), about axis xx, and that of the small cone
shown at (c) about axis xx.

Moment of Inertia of Large Conme.

5,.D I X 05
®—4d) (o75—03)
3t

Total height, L=

Hence, from Table 13,
x.D2.L.S

Weight W = =

, where S = 450 lbs. per cu. ft.
for cast iron
_ 3416 X 075% X 3 X 450
Iz

= 199 Ibs.,
s _(B.12+3.D) 8 x5 +3xoys?
o 8o - 8o

= 0'g2I ft.2,

Hence, Ju = “’—9:7—-:9“ = 568 Lbs.-£t. sec.’.

K
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Moment of Inertia of Small Cone.
Weight — 3-7416 X 0°52 X 2 X 450

12
= 59 Ibs.,

Kt = &L+ DY+ R,

where R = distance of centre of gravity from axis xx
A 2 _ .

(11+ —) =1 +1-—15ft.,

Le. Kt = 3(2* '8{'00‘52) L5t
= 2-409 ft.2

Hence, Ju = =99 X 2409 _ = 44 |bs.-ft. sec.2.

322
Moment of Inertia of Frustum.
Jio = (568 — 4+4) = 128 Ibs.-f. sec®.

The expression for the weight of a frustum is

w=""L%p: 1D
6
s HIXA (075t + 075 X 05+ 05)
=139 Ibs.
LD +3.D.dF6.d, 3[D°—4"
Also K”_E[ Di+rD.a+ @ ] so[Da-dS]'
; 0752+ 3 X 075 X 0'5 4 6 X 0'5?
e K= 073 F 075 X 05 05 ]
075% — 0'5°
+ 80[0 +75% — 053]
= o295 1.
Hence, = \_N.TK:_IQIJ_%?A& = 1275 bs.-fi. sec?

This agrees with the value previously calculated.
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eel crankweb

ExaMpLE 19.—Fig. 39 shows two designs of st
for an engine with a crank-throw of z ins. Calculate the
ia about the axis of rotation

weight and moment of inerti
XX in each case.
Case I. Oval Web.

From Table 13 the weight and radius of gyration of an

elliptical lamina are
2
2t 4R

We=mn.a.b.c.S, and K%, =

BE I
TS
Fre. 39.—Moment of inertia of crankwebs,
In this example @ = 2:3751ins.; b =13 ins. ; c=05ins,,
S = 0283 1b. per cu. in. for steel,
R = distance from axis of rotation to centre
of gravity of ellipse = 1 in.
W = 31416 X 2375 X I75 X 075 X 0-283

Hence,
= 277 Ibs.
Also K2, = w -+ 12
— 318 in;‘.z{
fe. J=W.K386 = "’-777;——6318 — 00228 Ib.Ain. sec.?.

Case I1. Semi-Circular Ends.
From Table 13 the weight and radius of gyration of a
larnina with semi-circular ends are

W=(.r+2.4r.c.5
=2Aa(127“+1z“) + 3. 7. 727 + &) TR

K2
. 12(n7 + 2a)
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In this example

7 = 1751ns.; 4= {475 — 33) = I-251ins.,,
¢=o0v5in.; S = 0283 Ib. per cu. in. for steel.
Hence,

W = (371416 X 175 + 2 X I-25)175 X 073 X 0:283
= 2-97 Ibs., i.e. 75 per cent. heavier than Case I.
Also K2,
_ 2XT25(12 X 1-75211-25%)+3 X 3T416 X 1-75(2 X I-75%+-1-25%)
12(3:14I6 X I75 4+ 2 X I-25)
+ 12 = 3-32ins.2,
ie. J=W.K?386= %3——32 = 00255 lb.-in. sec.?, or

12 per cent. greater than Case I.

ExampLE 20—Fig. 40 shows a crankweb for an automobile
engine crankshaft with an integral balance weight.
Calculate the weight and moment of inertia about the axis
of rotation XX.

Fre. 40.—Balanced crankwebs.

The following dimensions are given :—
R = crank-throw = 2 ins. ; 7 = 3-25 ins. ;
R, = 1251ins.; ¢ =0-5in.
From the geometry of the web, referring to the left-hand
diagram in Fig. 40,
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d=Ryfsin 30°=2.R, = 2z X 125 = 25 ins,,
a = (@+R)sin 30° = (d + R)fz = (25 + 2)/2 = 2-25 ins.,
b= 27— a* = 21/3252 — 2252 = 4-69 ins.,
e= (4 + R) cos 30° = 0-866(Z + R) = 3-897 ins.,

b :
/= (e - 5) = 3897 — 2:345 = I552 ins,,
g=f.sin3o°=f/z=0776in

= (¢-+-0-5b) sin 30°= (e_—}-o_s_b>_ (3—§9L—:———2345> = 3-I2I ins.
Also sin § =gfr = o~776/3-25 = 0238,
8 =1375°,
sin =h/1 3-121/325 = 0:g6o0,
8 = 74°

The web can be divided into two circular segments and two
triangles, as shown in the right-hand diagram in Fig. 4o.
Segment A.
7=325ins.and @ = 2. 8 = 2 X 133 = 27:5°.
Then from Table 13,

Weight = W = ﬂs%&c—s , where S = 0283 1b. per cu.
in. for steel,
= 3T416 X 3-25% X 27'5 X 05 X 0-283/360 = 0-358 Ib.
K,, = r*/2 = 3-25%2 = 528 ins.2
Hence, moment of inertia of segment about polar axis XX = J,
J = WK?/386 = 0-358 X 5-28/386 = 0-0049 lb.-in. sec.2
Segment B.
y=325ins., a=2.0 =2 X 74 = 148°.
Weight =W =3-1416 X 3-25% X 148 X 0'5X 0-283/360=1-93 1bs.
K2, = 3-252/2 = 5-28 ins.2.
Hence, J = WK?/386=1:3% 5-28/386=0-0264 Ib.-in. sec.2.
Triangle C a = 2-25ins.; b= 4-69 ins.
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Then, from Table 13,
Weight =W =o05.4.b.¢.S
=05 X 225 X 469 X 05 X 0283
= 0745 Ib.
a2 602
K2, = a?f2 + 0224 = 3%5- -+ 4—2649 = 3445 ins.2,
The moment of inertia about polar axis XX is, therefore,
J = WK2(386 = 0745 X 3445/386 = 0-0066 Ib.-in. sec.2
The total moment of inertia of the crankweb about polar

axis XX is obtained by adding together the values for the
separate pieces, thus:—

Weight M f Inert
Part, Va/\lfgh loment Jo. ia
1-Segment A . . 0:358 1b. 00049 Ib.-in. sec.?
1-Segment B . . 1-930 070264
2-TrianglesC . . 1490 00132
Total for web . . 3+778 Ibs. 0-0445 Ib.-in. sec.®

TI. EQUIVALENT ELASTICITIES.

(@) Elasticity of Shafting.—When the shafting is not of
uniform diameter throughout its length, the stiffness of each
section requires separate consideration. It is convenient to
replace the actual shaft by a shaft of uniform diameter D, the
torsional rigidities of the sections of the equivalent shaft
between the various masses being maintained the same as in the
original system by an appropriate adjustment of the lengths.

The length of the equivalent shaft is determined as follows :

From Equation (1),

6.0
T

x. D¢
32

M_
I.
where I = for a solid shaft of diameter D,
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Hence, torsional rigidity
M_G.I .DL G
=—"_:—L—pzwgz.L_’ : - (74)

ie. the torsional rigidity is directly proportional to the fourth
power of the shaft diameter, and inversely proportional to the
shaft length.
Let L, = actual length of shaft,

D, = actual diameter of shaft,

L = equivalent length of shaft,

D = equivalent diameter of shaft.
Then, for both sections of shaft to have the same torsional
rigidity,

7.D4.G_#.D*.G

32.L; 32.L°
4
or equivalent length L = L1(5D—4) for solid shafts. . (75)
1

In a similar manner it can be shown that for a hollow shaft
of actual diameters D; and 4;, and actual length L,, the length
L of an equivalent solid shaft of diameter D is

Equivalent length L=LI[EA—D‘T‘]. N )
1 T W

If there are several shafts and/or flexible couplings in series
the overall torsional rigidity of the complete assembly is
obtained as follows :—

Let C = overall torsional rigidity,
C, Gy, C,, etc. = torsional rigidities of the individual
elements,
L = equivalent length of the complete assembly,
L, L, L, etc. = equivalent lengths of the individual
elements.
Then L=(L,+L;+L,+etc. ..,
bt L=T/C; L,=U/C,; L,=U[C,; L,=UJC,; etc.,
where U is a constant. :

Hence, %: (é + 61» -+ é + etc. . . ) . . )
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Tapered Shafting.—For small vertex angles the equlvalent
length of the frustum of a circular cone is

L=——~—~[———] .

where D = diameter of equivalent uniform circular shaft of
length L,
L, = axial length of the frustum,
D, = diameter of large end of frustum,
D, = diameter of small end of frustum.

Equation (78) can be written
Lo L. D‘(K“+ K+1)

Dp K® N - - (79)
where . K= Dl/D,

When K = 1, ie. when the shaft is of uniform diameter,
Equation (79) reduces to Equation (73), which is
correct.

For values of K up to and including 1'2 the error in assuming
that the tapered shaft is equivalent to a parallel shaft of the
same length and of diameter (D; -+ D,)/2 is less than 3 per cent.

Hollow Tapered Shaft.—In the case of a shaft having
a tapered bore the following method can be employed : —

Let L == equivalent length of the actual hollow shaft,

L, = equivalent length of a solid shaft having the same
dimensions as the outside dimensions of the
actual shaft,

L; = equivalent length of a solid shaft having the same
dimensions as the bore of the actual shaft,

C, C,, C; = torsional rigidities corresponding to L, L, and L;
respectively.
Then C==n.D*.G/(32.1); C,==.D*. G/(32. L) ;
C;=mw.D*:G/(32.Ly),
where D = diameter of equivalent solid parallel shaft.
Hence, L=L,.L/(L: — Ly)- . . (80)

Equation (80) can be used for all noxma.l types of hollow

shaft. In the case of a hollow cylindrical parallel shaft,

VOL. IL.—II
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outside diameter D,, inside diameter 4, and length L,, for
example :—
From Equation (75),
L,=1,.D4Ds*; Ly=1L,.DYd*
Hence, L=L,.L;(L, — L) =1L,.D¥(D;* —d,%),
which agrees with Equation (76).
Circular Shaft of Varying Diameter.—The effective
e length of a section of shafting
T which joins another section of

larger diameter is greater than
4 ]L
L oy

the actual length owing to local
F1e. 41.—~Fillet allowance.

deformation at the juncture.

" The smaller shaft, in effect,
buries itself in the larger one,
as shown in Fig. 41. The
length of the smaller shaft is
therefore virtually increased by
the amount /, and the length of the Jarger shaft decreased by
the same amount.

The allowance 7 depends on the ratio of the shaft diameters,
and may be obtained from the factors in Table r5.

TABLE 15.
EFFECTIVE LENGTHS OF SHAFTS OF VARYING DIAMETER,

Ratio: Ratio: ml

1-00 o
125 0055
150 0085
2°00 0100
3-00 0107
Infinity o125

Shaft Couplings.—In the case of solid forged couplings
the factors already given for shafts of varying diameter may
be used. '

In normal designs the thickness of the couplings is about
one-quarter of the shaft diameter. Hence, if a factor of 0'125
is used, the following general rule for dealing with solid forged
couplings is obtained. -
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Assume that the shaft extends into the coupling 2 distance
equal to one-half the thickness of the flange, and that the
remainder of the flange thickness has a diameter equal to the
pitch circle diameter of the coupling bolts.

In the case of keyed couplings, assume that the torsional
rigidity is that of the shaft for ome-half the length of the
coupling, and that of the collar for the remainder.

In the case of a splined or serrated shaft, such as the air-
screw shaft of an aero engine, assume that the shaft extends
into the attached member a distance equal to one-third the
length of the splines or serrations and that the effective outside
diameter of the splined or serrated portion is equal to the pitch
circle diameter of the splines or serrations.

Backlash in splined or serrated shafts tends to reduce the
torsional rigidity of the connection by an amount which is
not constant but which varies with the torque transmitted.

In other words, the effect of backlash is to make the con-
nection non-linear, a subject which is discussed in Chapter ro.

In the case of members that are shrunk on to the shaft,
assume that the shaft enters the attached member for a length
equal to one-quarter to one-half the diameter of the shaft,
the smaller value applying to tightly shrunk-on members.

In the case of a continuous sleeve or liner which is shrunk
on to the shaft over a considerable length, assume that the
effective outside diameter of the shaft in way of the sleeve is
increased by the thickness of the sleeve, i.e. the effective radius
is the radius of the shaft plus half the sleeve thickness. The
stiffening effect of sleeves depends on the tightness of the fit,
the length of the sleeve in relation to the shaft diameter, and
the material of the sleeve.

The above rule applies to cases where the sleeve is long, is
made of the same material as the shaft, and is tightly shrunk on.

‘When the sleeve is short it is made of more elastic material
than the shaft, and a moderate fit is used, e.g. a bronze liner

" pressed on to a shaft, the stiffening effect is usually negligible.

As a general rule the stiffening effect of short collars or
thrust rings having an axial length less than ome-quarter the
diameter of the shaft is also negligible,
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Cast-Iron or Bronze Shafts.—When the actual shaft is
made of cast iron or bronze, the equivalent length of steel shaft
is given by e

DA
L=Lf Gx] .. 8y
where L = equivalent length of solid steel shafting,
D = diameter of equivalent shaft,
G = modulus of rigidity of steel,
L, = actual length of cast-iron or bronze shaft,
D, = actual diameter of cast-iron or bronze shaft,
G, = modulus of rigidity of cast iron or bronze.

Table 16 gives the values of the moduli of rigidity for
various materials :—

TABLE 16.
Erastic CONSTANTS.

Materlal, Modulus of Elasticity, E. Modulus of Rigidity, G.
Alominiom . 10,000,000 lbs./in.% 3,800,000 Ibs. /in.?
Bronze (phosphor, muga.n

ese, and aluminium) . 15,000,000 6,000,000
Cast iron . . . . 17,000,000 7,000,000
Duralumin . . . 10,500,000 3,800,000
Gunmetal and brass . . 14,000,000 5,000,000
Magnesium alloy (elektmn) 6,500,000 2,600,000
Monel metal . 25,000,000 9,000,000
Steel . . . 30,000,000 12,000,000
Steel (spring wxre) B . 30,000,000 11,500,000
Steel (stainless) . . 28,000,000 11,800,000
Tungstanalloy(heavymetal) 32,000,000 —
‘Wrought iron . 28,000,000 11,000,000
Rubber . 500 100
Compressed a.nd impreg~

nated wood . . . 3,850,000 320,000
‘Wood . . . . 1,500,000 80,000
Micarta . . . B 1,300,000 400,000

The values given in the above table are average values for
each material. In the case of metals the varation is not
great, but in the case of non-metallic materials there might
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be an appreciable variation between different samples of each
class.

The values given for rubber are the average values for the
grade of material used in transmission couplings, but the
actual value in any given .case can be adjusted over a con-
siderable range by varying the specification of the rubber.

E - .
Note.—G = E+op where o = Poisson’s Ratio
= 1 to } for most metals.
ExamPLE 21r.—Calculate the length of a solid steel shaft, 8 ins.

diameter, which has the same torsional rigidity as the
composite shaft shown in Fig. 42.

u |

Lm 3o——<—13—>(-s—ls l3|<—30—->|

@, ® { @ (@l _ (g)
i . Liﬂ
S W
1Y
CsstI/’o‘n
Iy
3 w
844| | 186° )
l<——3293 29.58"—>t<lj<—20.6">

g’ ‘Equivalent length———s
Fic. 42.—Equivalent length of complex shaft.

Section (@).—Io ins. of 6-in. diameter shaft.

The allowance for local deformation at the juncture of
the 6-in. and 8-in. diameter shafts (D,/D,= 8/6 = 1-33) is
007 . D, by interpolation from Table 15.

8&
Hence, Equivalent length = (10 4 0-07 X 6)[6;],
= 32°03 ins. of 8-in. diameter.
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Section (b).—30 ins. of 8-in. diameter shaft.

The actual length is reduced by the allowance made on
section (@) for local deformation at the juncture of the 6-in.
and 8-in. shafts,

ie. Equivalent length = (30 — 007 X 6),
L, = 2958 ins. of 8-in. diameter.

Section (¢).—18 ins. tapered 8-in. to 12-in. diameter.

L,.D* I I
Equivalent length = _—(D1 =Dy [D_-x — D—l":l s
. 18 x 8* b
Le L= 30z — 9 @ - Izs]

= 844 ins. of 8-in, diameter,

Section (d).—6 ins. of 12-in. diameter shaft.
The effective length of this section is the actual length plus
one-half the thickness of the coupling flange,

ie.  Equivalent length = (6 + 1 5)[12‘]
L; = 148 in. of 8-in. diameter.
Section (¢).—3-in. thick coupling, bolts on 15-in. P.C.D.
Equivalent length = [1 5,]

ie. L, = o'12 in. of 8-in. diameter.

Section (f)—3-in. thick hollow coupling, bolts on x15-in.
P.CD.
In this case the material is cast iron.

8¢ 12000000
Hence, Equivalent length = _[15‘ — 104}[7000000 ] G P

ie. L; = 0-26 in. of 8-in. diameter.
Section (g).—30 ins. of hollow cast-iron shaft.
. . 3 8t 12000000
Equivalent length = [30 + 2:| [12‘ — ro‘] 7000000 J’
ie. o = 2060 ins. of 8-in. diameter.




EQUIVALENT OSCILLATING SYSTEMS 167

Total Equivalent Lengih,
L=(Le+Ly+ L+ L+ L, +L+1L,)
= 0934T ins. of 8-in. diameter solid circular shaft (see
Fig. 42).

In practice the small refinements introduced into the fore-
going calculation do not appreciably influence the value of the
natural frequency.

For example, if the couplings and the local deformation at
the juncture of the 6-in. and 8-in. sections are neglected in
Fig. 42, and if the tapered portion is agsumed to have a uniform
diameter equal to its mean diameter, the calculation of the
equivalent shaft is shortened as follows :—

Siz-inch Section :

Equivalent length = 10 X g = 316 ins.
Eight-inch Section :

Equivalent length = 30-0 ins.
Tapered Section (mean diameter = 10 ins.):

Equivalent length = 18 x 18—0“ = 7+4 ins.
Twelve-inch Section :

Equivalent length =6 x Ii;‘ 12 ins.
Hollow Cast-Iron Section :

. 8¢ 12000000
Equivalent length = 30[;'2‘-—_13] [7000000 ]

= 19°6 ins.

Hence, Total equivalent length = 89-8 ins.

This is 4 per cent. less than the more accurately calculated
value, and since the frequency of torsional vibration is inversely
proportional to the square root of the length, the probable
error in the frequency calculation would be 2 per cent. high
when using the approximate value for the equivalent length.

Torsional Rigidity of Shafts of Non-Circular Cross-
Section.—Table 17 contains expressions for calculating the
equivalent lengths of shafts of non-circular cross-section.
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The classical work of Saint Venant on the torsion of prisms
showed that in bars having symmetrical but non-circular cross-
sections plane transverse sections do not remain plane when the
bar is twisted, but become curved or warped. This warping
brings about a different distribution of shear stress and shear
strain from what would occur if transverse sections remained
plane after twisting. As a general rule the greatest intensity
of shear stress in a bar of symmetrical but non-circular cross-
section occurs at a point on the perimeter of the cross-section
nearest to the shaft axis or centroid of the cross-section. Thus
in the case of an elliptical cross-section the maximum shear
stress occurs on the boundary of the ellipse at the extremity
of the minor axis. If the plane section had remained plane
after twisting, the maximum shear stress would have occurred
at the point situated at the greatest distance from the axis of
twist, i.e. at the extremity of the major axis, and the shear stress
would have been a minimum at the extremity of the minor axis.

Similarly, in the case of a rectangular bar the maximum
shear stress occurs on the boundary of the rectangle at the
middle of the longer side. The shear stress at the corners of
the rectangle is zero.

These examples show that the simple theory used for
solving torsion problems relating to circular bars, viz. that
within the elastic limit shear stress and shear strain are pro-
portional to the distance from the centre of the bar, cannot
be applied in the case of shafts of non-circular cross-section.

The subject has been investigated both analytically and
experimentally (see Bibliography). An account of Saint
Venant’s analytical work is given in Todhunter and Pearson’s
' History of the Elasticity and Strength of Materials,” Vol. II,
Part I, Chapter X, Cambridge University Press, whilst the
elegant experimental work of A. A. Griffith and G. I. Taylor,
using the soap film analogy suggested by Prandtl, is described
in their paper, “ The .Use of Soap Films in Solving Torsion
Problems,” Pr dings, Institute of Mechanical Emgineers,
1917, p. 755. A good summary of the subject is contained in
Seely’s ““ Advanced Mechanics of Materials,” Chapter IX,
Chapman & Hall (London).
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The expressions contained in Table 17 have been mainly
deduced from Saint Venant’s empirical formule and from the
results of Griffith and Taylor’s soap film experiments. The
following general conclusions should be noted :—

(1) The soap film experiments showed that at external
corners, such as the corners of a rectangular or tri-
angular bar, the shear stress due to twisting is zero ;
whilst at internal corners, such as the corners of
key-ways and the roots of splines and serrations, the
shear stress due to twisting is very high. In general,
the stress at any point on the boundary of a section
where the section is convex outward is less than if
the boundary of the section were straight, and at a
sharp external corner the stress is zero. The stress
at any point on the boundary of a section where the
section is concave is greater than if the boundary of
the section were straight, and at sharp internal
corners the stress is theoretically infinite, assuming
that stress remains proportional to strain. In prac-
tice, however, since all materials are more or less
ductile, the stress at sharp internal corners remains
finite because of local yielding of the material, which
brings about a redistribution of stress in the neighbour-
hood of the highly stressed region. The extent of
this mitigating influence depends upon the ductility
of the material and the shape of the commer. The
simple precautionary measuve of providing the largest
possible radius in all corners should ahoays be taken. -

The foregoing points can be verified by referring
to some of the examples in Table 17. Thus the
stress at the corner of a key-way is considerably
greater than the stress at the centre of the key-flat
when there is a small radius at the comer of the
key-way, but becomes nearly equal to the stress
at the centre of the key-flat when the corner radius
is increased.

(2) The soap film experiments showed that a long thin
rectangular torsion member is not so stiff as a member
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TABLE 17.
TORSIONAL RIGIDITY OF SHAFTS.
; Equivalenf Length 0
Cross-~ JSection of ! Maximum Area of
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TABLE 17 (confinued).

Cross- Section of | Selen” Bﬁf{.’/h Meximum
Shafr Diameler D Shear  Slress
- I 16 - 8IM
L LID4'[—~——D?] f b3
ar X
- n4l_K - KM
=Lt 5] | =
r |k [r s
Di/100] - 3151134
7301 T 0197150
72517 D/25 | 35126
D/1s 1124 B/ 13-01 117
—i.pt [ K = KM
o =0t [H] 1 F= 4
(218 Di D
I arat
17100 13-0
DI/ 9714
Di/25] 86 3
I/15] 8-31 8-4
7=
D3
r | K
D:/100] 20-O
piAWLRNS
1/501 14~
/40154
! aFX

L = length of solid circular shafr of diamefer D
Having the same lorsional rigidily es length L1
of the acltal shafr.

M = Twisting momenl” Fansmitied by shaft.
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having a square section of the same cross-sectional
area.

For example, from Table 17, the equivalent length
of a rectangular section when a = 28 is

L =L,.D%(4-96t%),
whereas the equivalent length of a square section
of the same cross-sectional area, when the length of
each side is a,, is

L =1,.D¥%(x434,%,
where, for equal cross-sectional areas, @2 = 2b?,
ie. L =1L,.D¥(572b%).

Hence the torsional rigidity of the square section is about
15 per cent. greater than that of a rectangular section of equal
area in which the longer side is twice the shorter side.

The torsional stiffness of a long thin rectangular member is
nearly the same whether the member is in the form of a simple
rectangular bar or is rolled up into a U-, C-, S-, or L-shaped
member, provided the width of the member remains constant
and the length of the median line is unaltered.

This explains the considerable reduction of strength and
stiffness when a narrow longitudinal slit is cut in a cylindrical
tube, ie. the slit converts the tube into a member having a
narrow rectangular cross-section of length =(D; + dy)/2 and
thickness (Dy — d,)/2.

Thus, if the width & of the rectangle is small compared
with the length 4, the terms containing & in the numerators
of the expressions for the equivalent length and shear stress
of a rectangular section given in Table 17 are negligible.
Hence these expressions reduce to

—1,.ptf X -3.M
L=L.D {3-1.4. b”} and f=i v
In the case of a slit tube the length of the equivalent rect-
angle is a4 = n(Dy + d,)/2, and its width is & = (D, — d,)/2.
Inserting these values in the foregoing expressions for
L and f,
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_ 164 - 768
B ayOay) =, dy,-ay
which are in good agreement with the values given for a slit
tube in Table 17.

The soap film experiments also showed that the stiffness
of any section is reduced appreciably by any discontinuity,
such as a key-way, even if the discontinuity does not reduce
the area of the section appreciably.

Conversely, any addition to the area of a particular section
increases its stiffness, provided the configuration of the original
area remains unaltered. Thus, in the examples given in
Table 17 the equivalent length of a tube of external diameter
D,, internal diameter 0-6D,, and length L, is

L =115L,. DYDs4,
whereas the equivalent length of the same section when
a single key-way, D,/4 wide and D,/10 deep, is cut in it is
L=r128L,.D¢D,
when the radius in the corner of the key-way is » = Dy /100.

L=L,.Ds

(3) In the case of severe discontinuities, such as key-ways
and serrations, it should be noted that the values
given in Table 1y for the maximum shear stresses
at points of high stress concentration are theoretical
values. Due to local yielding these theoretical
.values are not realised in practice in the case of vibra-
tory loading, a point which is discussed more fully
in Chapter 7.

General Expressions for the Torsional Rigidity of
Non-Circular Shafts in Torsion.

(@) Solid Symmetrical Sections.—Saint Venant found that
the torsional rigidity of any solid symmetrical section
is nearly the same as that of an elliptical section
having the same area and the same polar moment
of inertia as the actual section.

() Thin Tubular Sections—The following expressions
give approximate values for the maximum shear
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stress and equivalent length of thin tubular sections
having a umiform wall thickness. (See Seely,
““ Advanced Mechanics of Materials,” pp. 176 and
177) =
f=M/z.A.9), . . . . (82)
L=P.L, .DY(40'8. 42,4, . . (83)

where f = maximum shear stress in Ibs. per sq. in.;

M = torque in Ibs.-ins.,

A = area enclosed by mean periphery of section, in
sq. ins.,

t = wall thickness in inches,
= length of mean periphery in inches,

L = equivalent length of solid circular shaft of dia-
meter D,

L, = actual length of tubular section.

For example, consider the case of a hollow cylindrical
section, outside diameter D, and inside diameter d, = k. D,,

A=l R X

t = Dy — dy)J2 = Dy(x — B2,

P =7(D; + dy)[2 = m.Dsy(1 + B)/2.
51.M

Hence, f= D, 5 + B (= )
2.L,.D*
and R X ey

Also, from the expressions given in Table 17 for a hollow
circular section,
f=31D;. M/(Dy* — d,*) = 51 M/D 31 — 44,
and L=1L,.D¥{D¢—dY =L,.DYDs1 — 29).
The error in the approximate expression for different values
of % is shown in the following table :—
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Stress /. Equivalent Length.

Value of
&

Exact, Approximate. Exact. Approsimate.

o8 864 M/D;* | 787 M[D2 | 192L;.D¥D,* | 169 L, .D#D*

085 10-65 995 2:10 2:09
ogo 14-80 14°10 2:92 2:91
g5 2720 26-80 541 540
0975 | 52:30 5230 10:40 1025

In the case of elliptical tubes the values of A and P can be
computed from the following expressions :—

A= Za. b = area enclosed by mean periphery,

2 LBt
- ,T\/‘i T ¥ _ length of mean periphery,

where a = mean length of major axis,
b = mean length of minor axis.

The empirical expression given in Table 1y for the shear
stress due to twisting a bar of rectangular cross-section yields
values which are within 4 per cent. of the exact values. The
expression for the equivalent length of rectangular bars yields
values which are within 7 per cent. of the exact values when
the ratio /b lies between I and 2, and within 5 per cent. when
this ratio is greater than 2.

ExXAMPLE 22.—A torsional pendulum consisting of a flywheel
of moment of inertia 0-357 Ib.-in. sec.? is rigidly attached
to the free end of a 1-in. diameter solid steel bar 12 ins.
long. The other end of the bar is firmly clamped as
shown in Fig. 1.

Calculate.

I. The natural frequency of torsional vibration of the.
system.

I1. The maximum torque which can be imposed on the
bar if the shear stress must not exceed 10,000 1bs.
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per sq. in.  Also the angle of twist at the flywheel
when this torque is applied statically at the same
point. R

I11. The required lengths of shaft, assuming that the solid
circular bar is replaced by bars having the various
cross-sections shown in Table 17; that a shear
stress of 10,000 lbs. per sq. in. must not be exceeded
when the alternative bars carry the same torque
as the solid circular bar; and that the natural
frequency must be the same as for the solid circular
bar.

L. Natural Frequency of System.
From Equation (7),
F = ¢-35v/C/[J vibs./min.,

where C = G.I,/L Ibs.-ins. per radian
_ Dt G _ 1f X 12000000
T 102.L° T 102 X12

= 08,000 Ibs.-ins. per radian,
J = 0-357 Ib.Ain. sec.2

Hence, F= 9-55\/ 2.8305? = 5000 vibs. /min.

IX. Maxémum Torgue.—From Table 1y, for a solid circular
section,

J=51M/D?
where f = 10,000 1bs. per sq. in., D = 1 in.
Hence, M = 10,000 X 13/5-T = 1960 lbs.-ins.
Angle of Twist at Flywheel.
From Equation (1)
g M.I
G.I

but C=G.I,[L,
ie. 8 = MJC,
where M = 1960 Ibs.-ins.,
and C = 98,000 Ibs.-ins. per radian.

Hence, 8§ = 1960/98,000 = 0-02 radian or 1-15°



EQUIVALENT OSCILLATING SYSTEMS 177

I1la. Hollow Circular Section (assuming d; = 06 D).

In all the following examples the appropriate expressions
for shear stress and equivalent length are taken from Table 17.

Sheay Stress.
f=351D;. M[(D,* — 4,
= 585 M/D,?, when d; = 06 . Dy,
ie. Dy® = 5:85 X 1960/10,000, when M = 1960 Ibs.~ins.
and f = 10,000 lbs. per sq. in.,
D; = 105 ins., and 4, = 0-63 in.
Length of shaft.
L=1L,.DYD*—d,%.

If the frequency is to remain the same as for a solid circular
bar 1 in. diameter and 12 ins. long, the actual length L, of
the hollow bar must be equivalent to 12 ins. of 1 in. diameter
solid circular bar, i.e. L/D* = 12, a value which holds for all
the following examples.

In this case,

L, = 0-87 D,*. L/D* where D, = 1-05 ins,,
ie. L, =087 X 1:05* X 12 = 12+6 ins.

1116. Hollow Shaft with Longitudinal Skt

(assuming @ = 0'6.D,).
Sheay Stress.
f= 76 . M
Dy +dy)(Dy — &y
=207 . M/D,3, when d, = 06 . Dy,

ie. D,® = 297 X 1960/10,000 = 582,
or D, = 1-8 ins,, and d, = 1°08 ins.
Length of Shaft.
L= 15L,.D*
T (D F 4Dy — )
or Ly = (Dy +45)(Dy —4,)*. L/(x5. DY)

= 0068 . D,*.L/D% when d; = 0-6. Dy,
where D, = r-8ins, and L/D* = 12.
Hence, L, = 0068 in. X 1-8* X 12 = 86 ins.
VOL. L.—I2
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IlIc. Ellipse (assuming a = 2b).

Shear Stress.
f=51.M/(@.?) =2-55.M[b® when a = 2b,
ie. b* = 255 X 1960/10,000 = 03,
or b = 0-794 in., and @ = 26 = 1-588 ins.
Length of Shaft.
L— L, .D%a®+ )
2.a%5.b% '
or L,=32.b*.L/D* when ¢ = 25

= 32 X 0-794* X 12 = 152 ins.

II1d. Rectangle (assuming & = 2b).
Shear Stress.

f=(5.a+9.5).M/(5.2*.7)
= 1-95. M/b®, when @ = 25,
or b® == 1-95 X 1960/10,000 = 0-382,
whence b = 0725 in., and @ = 25 = 1-45 ins.

Length of Shaft.
L=1,.D4%a?+ ?)/(31.4%.5%
=L, .D%/(4:96 . 8%,

ie. L; = 496 X 0-725* X 12 = 164 ins.
IIIe. Square.
Shear Stress.
f=48.MJa3,
or a* = 48 X 1960/10,000 = 0-94,
whence a = 0-98 in.
Length of Shafi.
L =1,.D%(143. a%,

ie. Ly =143.e*.L/D*
= 143 X 0-98% X 12
= 158 ins.
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I1Lf. Equilateral Triangle.

Shear Stress.
f=120.M/ad,
ie. a® = 20 X 1960/10,000 = 3-92,
or a = 1575 ins.
Length of Shafi.
L =453.L,.D4at,
or L, =157* X 12/4'53 = 16-3 ins.

II1g. Hexagon.
Shear Stress.

f=53.MDg2,
or D,3 = 53 X 1960/10,000 = I'04,
ie. D, = 1-014 ins.
Length of Shaft.
L=1L,.DY(x18.D"),
ie. L, =118.D,4.L/D*
= I-18 X I'0I4? X I2 = I4-qins.
II1h. Octagon.
Shear Stress.
f=354. M/D,?,

or D= 54 X 1960/10,000 == 1-06,
D, = 1-02 ins.
Length of Shaft.
L=L,.D4(rx.DyY,
ie. Ly=11.D. L/D*=11 X 102! X 12 = I14-3 ins.
Torsional Resilience.—The work done by a torque M in
twisting a bar through an angle 6§ is
W=M.90/2,
but, from Equation (),
M/I,=2.fd=G.0/L,
or M=2.f.1,/d and 0 =2.f.L[G.4d,
ie. W=2.1,.f2.L/G. d?ins.-lbs.,, . . (84
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where W = total resilience in ins.-lbs.,
I, = polar moment of inertia of cross-section of shaft
in ins.# units,
f = maximum shear stress in Ibs. per sq. in.,
L = length of bar in inches,
G = modulus of rigidity in Ibs. per sq. in.,
d = diameter of bar in inches.
For a hollow circular bar, outside diameter 4 and inside dia-
meter k. d, '
I,=n.dx —%)[32, and V=a.dx — k*L/4,
where V= volume of bar in cubic inches.
Hence, W, = resilience per unit volume
= fA1 + EY/(4 . G) ins.-Ibs. per cu. in. . (83)
In the case of a very thin tube & is very nearly unity, so that
Equation (85) reduces to

W, = f?/2. G for a very thin tube. . . (86)

In the case of a solid shaft % is zero, so that Equation (85)
reduces to
W, = f2/4G, for a solid circular shaft. .87

As already explained the foregoing expressions cannot be
applied to non-circular sections because plane transverse
sections do not remain plane after twisting.

The specific resiliences of non-circular bars can be computed,
however, from the following expression :—

W, =M.¥8/2V,
where 8 = total angular deflection of bar in radians due to
torque M Ibs.-ins.
V = total volume of bar in cubic inches.

In this example M = 1960 Ibs.-ins., 6§ = 0-02 radian.
Hence, W, = 1960 X 002{2V = 19:6/V ins.-Ibs. per
cubic inch.
The values of W, are given in the last column of Table 18.
Equations (86) and (87) show that for a given maximum
stress and a given weight of material a very thin circular
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tube stores twice as much energy as a solid circular bar, and
it will be found that any other solid section is even less efficient
than the solid circular section. The examples given in Table 18
show that the resilience per unit volume approaches that of
a solid circular bar the nearer the crosssection of the bar is
to a circular cross-section, e.g. a square section is more efficient
than a triangular section, and a hexagonal or octagonal section
is more efficient than a square section.

TABLE 18.
RESILIENCE OF TORSION BARS.
Section. Rt | Votume o Bar. Weghtof .| Unit Voluma
Ins, Cu. Ins. T, Ins.-Lbs. per
L. d Cu.In.
Solid circular . . - 12°0 942 2°67 2-08
Hollow circular . 12:6 696 197 282
Hollow circular with longl—
tudinal slit . . 86 1400 397 140
Solid elliptical . . 152 1500 425 131
Solid rectangular . . 16-4 17-25 487 114
Solid square . 158 15'20 430 129
Solid equilateral tnangular 16-3 17-50 495 112
Solid hexagonal . 149 1320 374 1-48
Solid octagonal - B 143 11:30 321 173

The presence of discontinuities, such as key-ways, serra-
tions, etc., also has a considerable influence on the specific
resilience of the bar, because the maximum stress to which
the bar can be subjected with safety is determined by the high
local stresses which occur in the region of the discontinuity.
The average stress is, therefore, considerably lower in most
cases than the average stress in a bar of corresponding cross-
section but without any discontinuity. It should be noted,
however, that the effect of a discontinuity on the permissible
maximum stress, and therefore on the specific resilience of a
bar, depends on the material of which the bar is made as well
as on its cross-section and type of discontinuity. As a general
rule, the specific resilience of two bars of identical form, con-
taining a discontinuity such as a key-way, but of different
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materials, will not be in direct proportion to the stress-
carrying capacity of the two materials, because there will
be a more favourable redistribution of stress in the neighbour-
hood of the discontinuity in the case of the more ductile
material, due to local yielding at the highly stressed zones.
Also, in the case of two identical bars made of the same
material, the specific resilience will be greater for the bar
which has the larger radii at the discontinuity, e.g. in the
comners of a key-way or at the roots of serrations.

ExampLE 23.—Calculate the natural frequencies of the system
described in Example 22, when all the bars are 12 ins.
long and are made of the following materials: steel, cast
iron, aluminjum, bronze, magnesium alloy, and wood.

From Equation (7),

F = g955vC]J,
where C=G.L,L,

. G 1
ie. F =935 T ]'j

If only the length L and the modulus of rigidity G are
altered this expression can be written

In Example 22 it was shown that the frequency of the
system with steel bars having the various cross-sections de-
scribed in Table 18 was 5000 vibs./min.

Table 16 shows that the modulus of rigidity of steel is
12,000,000.

Hence, F, = K+/G,/L, vibs./min.,
where F, = the natural frequency of the system when

the modulus of rigidity of the material
is G,, and the length of the bar is L,.

Similarly, Fy = KVG,/L,,

Le. F,= Fr\/g: . i’

it 4
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In this case, G; = 12,000,000,
L; = length of bar from column 2 of Table 18,
o = I2ins.,
G, = modulus of rigidity from Table 16,
F; = 5000 vibs./min.,
_ " L,.G, 1
e o 5000\/‘12000000 X 12 _E{‘/Ll' G
The values of F, can be computed from the above expression
by the appropriate values of G, and L, from Tables 16 and 18
respectively. The results are given in Table 9.

TABLE 19.
NATURAL FREQUENCIES OF TORSIONAL PENDULUM.

Material.

Section.

Steel. Cast Iron. |Alumind Bronze. Wood.

vibs./min, | vibs,/min. | vibs. /min. | vibs./min, | vibs./min, | vibs./min.
Solid circular . 5000 3810 2810 3530 2320 407
Hollow circular . 5120 3900 2880 3620 2370 417
Hollow cixcular
with longl. slit]| 4I20 3140 2310 2900 910 335
Solid elliptical . 5610 4270 3150 3960 2600 457
Solid rectangular | 3840 4450 3280 4120 2710 475
Solid square . 5720 4350 3210 4040 2650 465
Solid triangular . | 5810 4430 3270 4100 2700 473
Solid hexagonal. 5560 4240 3130 3930 2580 453
Solid octagonal . | 35440 4150 3060 3840 2520 442

The considerable reduction of torsional stiffness and the
consequent reduction of matural frequency due to cutting
a longitudinal slit in a hollow circular shaft should be noted.
In the particular example given above the dimensions of the
slit tube were increased to maintain the same maximum fibre
stress under a given torque as for the plin tube. If the
dimensions had not been increased the reduction of stiffness
due to slitting the tube longitudinally is given by the expressions
in Table 17. :
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For a plain cylindrical tube,
L=L,DY(Ds* — a9
= 115L,.D4D 4 when 4, = 0:6D,.
; - of ,«1‘5___}
For a slit tube, L=1L,.D {(Dl AT
= 1465 L; . DD when 4, = 0-6D,,
i.e. the torsional rigidity of the slit tube is nearly 1/roth that
of the plain tube, when d; = 0-6D,.

(b) Crankshaft Stiffness.—The reduction of the actual
length L in Fig. 25 of each crankshaft element between main
bearing centres to an equivalent length of plain shafting L, of
diameter D of the same torsional rigidity may be carried out
as follows —

Referring to Fig. 25,
Torsional rigidity of unit

Let C=G.L,=_.G.D'= Ilength of the equivalent
shaft,
. Torsional rigidity of unit
Ci== G- &% = Ilength of the crankshaft
3z ;
journals,
_m _ __ Torsional rigidity of unit
Co= 5 GD:* ~ &) length of the crankpin,
_ _T.W2.E _ Flexural rigidity of one
=E.I=
Iz crankweb.

Then, assuming that the deflection of the crankshaft
element is mainly due to twisting of the crankpin and journals,
and bending of the crankwebs, and that the bearing clearance
is sufficient to permit free displacement of the journals :

() Journals.

Let L;= length of equivalent shaft having the same tor-
sional rigidity as each journal,
= length of journal.
L,_ A A.C

Then  F=f o L=5

iy
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‘ie. L= for hollow journals

A D¢
DF =45

ADL} for solid journals.
(ii) Crankpins.
Let L,=length of equivalent shaft having the same
torsional rigidity as each crankpin,
B =length of each crankpin.

L, B _C.B
Then T=g, L= <
- B.D* .
ie. L,= (D‘—dT) for hollow crankpins
— BD]? for solid crankpins.

(iii) Crankwebs.

Let L= length of equivalent shaft corresponding to two
crankwebs.

Fig. 43 shows the deflection of a crankweb due to a couple M.

Let Y = radius of curvature of web,
# = difference in inclination of web at journal and
crankpin, i.e. the angular deflection of the next
following journal due to flexure of the crankweb.

Then from the theory of beams
M/I=EJY,
of  Y=E.IM=CyM,
where C;=E.I=T.W3.E[1z = flexural rigidity of the
- crankweb.
Also, from Fig. 43 3
§=RJY = My-R/C, =12. M. R/(T. W? . E),
54 .M.R

or, for two crankwe] 8 = TR
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M.L,_2¢.M.R

Hence, T TT.W.E
_ 24.R 7.G.D?*

Le. L, = T We.E X 32
_2336R.G.D*
T T.WEB.E

Assuming that E = 30,000,000 Ibs. per sq. in. and
: G = 12,000,000 lbs. per sq. in. for steel,

094z R.D*

T fortwo steel crankwebs.

L=

Fic. 43.—Flexure of crankweb.
(iv) Total Equivalent Length of One Crankshaft Element.

= L1+ Ly + L)
A.D*  BD* o942 R.D*
for solid journals and crankpms.

In applying the foregoing method, it should be noted that—

(i) Local deformation at the juncture of journal and crank-
pin and web increases the effectjvz lersth of the
journal or crankpin. J v

(ii) The effective lever arm of the couplg acting on the crank-
webs is less than the crank fadius R, due to the
attachment of the cra‘.nmynfﬁ ]ournal

(iii) The effect of restraint at the bea_rmgs is to increase the
stiffness of the crankshaft. N
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For normal running clearances of 4/1000 to 8/1000
of an inch, the increase of torsional rigidity compared
with that of a free shaft is 5 to 10 per cent.

Exact mathematical treatment is not possible, since the
elastic characteristics of the shaft in the neighbourhood of
critical speeds depend, amongst other things, upon the bearing
clearances which are variable and are, therefore, not even taken
into account accurately in direct measurements of crankshaft
stiffness.

In the case of onenode torsional vibrations of marine
installations, where the length of the crankshaft is a small
proportion of the total length of shafting in the system, the
equivalent length of the crankshaft can be assumed to be the
same as the actual length without making any appreciable
difference in the value of the natural frequency. In normal
installations of this type, the error in the value of the natural
frequency corresponding to an error of 1o per cent. in the
equivalent length of the crankshaft would be less than half
per cent.

In the case of two-node vibrations of marine installations,
and one-node vibrations of close-coupled electrical generating
sets, however, the elastic properties of the system are mainly
determined by the torsional rigidity of the crankshaft.

Since the natural frequency is approximately inversely
proportional to the square root of the shaft length, an error

“of>ze per cent. in calculating the equivalent length of the
cranksha1, sorresponds to an error of about 5 per cent. in the
value of th'g‘m]:uml frequency.

The equivalens, length of the crankshaft should therefore
be determined as :;Qully as possible, and the following simple
iri ighnate jor B. C. Carter, has proved

is purpose. (See “An Empirical
Formula for Crankshaft Stiffness in Torsion,” by B. C. Carter,
D.LC, MIMech.E./ Engineering, 13th July, 1928, p. 36))

Carter’s empirical formula for the equivalent length of a
crankshaft in bear’l’ml‘g may be stated thus :—

exure,
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L= {525 + {D'?i]fz;} e IR

for hollow journals and crankpin,

o5 5
for solid journals and crankpin.

The symbols correspond to those shown in Fig. 25.

This formula, which is similar in form to Equation (88), is
based on actual observations, on a number of small shafts of
different designs representing marine, aircraft, and motor-car
practice.  Assuming the test results to be exact, the range of
error for all the results was + 12 per cent., corresponding to
a range of error in the frequency calculation of 4 6 per cent.

The Carter formula was used for calculating the equivalent
lengths of the crankshafts of the engines of T. S. M. V.
Polyphemus, tested by the Marine Oil-Engine Trials Committee.
(See Appendix to “ Marine Oil-Engine Trials,” Sixth Report,
Proc. Inst. of Mech. Engineers, 1931, Vol. 121, pp. 268 and 286.)
These engines are each six-cylinder, four-stroke cycle, single-
acting type, 620 mm. bore, 1300 mm. stroke, rated at 2750
B.H.P., and 138 r.p.m., with a crankshaft diameter of 16§ ins.
The error between the calculated frequencies and the torsiograph
frequencies was 4 2 per cent. for the one-node frequency
observed during the shop trials with the engine coupled to a
dynamometer ; and 4 0-6 per cent. for the two-node frequen.,y
observed during the sea trials. ~

A similar closeness of agreement between the ce*:ulated and
observed values of the two-node frequencies ¢ a large number
of opposed-piston engine installations (W*Ie?é the crankshaft is
of the type shown at D in Fig. 44, and spherical bearings are
employed) has been obtained by the aithor, using the Carter
formula, for the equivalent length of the %rankshaft.

Exa¥PLE 24— Calculate the equivalent lenig(of the crankshaft

(90)

element shown in Fig. 25, assuming following dimen-
sions, the diameter of the equivalent t to be the same
as the diameter of the journals:—
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Solid journals A = gins.,, D; = 8}ins., d;=o.

Solid crankpin B = 7}ins.,, D, = 81 ins., d,=o0.

Crankweb R=gins, T=4ins, W=12ins.
Diameter of equivalent shaft D = journal diameter = 8% ins.
Hence,

Lol 50 (B £

_ 9+o08x%4¢ 095 X75) | I'5 X 9
= 8*‘[{ pE } + { By } T ]
== 1220 ins. + 5625 ins. + g-025 ins.

= 26-85 ins., say 27 ins.

Fig. 44 gives the values of the ratio L,/L, for a numbes, of
different crankshaft designs, calculated by the Carter formula.
L is the actual length of one crankshaft element between main
bearing centres, and L, is the length of the equivalent journal,
ie. the length of plain solid cylindrical shafting of diameter
equal to the diameter of the crankshaft journal, which has the
same torsional rigidity as the actual crankshaft in bearings.
The unit throughout is the diameter of the journal.

Examples A, B, and C represent solid forged, built, and
semi-built shafts employed for slow and medium speed marine
and land engines. .

Example D is an opposed-piston oil engine crankshaft.

Examples E to X represent high-speed aero engine and
automobile engine crankshafts; G and H being examples used
in single-row and double-row radial aero engines respectively.
In the majority of the examples given in Fig. 44 the values

ted for the ratio L,/L have given good agreement between

alculated and observed frequencies for engines fitted with

crankshafts of the proportions specified.

A fundamental difference between the Carter empirical
formula for crankshaft stiffness, Equation (go), and the formula
based on theoretical considerations, Equation (88), is that the
former contains a considerably_.smaller allowance for the
stiliness of the crankpin, w set by an increased allow-

ance tr web flexure. -1 (mtm‘son, although considerable
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test experience with a great variety of crankshaft forms has
shown ‘that the Carter formula is exceedingly reliable for
computing the overall stiffness of a crank element comprising
journals, webs, and crankpin, there is no reliable experience
to show that it enables the stiffness of the individual members
of the crank element to be correctly assessed. From an in-
vestigation of the stiffnesses of the individual members of a
shaft element of the type shown at D in Fig. 44, the author
found that the Carter formula did, in fact, over-estimate the
stiffness of the crankpins und under-estimate the stiffness of
the webs, although the overall stiffness of the crank element
was in good agreement with the experimental results.

As a result of this investigation, however, the following
alternative semi-empirical expression was developed, and this
gave a better indication of the distribution of stiffness in the
crank element for the particular case investigated.

L,=D4HA+°‘4D1}+{B+°'4D“}+{R_32 fl%{,;"D’)}] (1)

D4z | T\ Di—dst

In this expression the symbols have the sime meanings as
in Equation (89).

The form of Equation (91) is similar to that of Equation
~ (88), the only differences being the inclusion of fillet allowances
~on journals and crankpin, and the adoption of an effective
Craink arm equal to the distance between the centres of gravity
of the »jnner semi-circular, cross-sectional areas of the crankpin
and joulimal,

In all ¥the examples shown in Fig. 44, Equation (91) gives
values for tfme ratio L /L which agree with the values obtained
from Equatidy (8¢) within -+ 1o per cent., and in the majority
of cases the & greement is within -+ 5 per cent. Exceptions
are exa.mple_s I}and K, probably due to the relatively short
crankthrow in eX-3mple I and to the thin web in example K.

Where there is 3 Jarge discrepancy between the equivalent
length obtained by ysing Equation (8g) and that obtained by
using Equation (9%),". and where 4fere is no experimental ex-
perience to indicate W-hich value is nearer the true value, an
average of the two calcljated values will probably give reason-
ably accurate results. )
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Crankshaft stiffness can also be determined by strain energy
methods, taking into account strain energy due to bending,
torsion, and shear.

According to this method the effective stiffness of the crank-
shaft is not a constant quantity but depends on the relative
values of the forces applied to the shaft. The stiffness cannot
therefore be finally determined until the form of the elastic
curve is known, and on this account the stiffness in one-node
vibration differs from the stiffness in two-node vibration. The
strain energy method is chiefly of interest in the case of crank-
shafts containing elements of the types shown at D and H in
Fig. 44, 1.e. where there is no journal bearing between adjacent
crankpins and consequently where flexural displacements are
liable to be more pronounced.

Although the strain energy method gives a form of crank-
shaft deflection which agrees more closely with experimental
observations of shaft deflections under statically applied
torques, there is little difference in the frequencies calculated
by this method and by using the simple formula for crankshaft
stiffness, Equations (89) and (g1).

Furthermore, torsiograph observations show that in general
the recorded frequencies, even for shafts containing elements .
of the types shown at D and H in Fig. 44, are in good agree-
ment with the frequencies calculated by using Equations
(89) and (gx) for crankshaft stiffness.

It would therefore appear that the very much more involved
calculations which must be made to determine crankshaft
stiffness by the strain energy method are not a necessary part
of practical frequency calculations.

Automobile Engine Crankshaft Elements.—Fig. 45
contains some typical crankshaft elements, the appropriate
expression for calculating the equivalent length of the element
being stated in each case. In all cases the formule have been
derived from Equation (8g).

The element shown at A in Fig. 45 represents each cylinder
section of an in-line engine where there is a journal bearing
at each side of the crankthrow.

The crankpin and journal may be either solid or hallow,

VOL. I.—I3
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Fic. 45 (comtinued).

and three types of crankweb are shown in the diagram. 15’11'33_
X is the usual rectangular form and calls for no special com-
ments. Type Yis a circular form, the effective width W being
the diameter of the circle. This type of web is sometimes
used as a journal bea.rmg, usually with a roller bearing mounted
on its periphery, in which case, of course, W must’ be large
enough to provide a web which is concentric with{ the axis
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of rotation. Type Z is a balanced form in which the web
is extended beyond the journal to counterbalance the rotating
masses. This type of web is used on four-, six-, and eight-
cylinder in-line automobile engines, and its effective width
W is measured at a distance R/2 from the axis of rotation.

In applying the formula for the equivalent length, allow-
ance should be made for variations of journal length A, and of
crankpin length B for different cylinders of the same engine.
Also, if the crankpins and journals are solid, d, and 4, are zero.

The element shown at B in Fig. 45 is found in three-bear-
ing, four-cylinder in-line and in five-bearing, eight-cylinder
in-line automobile engines. It is also found in two-row radial
aero engines and in the Fullagar type of opposed-piston oil
engine.

If the crankpins and journals are solid, then &, and d,
in the expressions for equivalent length are zero. In these
expressions no allowance has been made for the circular
facings at the junction of the crankpins with the centre web.
In the majority of examples this allowance is covered by the
normal allowance for deformation at the junction of a crankpin
with a web, but in exceptional cases the facings can be treated
as enlarged portions of the crankpins, using the method already
given for dealing with shafts of varying diameter.

For instance, the value of L,/L given for example J in
Fig. 44 is obtained from the expression for L, from example B
of Fig. 45, as follows :—

and from example J in Fig. 44,
D=10; Dy=10; dy=0; B=06: R=10;
Ty=06; Wy=133; and L = 1-3.
ce, Ly=(0-75 X 06) + 1-5/(0:6 X 1:33%)
= 045 + I-06 = 1-51,
" Ly/L = 1-51/1-5 = 1°0I.
\'r g circular facings are taken into account, the effective
L\‘inthe crankpin is modified as follows :—
o=
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Diameter of circular facings = Dy = 1-25, from example J
of Fig. 44,

Length of circular facings = C = o-13,

ie. Dy/D, = 1-25, and from Table 13 the appropriate allow-
ance /D, for local deformation at the junction
of the crankpin and the facing is 0:055,

or ! = 0-035, D, = 0-055, since Dy = 1-0.

Also, the effective length of the remaining portion of the

facing reduced to crankpin diameter D, is
1, = (€ — )D,YDy = (015 — 0055)/1°25* = 0:030.
Thus the modified length of the crankpin is
B, =B+ 1+ 1; =06+ 0055 + 0039 = 0-694
and the modified equivalent length is
L, = (075 X 0:694) + 1-06 = 052 + 1-06 = 1'58,
or  L,/L = 1-38/15 = 1053.

Thus the effect of making allowance for the circular facings
is to increase the equivalent length of the element by about
5 per cent.

It should be noticed that if the length C of the circular
facing is less than the allowance Z determined from Table 15,
then the modified length of the crankpin when the circular
facings are taken into account should be assumed to be

B, =B +C).

The equivalent length of the element shown at J in Fig. 44

can also be determined by Equation (91) as follows :—
_ B+ 0'41)2} 05(2R — 0-4Dy)
L= D‘[{ D T T, We ]
Where B=06; D=10; Dy=10; dy=0; R=10;
T,=06; W, =133
Hence, L,= (064 04) + 0-5(2 — 0:4)[(06 X 1°33%)
=10+ 057 =157,

and since L =15; L,/L =105,
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In this case, therefore, the collars cannot be neglected in
calculating the equivalent length of the element. It should be
noted, however, that if the length of the collar is less than the
allowance /, determined from Table 13, then the effective length
of the crankpin is By, i.e. the effect of the collar is negligible.

The element shown at D in Fig. 45 is similar to that shown
at B, except that the centre crankweb is inclined and the
effective length of the crankarm S is measured along the
inclined centre line of the web.

The element shown at E in Fig. 45 is found in four-bearing,
six-cylinder in-line engine crankshafts. In this case the
effective length of the lever arm is 0-866R, where R is the
crankthrow. Also the torque‘acting at right angles to this
lever arm is 0-866 times the torque acting at right angles to
the crank arm. Hence the effective length of each half of
the centre web in terms of the torque acting at right angles
to the crankarm is o-75R, ie. the allowance for flexure of
the centre web in example E of Fig. 45 is 0-75 of the allowance
for flexure of the centre web in example B.

The element shown at F in Fig. 45 is found in opposed~
piston engines of the type having three crankthrows to each
cylinder, such as the Junkers and Doxford engines.

The stiffness of a crankshaft element depends to some
extent upon the shape of the web (see Engineering, 1st Nov.,
1929, p. 549), and this is particularly the case when the crank-
pins are hollow. If the crankweb shown at the left-hand
side at G in Fig. 45 is regarded as a standard of comparison,
then the effect of bevelling the web as shown at the right-
hand side at G in Fig. 45 is to reduce the stiffness of the crank
element by from 7 to 14 per cent., say an average reduction
of 10 per cent.

A small bevel or radius which is confined to the very edge
of the web, however, does not affect the stiffness to any ap-
preciableextent. The effect of making the web square cornered,
as shown by the dotted lines at G in Fig. 45, is to increase
the stiffness of the element by about 1 per cent.

These considerations should be borne in mind when means
for altering the stiffness of a crankshaft are being considered.
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It should be remembered, however, that stiffness obtained
by adding material to the web, especially if the material is
added near the crankpin, does not necessarily imply an in-
creased natural frequency, because the polar moment of inertia
of the web is also increased and this tends to lower the fre-
quency. It is for this reason that an increase in journal
diameter is more likely to raise the frequency than an increase
in crankpin diameter.

ExaMpLE 25—Fig. 46 shows a two-bearing, four-cylinder
engine crankshaft. Obtain an expression for the overall
equivalent length.

The overall equivalent length of this crankshaft is obtained
from the expressions for the equivalent lengths of crankshaft
elements given in Fig. 45, as follows :—

ZL, = overall equivalent length = (2L, + 2L, + L),
where 2L, = L, from example A of Fig. 45.

Inserting the symbols from Fig. 46 in the expression for
L, in Fig. 45, example A, the following expression is obtained
for 2Ly :—

2L, = (A + 0:8T) + (0-75B . D4/D,*) + 1:5R . DY/(T . W3).
Also, 2.Ly=12.L, from example B in Fig. 45,

ie. 2.Ly=(x5B.DYD% +3.R.DY(T,. W3),
and L, =L, from example C of Fig. 43,
ie. L;=3B,.DYD#*+ B2. D¥(z5. R2. D*).

Hence the overall equivalent length of this crankshaft is
2L, = (A + 0-8T) + D*[(2-25B/D*)
+ TSR{E/(T. W) + 2/(T; . Wi} + (By/DyY)
+ B,¥(13. R®. Dyi)l.
This expression neglects the effect of the enlarged portion
of the centre crankpins, but this can be taken into account
separately by the method just discussed.

ExaMPLE 26.—In the case of the crankshaft element shown at
A in Fig. 44, determine the values of the ratio L,/L,
(@) when a hole o-5 diameter is bored through the crankpin
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and journals, and (5) when the hole through the crankpin
is displaced radially outwards from the centre of the
crankpin by an amount 0-125.

(2) From Equation (8g),

o)+ (k) + 28

202

4
L. ‘D[ —a W

i

I

i

=
o>

&‘ Ly
[
F16. 46.—Two-bearing, four-cylinder, four-S.C., S.A. engine crankshaft.
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In this case D=1; D;=1; D,=1; d;=o03;
dy=0%5; B=1; R—I T—os,de——xs

Hence,
__fro4o08Xos 075 X 10 I3 X 10
L.={ e+ {14—0-5‘} +{o-s X T3t
= (149 + 0-8 + 0:89)
=318,

and since L = 30, L,/L = 1-06.
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(b) From Table 17 the equivalent length of a hollow shaft
with a concentric hole is

L =L,D¥(D,* — d,%, where L;, D,, and 4, are the actual
dimensions of the shaft, and D is the
diameter of the equivalent shaft

= 1-067L,D*/D,*%, when 4, = 0:5D,.

Also from Table 17 the equivalent length of a hollow shaft
with an eccentric hole of diameter d; = 0-5D, and o0-125D,
eccentricity is

L =116L,. DD,

ie. the equivalent length of the shaft with the eccentric hole
is about g per cent. greater than that of the shaft with the
concentric hole.

Hence the allowance for the crankpin in the equivalent
Jength of the crank element must be increased by this amount
when the hole is bored eccentrically, i.e. the modified equivalent
length is

L, =149 + (08 X 1:16/1067) +- 0-89
=149 + 087 + 0-89 = 325,
and L./L = 1-08.

The effect of boring the holes through the crankpin and
journals is, therefore, to increase the equivalent length by
about 6 per cent. when the crankpin hole is concentric and about
8 per cent. when it is eccentric, compared with the equivalent
length for solid crankpin and journals.

In practice eccentrically disposed crankpin holes are used
to facilitate machining and the insertion of oil-sealing plugs
in shafts which have comparatively short crankthrows, and
also to strengthen the web section at its junction with the
crankpin. An eccentric crankpin hole also has the advantage
of providing a larger reduction in the centrifugal loading on
the bearings, and in the moment of inertia of these parts.

The following values for L, are obtained by using Equation
(91) instead of Equation (89) :—
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For Solid Journals and Crankpin.
L= (104 0:4) + (10 + 0:4) + (1 — 0:4)/(0'5 X 1-57)
= T4+ I4 + 036 = 316,
and L,/L = 316/3-0 = 105.
For Hollow Journals and Crankpin.
L, =1°4/0°9375+1°4/0:9375 4036 =1'49+1°49-+0-36

=334
and L,/L = 3'34/3'0 = r'11.

For Hollow Journals and Crankpin, with Eccentric Hole in
Crankpin.

L, = 1494 (149 X 1:16/1-067) 4-0-36 =149 +1-62+0-36
= 3'47,
and L,/L =3-47/3:0=116.

Hence the comparative values of L, given by Equation
(o1) show that the effect of boring holes through the crankpin
and journals is to increase the equivalent length by about
6 per cent., which is the same percentage reduction of stiffness
as was obtained by using Equation (8g). The effect of boring
the crankpin hole eccentrically, however, is to increase the
equivalent length of the undrilled shaft by about 1T per cent.,
which is a greater reduction of stiffness than that indicated
when Equation (89) is used.

As already mentioned, if there is no previous experience to
indicate which value is likely to be nearer the true value,
an average of the two values should be used.

Experimental Determination of Crankshaft Stiff-
ness.—There is considerable evidence that experimental
methods in which the crankshaft is mounted in its bearings
and subjected to a statically applied torque give reliable
values of crankshaft stiffness for use in frequency calculations.

In a paper read before the Liverpool Engineering Society
and published in the Tramsactions of the Society, Vol. LV,
pp. 122 to 127, Mr. K. O. Keller describes the results of a tor-
sion test carried out on a large opposed-piston marine oil
engine crankshaft of the type shown at D in Fig. 44. This
shaft was 42 ft. long, with 17-in. diameter journals and 18-in.
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diameter crankpins, and the test was carried out by anchoring
the coupling at one end of the shaft by means of a plate lever,
and by applying a torque to the other end of the shaft by means
of a similar lever and dead weights. The measured overall
deflection of this shaft under a torque of 280,000 lbs.~ft. was
0015 radian, corresponding to an overall torsional rigidity
of 18,600,000 lbs.-ft. per radian. The equivalent length of
17-in. diameter plain shafting is therefore about 36 ft., corre-
sponding to a ratio L,/L = 0-85, which agrees with the value
given for example D in Fig. 44.

The frequencies calculated from this value for crankshaft
stiffness were subsequently found to agree with the frequencies
recorded by torsiograph measurements.

In the case of small engines Dr. Geiger has stated that
carefully carried out static torsion experiments on crankshafts
give results which can be used in frequency calculations with
the assurance that the calculated frequencies will be in good
agreement with torsiographic measurements.

The crankshaft should be mounted in its bearings, and
Dr. Geiger states that bearing clearance has no apparent
influence on the running stiffness of the shaft, since the torsio-
graph shows the same natural frequency whether this is
measured at a very strong critical speed where shaft distortion
due to bearing clearance might be expected to be greatest,
or at a very weak critical speed where comparatively small
distortions due to bearing clearance might be expected.

This experience is also characteristic of many hundreds of
torsiographic observations made by the author, both on large
marine engine systems and on small high-speed engines.

Fig. 47 shows two lever arrangements for applying a pure
torque to a shaft.

The arrangement shown at (A) is the simpler system and
consists of two rigid bars connected to one another and to the
torque lever on the shaft by suitable links or cables. The load
W is applied at the middle of the shorter bar and produces a
clockwise torque of magnitude M = WR, where R is the length
of each arm of the torque lever, which is rigidly secured to
one end of the shaft under test. The other end of the bar under
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test must be secured against rotation by a torque reaction
lever or other suitable means. In this arrangement there is
a small initial torque due to the weight of unbalanced parts
which can, if desired, be eliminated by suitable counter-
weights.

The arrangement, shown at (B) in Fig. 47, consists of two
sets of arrangement (A), and has the advantage of enabling
either clockwise or counter-clockwise torques to be applied to the
shaft under test merely by rolling the weight W along the loading
bar. When the weight is at the centre of the loading bar there
is no torque on the shaft. When the weight is rolled a distance
X to the right-hand side of the centre of the loading bar a
clockwise torque of magnitude M =W .R.X/L is applied
to the shaft, where the symbols have the meanings indicated
in Fig. 47. When the load is moved a distance X to the left-
hand side of the centre of the loading bar a counter-clockwise
torque of the same magnitude is applied to the shaft. It is
interesting to note that although the sum of the reactions
at the two supporting brackets is, of course, equal to the
load W, these reactions are equal only when the load is at
the centre of the loading bar. For all other positions of the
load they are unequal, and if the load could be applied at a
distance L from the centre of the loading bar the reaction on
one supporting bracket would be equal to the load W, and
would be zero at the other supporting bracket, i.e. the system
virtually reduces to the system shown at (A) in Fig. 47.

The arrangement shown at (B) in Fig. 47 provides a very
convenient method of plotting torque-deflection diagrams
under increasing and decreasing torques, for example, when
studying hysteresis effects, the changes of torque being ob-
tained merely by rolling the weight along the loading bar.
It should be noticed, however, that the lever or other means
provided for taking the torque reaction on the shaft under
test must be arranged to take care of both clockwise and
counter-clockwise torques if it is intended to roll the weight
over the full length of the loading bar. A simple method of
locking the weight carriage in any desired position should
be provided (see also Fig. 148).
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The total torsional deflection between one end of a crank-
shaft and the other when a torque corresponding to the full
load of the engine is applied at one end of the shaft varies
from about o-3° for medium and low-speed shafts, where
the working stress is low, to about 1:0° for the more highly
stressed shafts of high-speed automobile and aero engines.
These deflections are measurable with quite simple measuring
equipment, such as a micrometer or clock gauge. A simple
and reliable method of
e @ —— > measuring the twist in the

+ shaft is to provide two
L/ comparatively light measur-
/y ing levers, one at each end
7

of the shaft. These levers
7 should be independent of
the main torque loading
and reaction levers to avoid
// s errors due to lever distor-
7 tion, and should be of
7/ sufficient length to show a
7/ measurable deflection on
/ the clock gauge at low
7 values of torque loading.
Clock gauge readings should
be taken from each of the
measuring levers. The true
twist of the shaft between
the points where the measuring levers are attached is obtained
from the difference of the two clock gauge readings, as follows :—
Let 7 = radius at which clock gauge readings are taken,
¢ = clock gauge reading at free end of shaft,
¢, = clock gauge reading at anchored end of shaft.
Then 8 = twist in shaft = (¢ — ¢,)/r radians
= 57'3 (¢ — ¢,)/r degrees.

By providing two measuring levers in this way any error
due to slipping of the anchorage lever is eliminated.

A typical torque-deflection diagram is shown in Fig. 48.

que —»—

v

Deflection mn Radians
Fic. 48.—Torque-deflection diagram.
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This diagram was obtained by applying a pure torque to a
crankshaft, the torque being applied statically with the shaft
in its bearings. The torque was gradually increased from zero
to a maximum and then gradually reduced back to zero again,
with the result that a definite hysteresis loop was formed.

The hysteresis effect is due to a number of different causes,
for example, localised elastic deformation at lever attach-
ments and at couplings; bending deflections of keys, splines,
and serrations, and gear-wheel teeth; backlash in gears,
splines, serrations, and key-ways, all contribute to the forma-
tion of a hysteresis loop. Fortunately, however, the distor-
tion due to these causes is usually confined to short portions
of the curve at each end of the torque range, and between
these distorted portions the load-deflection diagram consists
of two parallel lines of constant slope. The slope of these
two lines is the true measure of the torsional rigidity of the
shaft, and the dotted line in Fig. 48 represents the torque-
deflection diagram which would be obtained if all localised
distortions could be eliminated.

The torsional rigidity of the shaft is easily computed from
the slope of the dotted line, as follows :—

Let M = torque at any selected point on the dotted line in
Fig. 48, in Ibs.-ins.,
# = the angular deflection in radians corresponding to
torque M, measured on the dotted line in Fig. 48.
Then C = torsional rigidity of the shaft in Ibs.-ins. per radian
= M/f.

Mass Elastically Connected to the Main System.—
In Fig. 49 a mass J is connected to the main system at X by
a shaft of torsional rigidity C.

This elastically connected mass may be replaced by an
equivalent rigidly connected mass J,, the magnitude of J,
being determined as follows :—

Let J=moment of inertia of the elastically connected
mass in Ibs.-ins. sec.2,
J. = moment of inertia of equivalent rigidly connected
mass in Ibs.-ins. sec.?,
VOL. L.—I4
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C = torsional rigidity of the connecting shaft XY in
Ibs.-ins: per radian,

w = phase velocity of the forced vibration of the whole
system, including J

radians per sec.,

F == frequency of forced vibration of the whole system
in vibs. per min.,

w, = phase velocity of the natural vibration of the
elastically connected system XY

2.7 .F, .
= radians per sec.,

F, = frequency of natural vibration of the elastically
connected system XY in vibs. per min.,

6, = amplitude of vibration of J in radians,

8, = amplitude of vibration at X in radians.

Fi16. 49.— Elastically connected mass.
Then torque at X due to vibration of J with a phase velocity
« and an amplitude 8, is
M;=].w*.6,lbs-ins.
Torque at X due to vibration of J, with the same phase
velocity and an amplitude 8, is
M,=17,. »*. 8, Ibs.-ins.
Hence, for J, to have the same effect as J on the torsional
vibration characteristics of the whole system,
M= M,
ie. J.= u
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If C is infinite, i.e. if J is rigidly connected to the system,
0, =6,
But it will be shown later that for any finite value of C (see

Equation (234)),
[}

0y =—>2—.
w
=[]
-7
Hence, J,—I_ 5’.]"
W,
Now w;’=§,
; - J J - J
Le. JS_I~M—I—4772.F2'J—-I-Fa’J- - (92)
C 3600 C o1z C

If C/] = w? i.e. if the natural frequency of the elastically
connected system is equal to the frequency of the forced vibra-
tion, the value of J, is infinite.

ExamPLE 27.—Calculate the natural frequencies of torsional
vibration of the system shown in Fig. 7, using the values
given in Example 4, by the method just described.

From Example 4,
J3 = 2073 Ibs~ins. sec.,
2 = 1036 Ibs.-ins. sec.?,
C; = 4,770,000 Ibs.-ins. per radian,
Cy = 3,180,000 1bs.-ins. per radian,
F = natural frequency in vibs. per min.
The three-mass system shown in Fig. 7 can be reduced to an
equivalent two-mass system by finding the equivalent value of
Jaat Ju,

-1 1544
e Je=—FT, 1544 X F?
91-2C, 912 X 3180000

__ 1544 X 188000
"~ 188000 — F?
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The system then reduces to a simple two-mass system
consisting of J; and (J, + J,) connected by a shaft of torsional
rigidity C,,

<< G0 T+ o)
F= 9'554) 1\J1 .e 2
J(Je+ 79

ie.

I X 188000
4770000[2073 + 1036 + ’ié%mz*]

I544 X 188000
2073 [1036 + 188000 — F2 :]

=955

Whence, F*— 1100000 F2 - 177500000000 = 0,
and F = 443 and 950 vibs. per min.

These values agree with the values of the one-node and two-
node frequencies calculated by the three-mass method.
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CHAPTER 4.
FLEXIBLE COUPLINGS.

FI1GURE 50 shows a flexible coupling in which the torque is
transmitted through flexible spokes.

F1e. 50.—Elastically connected fiywheel rim.

Let a == thickness of each spoke, in inches,

b = width of each spoke, in inches,

f = bending stress in each spoke, in Ibs. per sq. in.,

4 = slope of deflection curve of each spoke,

# = number of spokes,

7 = radius to point of fixation of spoke in hub, in inches,

= deflection of one end of spoke relative to the other
end, in inches,

C == torsional rigidity of n spokes, i.e. of the whole coupling,
in lbs.-ins. per radian,

E = modulus of elasticity in Ibs. per sq. in.,

I =moment of inertia of cross-section of each spoke
about its neutral axis, in ins.* units = @®. b/12,
for rectangular spokes,
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L == bending length of each spoke, in inches = (R — 7),
M = fixing couples at ends of each spoke, in Ibs.-ins.,
P = end reaction of each spoke, in Ibs.,
R = radius to point of fixation of spoke in rim, in inches,
T = torque transmitted by coupling, i.e. by # spokes, in
Ibs.-ins.,
Z = modulus of section of each spoke, in ins3 units =
a* . b6 for rectangular spokes,
8§ = angular deflection of rim relative to hub, in radians,
1. Spokes Fixed at Both Ends.—The spoke loading diagram
is shown in Fig. 50.
For force balance, P,+ P,=o,
where P, is the reaction at the rim and P, is the reaction at
the hub,
or Py=—P,
i.e. the reactions are equal in magnitude but opposite in direc-
tion, say &+ P.
For couple balance, P.L + M, + M, =o.
Assuming that torque is transmitted from the rim to the hub,
Input torque (at rim) =T, =P. R+ M, =P(L +7) + M,

per spoke.
Qutput torque (at hub) =Ty = — P.7v + M,,
but My=—(P.L+M,)
Hence, Ti=—(P.R+M,),

ie. the output torque is equal in magnitude but opposite in
direction to the input torque.

It is convenient to regard the spoke loading as made up of

two systems, viz. :(—

(i} Aload P at the rim and a corresponding fixing couple
—P.L, and shearing force — P, at the hub, ie.
each spoke is loaded as a cantilever.

The deflection is therefore y, =P .L1%(3.E. ),
and the slope at the rim is 4, = P.L?(z. E.I).
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(i) A fixing couple M, at the rim and an equal and op-
posite fixing couple — M, at the hub. These couples
impose a constant bending moment on each spoke.

The deflection is therefore y, =M, .L¥(z.E.I),
and the slope at the im is ¢, =M, .L/(E . I).
The total deflection of the rim relative to the hub is therefore
y=y+y=L2.P.L4+3.M)/(6.E.I),
and the slope at the rim is
i=yR=1%.P.L+3.M)/6.E.I.R),
but the slope at the rim is also given by ¢ =1, + i,
ie. i=L(3.P.L4+6.M)/(6.E.I).
Since these two expressions for the slope must be equal,
M,=P.L{2.L—3R)/6.R—3.L),
and the transmitted torque for » spokes, i.e. for the whole
coupling, is
T=nP.R+M,)
=n.P6.R*—6.R.L+2L%/(6.R—3.L). (93)
The deflectionis y = 6. E%I;(%;RR:I)
and the corresponding angular deflection is
0= 5R = g pa e
6.E.Iz.R—1L)
The torsional rigidity of » spokes, i.e. for the whole coupling,
is therefore
C=T/l=4.n.E.I3.R*—3.R.L+LYL2% (95)
The maximum bending stress in each spoke occurs at the
hub and is given by the following expression :—
Juse = S 1;.3(631.2RA]£)+ iy )
2. Spokes Insecurely Fited.—In practice it is possible that,

due to insecure fixation of the spokes, particularly at the hub,
the fixing couples at each end of the spoke are nearly equal.

- (04)
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The following expressions apply when this occurs, ie. when
M, =My =M:—

Since P.L+M +Mp=o0,
hence, M,=My=—P.1lj2
i.e. deflection of rim relative to hub =y =P . L¥(12. E . I),
or angular deflection = § =3y R =P.L%(12.E.I.R). (97)

The transmitted torque for # spokes is

T=nP.R—P.Liz)=un.PR-+7)jz . (98)
and the corresponding torsional rigidity is
C=T#=6.n.E.I.RR + r)/L% . (99)

The maximum bending stress in each spoke occurs at the
points of fixation in the rim and hub, and is given by the
following expression -—

oz = TR —7) T.L
TR ZR+7) n.Z2(=2.R-L)

3. Spokes Fixed in Hub and Free in Rim.~—~The loading
diagram is shown in Fig. 50.

Inthiscase M,=o0andM,=M=-—P.L.

(100)

The input torque is
T, = P. R per spoke,
and the output torque per spoke is
T,=—P.r+M=—-P.r—P.L=-P.R,

i.e. the total torque transmitted by » spokes, i.e. by the whole
coupling, is
T=».P.R

The deflection of the rim relative to the hub is
y=P.1%3.E.I),
and the corresponding angular deflection is
§=yR=P.L3Y3.E.I.R). . . (zo1)
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The torsional rigidity of # spokes, ie. of the whole coupling,
is therefore

C=Tl6=3.E.I.R2.u/L3, (roz)

and the maximum bending stress in each spoke occurs at the
hub and is given by the following expression :—

Fux=T.L{(n.R.2). (z03)

Uniformly Siressed Spokes.—Since the primary purpose of
a flexible coupling is to introduce the greatest amount of
flexibility into a system, ie. to provide the greatest possible
deflection under a given load for a given expenditure of material,
the volumetric efficiency of the coupling is well represented
by its resilience or the energy stored per unit weight.

For maximum volumetric efficiency the spring elements
should represent as large a proportion of the total weight of
the coupling as possible, and each spring element should be
as uniformly stressed as possible so that the physical properties
of the material are used to full advantage. For example,
it has been shown that in the case of torsion bars a hollow
cylindrical section possesses the greatest resilience per unit
weight because it is subjected to very nearly uniform shear
stress. A solid cylindrical torsion bar is only half as good,
whilst any other section is less than half as good.

The volumetric efficiency of couplings of the type shown
in Fig. 50 can therefore be increased by shaping the spokes
so that they are uniformly stressed. This can be done very
simply when the spokes are fixed at the hub only, and Fig. 51
shows three methods of improving the efficiency of flexible
spokes.

In Diagram I, Fig. 51, the thickness of the spoke a tapers
uniformly towards the hinged end, i.e. towards the rim, whilst
the width of the spoke b remains constant. In Diagram II
the thickness remains constant, and the width tapers gradually
towards the rim.

Spoke of Constant Width and Tapering Thickness (Diagram I,
Fig. 51).—The deflection of the tip under a load P is given by
the following expression :—
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12.P. L3 K? (3K — (K —1)
Y=E b‘rx“—‘nﬂ(l"g' K- 20, (o

where P=T/R.n),
and K = ratio of thickness at hub to thickness at rim.

For uniform stress the thickness of the spoke should be
proportional to the square root of the bending moment, which
gives the parabolic shape shown dotted in Diagram I of Fig. 51.

Fic. 51.—Flexible spokes.
In a truly uniformly stressed spoke of constant width and
variable thickness the tip deflection is
y=8.P.LY(E . .a.b),
and the corresponding angular deflection of the rim relative to
the hub is
=8.P.L3E.a*.b.R). . . (x03)

The torque transmitted by # spokes for this deflection is
T=P.R.n
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Hence the torsional rigidity of the coupling is
C=T/6=E.e*.0.R*.n/8.L". . (106)
The maximum bending stress occurs at the hub and is given by
foax=T.L)n . R.Z)=6.T.Lf@@*.5.R.%). (107)
The equivalent length L, of plain cylindrical shafting of
diameter D, which has the same flexibility as the coupling,
can be obtained as follows :—
The torsional rigidity of a length L, of plain cylindrical
shafting of diameter D is
C=n.D*.G/(32.L)=E.a*.b.R?. 4(8.L9.
D4.G. L3
Hence, L=mErrrmw (108)
Table 16 shows that for nearly all metals the ratio E/G is
about 2-5, so that the above expression for L, can be written
D+. 12
L=gw s rew (x09)
Spoke of Constant Thickness and Tapering Width (Diagram
11, Fig. 51).—The deflection of the tip under a load P is
given by the following expression :—
_ 12.P.L*.K rlg XK (3—K)
y‘E.a“.b(K-—I)’((K—I) 7)) - (o)
For uniform stress the width of the spoke should be pro-
portional to the bending moment, which gives the triangular
shape shown dotted in Diagram II of Fig. 51.
In the case of a truly uniformly stressed spoke of constant
thickness and variable width, the tip deflection is
y=06.P.L3E.a*.b),
i.e. the angular deflection of the rim relative to the hub is
0=6.P.L}YE.a*.b.R). - . (1)
Hence the expressions for torsional rigidity and maximum
stress are as follows :—
C=E.a®.b.R*.2n)(6.1L%), . . (112)
fux =6.T.Lj(@*.b.R.n). . . (xoy)
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The expression for the equivalent length of cylindrical

shafting is in this case
D‘Z' La
L=m@mzrren - - ™)

A good practical approximation to a uniformly stressed
cantilever of constant width and varying thickness is obtained
by making the tip thickness one-third the root thickmess
(K = 3 in Diagram I of Fig. 51), and an equally good approxi-
mation for the case where the thickness is constant and the
width varies is obtained when the width at the tip is one-sixth
the width at the root (K = 6 in Diagram II of Fig. 51).

These approximations have the advantage of providing
sufficient material at the tip of the spoke to take care of shear
loading and in all actual examples it is important to check
the shear stress in sections near the tip.

It is possible to increase the flexibility of the spoke still
further by varying both width and thickness, but the gain in
flexibility over the simple approximations given above is hardly
sufficient to compensate for the increased manufacturing
difficulties.

Expressions for torsional rigidity, equivalent length, and
maximum bending stress for different types of spoke are given
in Fig. 52. These expressions have been derived by the
foregoing methods.

Resilience of Flexible Couplings.—The resilience of
a coupling may be defined as the capacity of the coupling for
storing energy or, in other words, it is the amount of energy
which is restored when the load is removed from the coupling.
In general, for strains within the elastic limit of the material,
the resilience is one-half the product of the force or torque
and the linear or angular displacement which it produces.

In the case of direct tension or compression, for example,

W = resilience = load X deflection/2 = P. §/z,

but E = modulus of elasticity = stress/strain = g—‘%,

assuming uniform distribution of stress,



FLEXIBLE COUPLINGS

221

Torsional  Kigidit TMax. Berd, £
Lbs. Ins, %dllag x Lb(.’rn f"ﬁ'z e
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: _Symbols
¢ = Torsional Rigidity of Coupling, (n. Spokes), in Lbs. Ins./Radian
Le= Equivalent Lengfh in Inches of Cylindrical Shaft of Dia. D.
f = Maximum Bending Stress in edch Spoke, in lbs./Ins.?
n = Number of Spokes in (oupling.
T = Total Torque Transmitled oupling, (n Spokes), n Lbs. Ins.
W = Slrain Energy for n JSpokes, in In. Lbs.
V = Wlume of One Spoke in Cu.ins. ’
K = L/R,

Fie. s2.—Flexible spokes.
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where L = length of specimen; A = cross-sectional area of
specimen, i.e.

w=2 2N
where V = volume of specimen = A . L,
f=stress = P/A.

Hence, if f is the stress at the elastic limit, then Equation
(x14) Tepresents the greatest strain energy which can be stored
in the specimen without permanent distortion. If the stress
distribution is not uniform the equation is of the same form as
(z14), but the numerical factor is less than one-half when f
is the maximum stress anywhere in the specimen.

Torsional Resilience—When a specimen is subjected to a
uniformly distributed shear stress within the elastic limit the
stored strain energy, or shearing resilience, is given by the
following expression :—

2y
c
where W == shearing resilience in in.-Ibs.,
f = shear stress in 1bs. per sq. in.,
V = volume of specimen in cubic inches,
G = modulus of rigidity in Ibs. per sq. in.

W=1%. (xx5)

This expression is similar to Equation (114), and represents
the greatest strain energy which can be stored in the specimen
without permanent distortion.

If the shear stress distribution is not uniform the equation
is of the same form as (113), but the numerical factor is less
than one-half if f is the maximum shear stress anywhere in
the specimen.

In the case of a hollow cylindrical shaft subjected to tor-
sional strain within the elastic limit, the shear stress is directly
proportional to the radius, and the maximum shear stress
occurs in the outermost fibres, i.e. at the outer radius R,.
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Let f, = maximum shear stress in lbs. per sq. in., ie. the
stress at the outer radius R,
R, = outer radius of shaft in inches,

R, = inner radius of shaft in inches,
K = Ry/R,,
= Volume of hollow shaft=n=.L(R2— R,?), in
cubic inches.

Then the shearing resilience of any tubular element at radius 7,
and of thickness dr, and length L is

2.m.7.L. fz

AW = P
where f= shear stress at radius r = f,. #/R,.
7. L. 3%, d a. L.f2

Hence, W = Rz G r Ldr =m2 R —RH)
L.
- k) R Bf‘G (R 2 _ Rzz)(Rlz + Rgz)
A K3).V
f—:—-'jG)——- . . . . . (116)

2
This expression approaches the value W = % 2y as K

approaches unity, i.e. when R, is very nearly equal to Ry,

Thus in the case of very thin tubes the strain energy stored
is very nearly equal to the maximum theoretically possible
(Eqn. 115). This is because for very thin tubes there is prac-
tically uniform distribution of shear stress.

Equation (r16) becomes W=f2.V/4.G when K=o
or R, = o, i.e. for a solid cylindrical shaft. Thus the capacity
of a solid cylindrical shaft for storing shear strain energy is
only about one-half that of a very thin tube containing the
same volume of material subjected to the same maximum shear
stress.

Flexural Resilience—The resilience of a beam can be found
from the following well-known expression for flexural resilience,
when the bending moment diagram is known :—

W= i.[E 7 - 4%, . . . (119)
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where M = bending moment,
E = modulus of elasticity,
I = moment of inertia of cross-section of beam
=a*. b/r2,
a = depth of beam,
b = width of beam.

In a simple cantilever of length L and constant rectangular
section, i.e. depth ¢ and width , carrying a tip load P,
Bending moment at distance % fromtip =M =P . #.

Hence, W= iE—Jsz dx (from Eqn. 117)
’ @.b.EJy ° !

: . _2.Pr L3

ie. “_a“.b.E’

but  f; = maximum fibre stress = M/Z,
where M =P . L = the maximum bending moment,
and Z = modulus of section = a2. b/6,

ie. P=f.ZIL =f,.a. b/(6.1).

Hence,

w =%, and since . b. L = volume of beam = V,
w=lJ L

If the section of the beam varies throughout its length so
that the maximum fibre stress is constant at all sections the
expression for strain energy is altered as follows :—

Let I, = moment of inertia of section at fixed end of cantilever
=a*. bf1z.

Then, assuming that the cross-section varies in width, constant
skin stress is obtained when the width is directly proportional
to the bending moment,

ie. I=4a.0.%/(12.L).
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The expression for resilience becomes, therefore,

6.P2 Lt 3.P2. L8
V=7 el = FrE
or, substituting the value P = f, . 2. b/(6. L),
woftab.L

12.E ’

but volume of beam =V =2.b.Lj2 (since the plan form
of the beam is a triangle).

Hence, W=14% f”—sEE . . . (r19)

It can be shown that Equation (119) applies to any rect-
angular beam in which the skin stress is constant, and that
for any other solid section the numerical factor is less than
one-sixth, i.e. the resilience per unit volume is less for a given
maximum fibre stress. For example, in the case of a round
section the value of the numerical factor is one-eighth.

It should be noted that the total resilience of a spoke of
type III in Fig. 52, i.e. where approximately uniform skin
stress is obtained by varying depth of the beam, is about
25 per cent. greater than that of a spoke of type IV where
the width of the beam varies, assuming the same root section
in each case. This is because the volume of material in the
spoke is about 25 per cent. greater for Type IIL

Diagram III in Fig. 51 shows a cantilever consisting of
two flanges separated by a thin web in which the stress due
to flexure is approximately constant throughout the material.
In the following discussion the web will be neglected and it
will be assumed that the flanges do not buckle.

In this case, I = (a,° — ,8)b. x/(r2 . L), assuming that the
plan form of the beam is triangular, as for a rectangular beam
with constant skin stress, where % is the distance measured
from the tip,

6.L

and W = @F— e E J L% .dx
3 Pl LB
@ — @ E
VOL. L—1I5
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; la,® — af)b
but P=f,.ZL =f°—6‘—a—L—,

.ay.
W _ft-led—afp L f?.ay. b, Lz — Kla)’
12.E.a® iz . E

also, volume =V = (2, —ay).b.Lj2=0ay(1 —K,).0.LJz,

where K, =as/a,,

ie, W=72Vir+ K, +K3)/6.E). . . (x20)
The following table shows the variation of strain energy

per unit volume with K, :—

ie.

K, w.
Jti(6-00 E)
Stllars7 E)
5/(343 E)

3/(260 E)
J#i(2-00 E)

s
W
B

ooy

The value K; = 0 corresponds to a solid rectangular beam,
i.e. the expression for resilience agrees with Equation (119).

The value K; = 1 is approached when the flanges are made
very thin compared with the total depth of the beam. For
this condition the expression for resilience approaches that
for uniformly stressed material (see Equation 114).

In the case of spring elements of flexible couplings it is
not practicable to employ members of the type shown in
Diagram III of Fig. 51, and even if this could be done it is
doubtful whether the numerical factor in the expression for
resilience would be very much greater than that for a beam
with uniform skin stress, viz. one-sixth, bearing in mind that
effective means would be required to prevent buckling of the
thin flanges.

Fig. 52 summarises the formule for spoked couplings
and contains expressions for calculating the torsional tigidity,
equivalent length, and resilience of the complete coupling,
and the maximum bending stress in each spoke.

In designing couplings of this type, the spokes should be
stressed to the maximum permissible value to obtain maximum
resilience. The length of the spokes will usually be fixed by
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consideration of the maximum permissible diameter of the
coupling and the size of the hub, and the maximum torque
to be transmitted by the coupling will be known. In this
connection it should be noted that it is usually safe to make
the coupling as strong or a little stronger than the shaft on
which it is mounted, because the torque passing through the
coupling even under conditions of torsional resonance is the
same as that passing through the shaft except in abnormal
cases.

Since the stress in the spokes for a given torque is inversely
proportional to 2.5, whilst the volume is proportional to
a . b, the product f,?.V increases as the depth of the spoke @
decreases.

It is an advantage, therefore, to make the spokes as wide
as the space available and other structural requirements permit.
A good starting-point is to assume that the width is one-half
the length of the spoke.

The spokes may be separate members, as shown in Fig. 51,
or they may be formed integral with the hub, as shown at IV
in Fig. 53. The former method enables the spring members
to be made of high tensile spring steel, whilst the latter method
overcomes the difficulty of ensuring complete fixation of the
roots of the spokes.

The number of spokes is limited by the diameter of the hub,
and so a further advantage of making them separate members
is that in cases where the number of spokes required to give
the maximum permissible bending stress under the applied
torque exceeds the number of slots which can be economically
cut in the periphery of the hub, several thinner spokes can be
accommodated in each slot, as shown at IV and V in Fig. s1.
This laminated construction provides a certain amount of
inter-leaf damping which may be useful in certain applications.

In the case of spokes formed integral with the hub, or with
a ring which in turn is splined or keyed to the hub, care must
be taken to avoid excessive stress concentration at the roots
of the spokes by providing a generous radius between each
pair of spokes as shown at IV in Fig. 53.

This tadius should not be less than the thickness of the
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spoke at its root, in which case the pitching of the spokes
round the periphery of the hub is approximately = . a, ie.

o~
Ea o
S

2
% S
L
> B8

ression
Springs

v
Snp

Fre. 53.—Spring couplings.

the number of spokes which can be accommodated round the
periphery of a hub of radius 7 is (2. 7/a).

This avoids any serious concentration of stress at the roots
of the spokes. If it is necessary to provide a greater number
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of spokes than is given by the above rule care must be taken
to allow for this concentration of stress. For example, if the
root radius is made one-quarter the root thickness, then the
stress concentration factor will be about 2 for spring steel.

In general, for maximum resilience the volume of active
material, i.e. the volume of the spring elements, must be as
large a proportion of the total volume as possible ; the spring
elements should be as uniformly stressed as possible ; and the
materjal should be stressed to the maximum permissible
limit.

These considerations imply that the width/thickness ratio
of the spokes should be large, taking into account structural
limitations, and that a sufficient number of spokes should be
provided to ensure that the material is stressed to the maximum
permissible limit under the given loading conditions.

There are so many variables in the design of a coupling of
this type that it is impossible to generalise further than this,
and in practice the best compromise is usually obtained by
successive trial for a particular application.

Table 20 compares the resilience per unit volume for dif-.
ferent types of spring elements, assuming 100 per cent. for
uniformly stressed material.

Uniform tension or compression members are impractical
for use in spring couplings, unless made of rubber, because they
are far too rigid.

The most efficient torsional spring element is a hollow tor-
sion bar made of high-tensile steel, and elements of this type
are commonly employed in practice, for example as quill
shafts in geared drives. It is not always possible, however,
to accommodate the required length of torsion bar in the
space available.

An advantage of hollow or solid torsion bars is that a con-
siderable amount of flexibility can be introduced into an os-
cillating system without any appreciable increase of inertia,
whereas the moment of inertia of the housings of flexible
couplings might alter the inertia characteristics of the system
considerably. In some cases, and where doubt exists, it is
advisable to investigate this point.
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The solid cylindrical torsion bar is only about half as effi-
cient as a very thin hollow torsion bar. Itis commonly found
in engineering practice in the form of thin quill shafts made of
high-tensile steel for use in geared drives, and even more
generally in the form of helical springs.

TABLE 2o0.
REesILIENCE PER UNiT VOLUME.
Type of Spring. ResiliencePer | per cent.

TUniformly stressed bar in tension or com-

pression - “ Y. E) 100
Limiting value for a very th.ux ho].lm\ cy]m-

drical torsion bar . 2. G) I00
Limiting value for flexural member thh very

thin flanges of rectangular cross-section . fotiz . E) 100
Solid cylindrical torsion bar f4-G) 50
Flexural members with nmform skm stress

everywhere, and rectangular cross-section . f:H(6. E) 33
Flexural members similar to Type III in

Fig. 52 . . - AU E) 28
Flexural members sumlar to T\'pe I\ in

Fig. 52 . £2l(7-8 . E) 26

Simple cantﬂe‘er of umform rectangular

section (Type II in Fig. 52) f2/(18. E) 11
Flexural members similar to Tvpa I mFxg :,2 f(18.E)to| 1xto8

spokes securely fixed . (24 . E)
Flexural members similar to T\pe Iin Fxg 52 fo3/(18 .E) to | 11 to 55

spokes insecurely fixed . .| AY(36.E)

Note.—Table 20 does not take account of differences between G and E
and between f, f; and f;, for different materials. The percentages given in the
table do not, therefore, give a direct comparison between flexual and torsional
members. This matter is discussed later in connection with Tables 21 and 22.

Flexural members with very thin flanges in relation to their
depth are not practicable because of the difficulty of connecting
the flanges together so that buckling is prevented, and also
because their bulk occupies space which can be filled more
effectively by other forms of spring element.

In the case of flexural spring members, therefore, Table 2o
shows that the greatest efficiency is obtained in practice when
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these are designed to have a uniform skin stress everywhere.
It is interesting to note, however, that the efficiency of such
an element is only one-third that of a truly uniformly stressed
element, but that it is about three times as efficient as the
elements shown at I and II in Fig. 52.

In the case of flexible couplings employing flexible spokes,
therefore, care should be taken to shape these so that the skin
stress is as nearly as possible uniform throughout the spoke,
in which case the torsional rigidity of the coupling is given by
the following simple expression :—

Resilience of coupling —w=S XE— .. (ra1)
but .2,
Le. 0= f v EV
— T/ = 3 -E.T
and C=T/0= Vojw (122)

where C = torsional rigidity in Ibs.-ins./radian,
E = modulus of elasticity in Ibs. per sq. in.,
T = torque transmitted by coupling in Ibs.-ins.,
V = volume of one spoke in cu. ins.,
fo = skin stress in Ibs. per sq. in. (uniform throughout
the spoke),
# = number of spokes.

So far only the form of the spring elements has been con-
sidered, and nothing has been said about the relative merits
of different materials.

Table 2r contains the properties of some typical materials.
The working stresses quoted in this table are about one-half
the fatigue limits for the respective materials, which provides
a sufficient factor of safety if the parts are free from severe
stress raisers, such as sharp corners or other discontinuities.

The following expression for the maximum permissible
shear stress when repeated torsional stresses are superimposed
on various mean stresses is given by Dr. S. F. Dorey in his
paper, “ Some Factors Influencing the Sizes of Crankshaifts
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for Double-Acting Diesel Engines ” (Trans. N.E. Coast Instn.
of Engineers and Shipbuilders, 1931). It is based on the
experimental work of Dr. G. A. Hankins, and gives safe values
for all ductile steels, and for values of x up to o-4 for high tensile
steels :—
fi=Ff185 + 12.2 + 035.4%) .
where f, = maximum permissible shear stress for ratio #,
+ f; = fatigue limit for completely reversed torsional
stress,
= ultimate tensile stress/4 approximately for most
steels,
x = minimum shear stress/maximum shear stress.

When x =1, the range of stress is zero, and f, =34 .,
which is the ultimate shear stress.

When x = o, the minimum stress is zero, and f, = 185 . f,
which is practically equal to the endurance
range.

When x = — 1, ie. completely reversed stress, f, = fi, and
the endurance range is again 2 . f;.

(123)

The above expression shows, therefore, that if the per-
missible shear stress is +f,, it is immaterial whether it is
applied as a completely reversed stress or is superimposed on
a steady mean stress up to a value f,.

For example, if the maximum permissible stress in reversed
torsion is 3 15,000 Ibs. per sq. in., there is no risk in super-
imposing this on a steady stress of 15,000 Ibs. per sq. in., so
that the shaft is subjected to zero minimum stress and 30,000
Ibs. per sq. in. maximum stress. In both cases the range of
stress is 30,000 Ibs. per sq. in.

In the case of repeated bending stresses at various mean
stresses the same remarks apply, namely, that if the per-
missible bending stress is & f,, there is no risk in superimposing
this on a mean steady stress up to a value f;.

In the case of couplings subjected to periodic torque
fluctuations the stress on the spring elements may be regarded
as composed of a cyclic variation of stress superimposed on
a steady mean stress and, provided this steady mean stress
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does not exceed one-half the endurance range of the material,
the spring elements of couplings transmitting periodically
fluctuating torques can be safely designed from a considera-
tion of the fluctuating part of the load only, using the working
stresses given in Table 2I.

Since the principal duty of flexible couplings in drives
subjected to torsional vibration is to assist in absorbing the
fluctuating torque loading, the specific resiliences in Table 22

TABLE 2zr.
PROPERTIES OF MATERIALS.

Permissible Working Stress,

E
Material. 1bs.fin2. lbl.l?n.’.

§, Ibsfin?, | £, Ibsin®

30 tons/in.? mild steel . 130,000,000 | 12,000,000 | + 16,000 | + 8,000
60 tons/in.? alloy steel . 130,000,000 | 11,800,000 | * 30,000 | + I5,000
9o tons/fin.? spring steel . |30,000,000 | 11,500,000 % 50,000 | + 25,000

Stainless steel (high tensile) | 30,000,000 | 12,000,000 | * 30,000 | * 15,000
Stainless steel (low tensile) | 30,000,000 | 12,000,000{ #* 20,000 | * 10,000
Stamless steel (Austemhc) 28,000,000 | 11,800,000 | = 20,000 | + 10,000

“K ” monel metal . 26,000,000 | 9,500,000| =+ 19,000 | + 9,000
Bronze - - . . | 15,000,000 6,000,000 * 10,000 | £ 5,000
Duralumin . . | 10,000,000 3,800,000| + 9,000 | + 4,500
Rubber (average values) . 500 100] % 75| % 75

Bending { Torsion | Reversed | Reversed
moduli moduli | bending. | torsion.

are based on the permissible working stresses and elastic
moduli in Table 2r. This gives the maximum specific re-
siliences for each stress cycle, and for the different types of
spring element commonly used in practice.

Incidentally this specific resilience is the energy of the
vibration per unit volume, or weight, of the spring elements
when the maximum cyclic stress attains the values given in
Table 21.

Table 2z shows that the greatest specific resilience is
obtained with rubber in shear, although it is interesting to
notice that the resilience of rubber in shear per unit volume
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is very nearly the same as that of spring steel in shear per
unit volume. It should be mentioned, however, that the
safe working load of = 75 Ibs. per sq. in. depends on the
strength of the bonding between the rubber and its supports.

TABLE 22.
RESILIENCE PER UNIT VOLUME AND WEIGHT.
(Tuch-lbs.).
.- Mild ¢ Al Spris Dur- -
Description. 3 )G | Bems | Bromee. | o | T
Hollow  cylindrical |percu.in| 2-7 95 | 2770 21 27 | —
torsion bars {e.g. —_
quill shaits). perib. | 95 | 335 joso | 70 270 | —
S‘;]lfn’;‘;:d(‘:“;lqtfﬁ percu.in 13 | 48 | 135 | 10 | 14 | —
z‘;ﬁzs}f“d belical | per b, | 46 | 368 | 475 | 35 [ 135 | —
%Fle{nm.l members
e It I S I I
d tangul
rossection eg, | Pl | 5o Lar7 daos | 37 135 | —
flexible spokes).
Simple il f :
un}i)for;arl:ct;;ﬂ:r percuin| o5 | 17 | 47 | o4 | o5 | —
:epii:‘:;(e.g. fexible | porgp, | 18 | 6o | 26 3| 45 | —
percu. in| — — - —_ — 28
Rubber in shear.
per lb. —_ —_ — — — | 560
Rubber in tension [PEFEWiR) — | — j — ] — | — | 6
or compression.
P per 1b. —_ -—_ —_ — — 112

Spring steel possesses a higher specific resilience than any
other metal, owing to its capacity for withstanding very much
higher working stresses under both reversed bending and
reversed torsion loads. Thus, on either a volume or a weight
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basis the specific resilience of spring steel is about ten times
that of mild steel and about thirteen times that of bronze.

In the case of duralumin the specific resilience of spring
steel is from 6 to 10 times that of this light alloy on a volume
basis, but only from 2 to 33 times on a weight basis.

Table 22 also shows that the most efficient form of spring
element is a hollow cylindrical torsion bar; and that the
specific resiliences of a solid cylindrical torsion bar and a
flexural member of rectangular cross-section with uniform
skin stress everywhere are very nearly the same, when the
materials are required to withstand vibratory loads.

It is therefore immaterial whether torsion or flexural
members are used as the spring elements of flexible couplings
as far as specific resilience is concerned. The form of the
coupling is, however, an important factor in deciding the type
of spring. For example, the space available for installing
the coupling may indicate a form of coupling in which a much
greater volume of spring material can be accommodated in
torsion than in bending, and in such a case torsion members
would naturally be employed.

ExampLE 28.—A flywheel rim is attached to a shaft by eight
alloy steel spokes of uniform rectangular cross-section,
each spoke being 8 ins. wide. The inner radius of the
fly-wheel rim is 30 ins., and the outer radius of the boss
is 10 ins.

Calculate :

(i) The thickness of each spoke, assuming that the spokes
are securely built-in at each end; that the maximum
bending stress in the spokes must not exceed 1= 30,000
Ibs. per-sq. in.; and that the torque transmitted
from the flywheel rim to the flywheel shaftis - 600,000
1bs.-ins.

(i) The moment of inertia of the equivalent rigidly con-
nected flywheel, assuming that the moment of inertia
of the elastically connected flywheel rim is J.

Since the spokes are securely built in at each end and are of
uniform rectangular cross-section they are of type I in Fig. 52.
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(i) The maximum bending stress in each spoke is therefore
_ 6.T.LGR — L) _ :
f= @ P 6. R—6.R.LF 2.1y == 30000 bs/sq.ins,,
where T = applied torque = - 600,000 lbs.-ins.,

L = length of spoke = (30 ins. — I0 ins.) = 20 ins.,
R == radius to inside of rim = 30 ins.,
# = number of spokes = 8,
@ = thickness of spokes in inches,
b = width of spokes in inches = 8 ins.

Hence,

o 6 X 600000 X 20(3 X 30 — 20)

= 30000 X 8 X 8(6 X 30° — 6 X 30 X 20 + 2 X 20%)
ie.a=1in

(ii) The equivalent torsional rigidity of the spokes is
C__ﬂ.u’.b.E(3.R’—3.R.L+L*)
- 3.18 :
(see example I, Fig. 52),

ie C_8 X 1 X 8 X 30000000(3 X 302 — 3 X 30 X 20 -} 207)
R 3 X 208
= 104,000,000 lbs. ins./radian.
Hence, from Equation (92),
- J
A |
91-2C
3

Y] 1bs.-ins. sec.2.
9500000000
{Note.—Total resilience of spokes
ewoV.n3—3 K+ XY
6.E(3 - K)* ’

where K = L/R = 20/30,

V = volume of each spoke = 20 X 8 X I = 160 cu. ins.
2
Hence, W = 3;%2’})(3——16(”(: = 1-33 X 1280 = 1700 in.-Ibs.,

ie. resilience = 1-33 in.-lbs. per cu. in. or 1700 in.-Ibs.‘total.)

I
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ExXAMPLE 29.—Assuming that the generator mass in Table
is replaced by a flywheel rim connected to the shaft by
eight alloy steel spokes of the dimensions given in the
preceding example, calculate the moment of inertia of the
flexibly-connected rim so that the onme-node frequency
is unaltered.

From the preceding example the moment of inertia of
the equivalent rigidly connected mass is

- J .
L= w3
9500000000

This must be equal to the moment of inertia of the generator
mass in Table 1 if the one-node frequency is to remain un-
altered, i.e. for a frequency of 2520 vibs./min.,

J. = 23,500 Ibs.-ins. sec.2.

- J.
Hence, 23500 = a0
9500000000
or J = 1.405 lbs.-ins. sec.?.

Note that the value of the two-node frequency with this
flexibly connected flywheel rim is different from the value
given in Table 2.

The amended value can be obtained by making a new fre-
quency tabulation, using a value of 1405 Ibs.-ins. sec.? for
the moment of inertia of the generator mass, and a value,

C,.C, for the stiffness of the section of shafting
C,+C, between no. 6 cylinder and the generator,
where C; = actual stiffness of shafting between no. 6 cylinder

and the generator
=170 X 10" lbs.-ins./radian (from column 1 of
Table 1),
torsional stiffness of the flexible spokes
10'4 X 107 Ibs.-ins./radian,

Co=

Ce

I

. ~ (17 X 104 e 2 The R
ie. C,= (I—-——7 T 10‘4) X 107 = 6-45 X 107 Ibs.-ins. /radian,
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ExaMpLE 30.—Calculate the torsional rigidity of a flexible
coupling, assuming that the coupling is to be as flexible
as possible, taking into account the following limitations
in design:—

(@) Coupling to be of the type which employs flexible
spokes as the spring elements.

(b) The flexible spokes to be integral with the hub.

(c) The coupling and the mild steel shafts which it con-
nects to be capable of transmitting a fluctuating
torque of = 10,000 Ibs.-ins., superimposed on a mean
transmission torque of 5,000 1bs.-ins.

(d) The outside diameter of the coupling not to exceed
12 ins.

(e) The width of each spoke to be one-half the length of
the spoke, and the shafts on which the coupling is
mounted to be hollow, the inner diameter being
one-half the outside diameter.

Diameter of Mild Steel Shafis.—From Table 21 the safe
stress for mild steel in reversed torsion is & 8oco Ibs. per sq.
in., assuming that the shafts are free from stress raisers. Since,
however, in the present instance the keys or splines used for
securing the two halves of the coupling to the shafts must be
taken into account as stress raisers, a stress concentration
factor of 2 will be assumed. The working stress is therefore
=+ 4000 lbs. per sq. in.

The following expression shows the general relationship
between torque and shaft diameter :—

T =a.D¥x — K% . f,/16, . . . (124)
where T = transmitted torque = - 10,000 lbs -ins.,

D = outside diameter of shaft in inches,

d = inside diameter of shaft in inches,

K = d|D = 1/2 in this example,

fs = working stress = + 4,000 Ibs. per sq. in.
Hence, D*=16.T/[x(x — K% f].
For a solid shaft, K = o, ie. D*=16T/(n.f) = 51T/f
When K = 1f2, D3 = 544T/f, = 544 X 10,000/4000,
or D = 2-38 ins,
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The shafts on which the coupling is mounted should there-
fore be about 2-4 ins. outside diameter x 12 ins. bore.

The stress due to the mean transmission torque has been
neglected because it has already been shown that a fluctuating
stress of - f; can be safely superimposed on a steady stress of
the same magnitude. In this example the steady stress is
well below the fluctuating stress, viz. 2000 lbs. per sq. in.
steady stress and 3 4000 Ibs. per sq. in. fluctuating stress.

Dimensions of Spokes.—It will be assumed that the spokes
are designed as cantilevers of rectangular cross-section, fixed
at the hub and free at the rim, with uniform skin stress through-
out, because this type gives the maximum specific resilience
obtainable with any practicable form of spoke. It will also
be assumed that the necessary variation of cross-section to
give uniform skin stress is obtained by varying the thickness
of the spoke and keeping the width constant, because this
method gives a somewhat greater volume of spring material
and therefore a somewhat greater total resilience than other
methods of obtaining uniform skin stress.

The spokes are therefore of Type III in Fig. 52 for which
the resilience per unit volume, from Table 20, is f,?/(7-1E),

i.e. total resilience of coupling
=W =f2.V.n/(7xE) (Type II1, Fig. 52).

For spring steel spokes, the permissible working stress in
reversed bending, assuming that the radius at the root of each
spoke is sufficient to avoid any severe stress concentration, is
=+ 50,000 Ibs. per sq. in., from Table 21.

Hence, W = 50,000%. V. n/(7:T X 30,000,000)
= 117V . 7 ins.-Ibs.

(Note.—This value is somewhat less than the value given
in Table 22 because the skin stress in spokes of Type III in
Fig. 52 is not exactly uniform throughout the beam.)

Let a = thickness of each spoke at root, in inches,
b = width of each spoke, in inches,
L = effective length of each spoke in inches = (R — 1),
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R = effective radius of spoke at rimin inches,
7 = effective radius of spoke at hub, in inches,
K=7rR,ier=K.R,
V = volume of material in each spoke, in cubic inches,
» == number of spokes in coupling,
V, = V.2 = total volume of material in spring elements
of coupling, in cubic inches.

Then, for a spoke of Type III in Fig. 52,

V=2.4.5.L3=2.a.bR —7)[3,
ie. V.=2.a.5.0nR —7)3.

It has already been mentioned that the radius at the roots
of the spokes, when these are integral with the hub, must be
sufficient to prevent concentration of stress at these points.
The radius at the roots of the spokes should therefore be equal
to the width of the spokes at that point, as shown at IV in
Fig. 53.

This implies that the pitch of the spokes round the periph-
ery of the hub at the effective radius#» should be about = . 2
so that the maximum number of spokes which can be accom-
modated is

#n=2z.r/a.
Hence, V,=4.0.7(R—7)/3=4.b. R(K — K¥/3.

The volume of material in # spokes, and therefore the re-
silience of the whole coupling, is a maximum when K = 1/2,

Le. R=o2r
and V w max = b . R¥3 cubic inches.

Since the maximum outside diameter of the coupling is
limited to 12 ins., it will be assumed that the effective radius
of the spokes at the rim of the coupling is R = 5 ins., which
should allow ample margin for accommodating the tips of the
spokes as shown at IV in Fig. 53.

Hence, the dimensions of the spokes are as follows :—

R=3ins.; r="Rf2=25ins.; L=(R—7) =2-51ns. ;
and n = 2.7/a = 5/a.
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The maximum stress in the spokes, from Example III,
Fig. 52, is
f=645T.L{n.a*.b.R),
where T = transmitted torque = =+ 10,000 Ibs.-ins.,
L = length of spoke = 2-5 ins.,
# == number of spokes = 5/a,
a = thickness of spokes at root,
b = width of spokes at root = L[z (specified) = 1-25
ins.,
R = effective radius of spokes at rim = 5 ins.,
f = permissible working stress = + 50,000 Ibs. per
sq. in. for spring steel spokes in reversed

bending.
_ 675 X 10000 X 2'5
Hence, 50000 = SXTBX3Xa’
or a = 0108 in.,
and n = 5/a = 46.

The spring elements of the coupling are therefore 46 spring
steel spokes, 0-108 in. thick X r-25 ins. wide at the roots;
2-51ins. long ; 5 ins. effective radius at tip, and 2-5 ins. effective
radius at hub.

Referring to Diagram IV in Fig. 53, the diameter of the
hub at the bottom of the root radii of the spokes is

(5 — 24) = 478 ims.
The outside diameter of the mild steel shafts on which
the coupling is mounted is 2-4 ins., so that there is ample margin
for fixing the spoked member on its shaft.

Torsional Rigidity of Coupling—The total volume of
material in the coupling springs is

V.n=2.a.b.L.nf3=2 X 0108 X I-25 X 2:5 X 46[3
= 10-35 Cu. ins.
Hence, total resilience = W = 117V . % = 117
X 10°35 == 1210 ins.-lbs.
Now strain energy = W =T . §/2,
and torsional rigidity = C = T/d.
vOL. 1—I6
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LT
Hence, W= T C= R . . (125)

where T = transmitted torque = 10,000 Ibs.-ins.,
W = total resilience = 121-0 ins.-bs.,
_ 10000 X I0000

1e. C= > X Tato = H13.000 Ibs.-ins. /radian.

This value can be checked by means of the expression
from example III of Fig. 52, viz.,
C=n.a".0.E.R¥(85L3
_ 46 x 0-108% X 1'25 X 30000000 X 5°
- 85 x 25°
. = 410,000 lbs.-ins./radian.
The equivalent length of 2-4 ins. diameter solid shaft,
ie. of shaft the same diameter as the shafts on which the

coupling is mounted, is given by the expression from example
III of Fig. 52 as follows :—

Le. D 250 X 2:4¢

T3.m.a%.5.R* T 3 X 46 X 0108 X 125 X 52
= 95 ins. of 2-4 ins. diameter solid bar.

L.

It is of interest to note that an alloy steel torsion bar
1-5 ins. in diameter and 14 ins. long would transmit the same
torque and have the same flexibility as the above coupling,
assuming that this bar was free from discontinuities, so that
the working stress of 4 15,000 lbs. per sq. in. in reversed
torsion given in Table 21 could be permitted. The weight
of the torsion bar is about 7 Ibs. compared with about 3 lbs.
for the more highly stressed spring steel spokes of the flexible
coupling. The total weight of the torsion bar assembly
would, of course, be somewhat greater than 4 Ibs., due to the
provision of the necessary attachments to the input and out-
put shafts, whilst the total weight of the flexible coupling
would be considerably greater than that of the spokes alone.
A detailed investigation would probably reveal that the total
weight of the flexible coupling was at least twice that of the
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torsion bar and its attachments. The principal objection to
the torsion bar is the axial space required to accommodate it,
whilst an advantage of the flexible coupling is that supple-
mentary damping means can be provided more easily than
in the case of a torsion bar, if this is required.

A further check on the torsional rigidity of the above
flexible coupling is obtained by applying the general expression
[Eqn. (122)] for the torsional rigidity of a coupling containing
flexural spring elements carrying a uniform skin stress, viz.,

C=3.E.T¥(V.n.f3, . . (122)
ie. in this example,

C = 3 X 30000000 X 100002

1035 X 500007 = 348,000 lbs.-ins./radian.

This is about 15 per cent. less than the value previously
calculated, the discrepancy being due to slight lack of uni-
formity of skin stress in the shape of spoke chosen.

Flexible Couplings Employing Helical Springs.—
Diagrams I and II in Fig. 53 show two types of flexible
coupling in which helical springs are the flexible elements.
Diagram I is an arrangement employing compression springs,
whilst Diagram II employs tension springs. The arrangement
employing compression springs is often used as a spring drive
in geared systems, the teeth of the gearwheel being cut on
the periphery of the outer member. It is also used as a damped
and tuned vibration absorber, the damping means being either
solid friction, in which case suitable frictional surfaces are
introduced between the outer and the inner members, or
hydraulic friction, in which case the spring pockets are made
fluid tight and are filled with oil which is forced through small
openings between the pockets, when relative motion occurs
between the inner and outer members, due to vibration (see
Figs. 176 and 201).

In the arrangement employing tension springs, special
care must be taken to permit absolutely free rotation of the
end connections of the springs on their anchoring pins when
relative motion occurs between the input and output sides of
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the coupling. If this is not done there is serious danger of
breaking the end coils of the springs.

The type of end connection shown at II in Fig. 53 is prob-
ably the most satisfactory. Two or three coils are wound
tightly at each end of the spring and a screw thread is cut
on the shank of the end connections. This thread is the same
size and pitch as the closed end coils of the spring and is
machined so that it is a tight fit when screwed into the spring.
Care must be taken to remove all sharp corners. The inch
rate of the spring can be controlled to a slight extent by the
amount the end connections are screwed into the spring, and
this is sometimes a useful method of correcting slight differ-
ences in rate between one spring and another. It should be
noted, however, that whilst it is an easy matter to screw the
end connections into the spring, it is not so easy to unscrew
them, due to automatic tightening of the coils on the shank.

Compression springs are probably to be preferred, since it
is difficult to provide really satisfactory end connections for
tension springs without sacrificing a good deal of the space
which would otherwise be occupied by the spring members.

In designing the springs it is necessary to make sure that
there is sufficient initial tension to avoid completely unloading
the springs on one side of each arm when the coupling is trans-
mitting the designed maximum steady torque plus the maxi-
mum fluctuating torque.

The same remark applies to the initial compression of the
springs in the arrangement shown at I in Fig. 53.

The strength and flexibility of couplings employing helical
springs in tension or compression can be calculated as follows :—
Let T = total torque transmitted by coupling for a deflec-

tion «
=P.xn.R, Ibs-ns.,
P = load acting along axis of each spring in Ibs.,
% = inch rate of each spring, ie. the load per unit de-
flection of spring, in Ibs. per in.
= PJx,
7 = number of springs,
o = linear deflection of each spring in inches,
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R = radius from axis of rotation of shaft to pitch circle
radius of springs (see Fig. 53),
8 = angular deflection between input and output sides
of coupling in radians.
Then 6 = «/R, and C = torsional rigidity of coupling = T/6,
ie. C=P.n.R%a=*h.n.R?*Ibs-ins. per radian. (126)

The maximum fluctuating stress in the spring can be
calculated from the following expression :—

£= D persqin, . . L )
where + P = maximum fluctuating load on each spring in Ibs.
~ T/(n. R),

D = mean coil diameter of spring in inches,
d = diameter of spring wire in inches.

To this must be added the steady stress due to the initial
tension or compression which is necessary to ensure that the
springs are never completely unloaded under the most severe
vibratory movements which the coupling handles. This
implies that the initial load in each spring must be at least
equal to the fluctuating load plus the steady mean load.

In determining the safe load on the coupling under com-
pletely reversed torsion it is necessary to take into account
any discontinuities which can act as stress raisers. For
example, the above expression for the maximum stress is
torsional stress only, and does not take into account the effect
of the ratio of wire size to mean coil diameter in introducing
additional stresses which increase as this ratio diminishes.

This effect can be taken into account by multiplying the
stress given by Equation (127) by the following factor :—

Y=(EiUI.'i), L a®

where U = D/d.

This expression agrees very well with the formula developed
by Mr. A. M. Wahl, and shows that when D/d = 5 there is
a 30 per cent. increase in stress. The mean coil diameter
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should, if possible, be not less than eight times the diameter

of the wire.
The inch rate of the spring can be calculated from the
following expression :—
b=Pa= % bs, per inch (29)
! 8§.D3. N T !
where G = modulus of rigidity (see Table 21),
N = number of free coils = (total number of coils
— 2), unless screwed end attachments are

used.

ExaMpLE 31.—Calculate the torsional rigidity of a flexible
coupling of the type shown at I in Fig. 53, assuming the
following conditions :—

() The pitch circle diameter of the springs to be 10 ins.

(6) The coupling to transmit a fluctuating torque of

-~ 10,000 lbs.-ins., superimposed on a mean trans-
mission torque of 5000 lbs.-ins.

Spring Loads—The total load on # springs is made up
as follows :—

P, = load due to fluctuating torque = 4 10,000/5

= - 2000 lbs.,

P, = load due to mean transmission torque = 3000/5

= 1000 Ibs.,

where the + sign indicates compression.

To avoid completely unloading one of the springs of each
pair the initial load on the springs must be at least equal to
(P: + Pa),
ie. P, = (2000 + 1000) = 3000 Ibs.

Thus the initial compression in each spring to avoid un-
loading one of each pair completely must be 3000/7 1bs.

The maximum total load on any spring is therefore

P = 2Py/n = 2 X 3000/n = + 6000/n, to zero.

(Actually the initial compression of the springs should provide
a small margin over the actual minimum required to avoid



FLEXIBLE COUPLINGS 247

complete unloading. It will be assumed therefore that the
maximum load on any spring varies from -+ 6100/% to + 100/n
for reversible drives.

Note that the loads are 6100/%n to 2100/n per spring for
the leading springs and 2100/n to Ioo/n per spring for the
trailing springs in the case of non-reversible drives.)

Spring Dimensions.—Assuming that the springs are made
of go tons per sq. in. spring steel and that the mean coil
diameter D is four times the wire diameter &, the stress is
given by Equation (127),

ie. fi=255.P.Dd,
where Js = permissible working stress,
P = maximum load on each spring
= 6100/n,

D = mean coil diameter = 4.4,
4 = wire diameter.
Assuming that there are no stress raisers, the maximum
permissible shear stress is given by Equation (123),
Le. Js=1i(1-85 4 129 + 03543,

Note.—In this case it is not permissible to design the spring
from a consideration of the fluctuating load only, because the
steady load (i.e. the sum of the initial plus mean transmission
load) is greater than one-half the range of the fluctuating
load
where f; = fatigue limit for completely reversed torsion

= 90f4
= 4 22-5 tons per sq. in. for go tons per sq. in.
spring steel,

% = minimum stress/maximum stress = 100/6100 = 6£x
Hence, f, = 225 (1-85 + 1-2/61 + 0-35/3721) = 42 tons per
sq. in.
The appropriate allowance for secondary stress effects is
given by Equation (128), viz.,
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Y = (U + 15)/U,
where U=Dld=4. .
Hence, Y =4+ 13)/4 =1375

Thus the maximum permissible equivalent static stress is
42 1-375 = 305 tons per sq. in.

A safe working stress of 60,000 lbs. per sq. in. will therefore
be assumed, and since in a reversible drive the load on each
spring varies from 6100/ to 1oom, the corresponding stress
variation is from 60,000 to §80 lbs. per sq. in.

The number of springs which can be accommodated de-
pends on the lemgth of the circumference of the pitch circle
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FiG. 54.—Safe stress rang s for carbon steel springs.
(Barnes-Gibson-F aymond, U.S.A.)
tound which the springs are spaced. It is necessary to make
one or two trial calculations before the best compromise is
obtained, since there are an indefinite number of spring com-
binations which can be utilised. As the springs are arranged
in pairs there must be an even number.

The permissible stress ranges in steel springs subjected to
fluctnating loads are given in a paper by F. P. Zimmerli, en-
titled, ‘‘ Permissible Stress Range for Small Helical Springs "
(Engineering Research Bulletin, No. 26, July, 1934, University
of Michigan). Fig. 54 shows representative diagrams for
carbon steel springs in torsion and in bending.

The abscisse and ordinates of these diagrams represent
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the minimum and maximum stresses in the spring respectively,
and it is essential that any point plotted from given values of
minimum and maximum stress should lie within the shaded
areas for satisfactory spring life. Thus, in Fig. 54, point A,
representing a minimum stress of 60,000 and a maximum
stress of 90,000 lbs. per sq. in. is a safe design; whilst point
B, representing a minimum stress of 20,000 and the same maxi-
mum stress of 90,000 1bs. per sq. in. is an unsafe design.

Similarly, point C on the diagram for steel strip springs
subjected to bending is safe, whilst point D is unsafe.

In the present example the springs are subjected to a
minimum stress of g8o and a maximum stress of 60,000 Ibs,
per sq. in. in torsion. Fig. 54 shows that these are safe values.

In the present example it will be assumed that there are
8 springs and that the width of the abutments on the pitch
line is about 1 in. The length on the pitch line which is avail-
able for accommodating each spring is therefore

Circumference of 10 ins. diameter pitch circle = 31416
ins.
Space occupied by 8 abutments, each 1 in. wide on pitch
Jine =8 X 1 = 8 ins,
Length on pitch line per spring
= (31°416 — 8)/8 = 2-92 ins,,
i.e. it will be assumed that each spring is 2-75 ins. long when
it is in position in the coupling and when the coupling is not
transmitting torque.
The maximum compressive load P on each spring is
therefore
P = 6100/# = 6100/8 = 763 Ibs.,
and, from Equation (x27),
60,000 = 235 X 763 X 4 X d[d® = 7780/d?,
or a2 = 013,
d=036in,,
D=4.d=4 X 036 =144 ins.
Assuming a solid length of 2-25 ins. for each spring, ie.
allowing o-5 in. for compression of each spring under the
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transmitted torques, the maximum permissible number of coils
is 2-250-36 = 6-23, say 6.
The number of free coils in each spring is therefore
N = (6 — 2) = 4 free coils.

The inch rate is given by Equation (129), viz.,
A G.d* _ 11300000 X 0:36%
T8 DX 8XI4f X4
= 2020 Ibs. per in.
The dimensions of each spring are therefore as follows : —
d = diameter of wire = 0-36 in.,
D = mean coil diameter = 1-44 ins,,
N = number of free coils = 4 (i.e. total number of coils = 6),
k = inch rate = 2020 Ibs. per inch,
P = safe load = 763 Ibs. per spring.
Initial load = 3100/n = 3100/8 = 388 Ibs. per spring.
Initial compression = 388/2020 = 0192 in.
Free length = (2-75 + 0'19) = 2-94 ins.
Maximum load = 6100/n = 6100/8 = 763 Ibs. per spring.
Total compression = 763/2020 = 0-38 in.
Minimum compressed length = (2-94 — 0-38) = 2-56 ins.
Solid length = 6 X 0-36 = 2-16 ins.
Since the solid length is less than the minimum compressed
length the spring is suitable for the specified duty.
Torsional Rigidity of Coupling.—This is given by Equation
(126), viz.,
C = k.n. R®1bs-ins. per radian,
where & = inch rate per spring = 2020 lbs. per inch,
n = number of springs in coupling = 8,
R = pitch circle radius of springs = 5 ins.,
Le. C = 2020 X 8 X 25 = 404,000 lbs.-ins. per radian.
Check by Resilience Method.
The total resilience of the spring elements of the coupling is
W = f2.V/(4.G) (see Table 20),
where  f, = maximum stress due to fluctuating portion of the
torque transmitted by the coupling.
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The load per spring due to the fluctuating part of the

torque is
= £10,000/(8 X 5) = = 250 1bs.

The stress in the spring due to the maximum load of 763
Ibs. is 60,000 1bs. per sq. in.

Hence the stress due to the fluctuating part of the torque
is
fi = £ 60,000 X 250/763 = = 19,650 Ibs. per sq. in.
V = volume of active material in the springs

a .42
=-4—.w.N.D‘n=z~47xo~36”><4>< 144 X 8
= I4{'75 cu. ins.

0% ¢ Tqems
W= 190508 X 1475 1235 in.-lbs.

Hence,
4 X II500000

Also, from Equation (125),
C=T%(z. W),
where T = fluctuating portion of transmitted torque
= - 10,000 lbs.-ins.,
ie. C = 10,000%/(2 X 123'5) = 404,000 lbs.-ins. per radian,
which agrees with the value previously obtained.

This torsional rigidity is practically the same as that of
the spoked coupling of Example 30.

If allowance is made for the necessary inactive end coils
of each of the helical springs, the total weight of spring material
in the present coupling is about 6 lbs. compared with only
3 Ibs. for the spoked coupling. The weight of a coupling em-
ploying helical springs of the type shown at I in Fig. 53 is
therefore, in general, greater than that of a spoked coupling
having the same total flexibility, despite the fact that the
resilience per unit volume and weight of solid cylindrical
torsion members is practically the same as that of flexural
members with uniform skin stress everywhere, as shown in
Table 22.

This is because the stress in the helical springs of couplings
of Type I, Fig. 53, is considerably below the maximum per-
missible stress due to the necessity for providing sufficient
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initial compression in all the springs to avoid completely
unloading one spring of each pair when the coupling is trans-
mitting fluctuating torques. If no initial compression were
provided only one-half the total number of springs would be
effective, so that the resilience of the active material and the
torsional rigidity of the coupling as a whole would be halved.
Moreover, a coupling of this type without initial compression
of the spring members is an impracticable arrangement.

M.A.N. Sleeve Spring Coupling.—The coupling shown
at III in Fig. 53 was developed by the M.A.N. works for use
in damping torsional vibrations. This coupling consists of a
number of packets of sleeve springs, one of which is shown
in detail in Fig. 53.

Each packet contains a number of neatly fitting steel
sleeves, with a slot cut through the whole assembly so that
the spring element comprises 2 number of C-springs in parallel.
Maximum resilience is obtained by grading the thickness of
the sleeves so that the stress is nearly constant at all points.
A cylindrical member is accommodated within the innermost
sleeve, and this member is provided with a tongue piece which
is keyed into the hub and serves to prevent rotation of the
spring packets as a whole, and also to limit the deflection of
the springs, thus preventing over-stressmg

The cylindrical centre piece introduces a certain amount
of non-linearity because the spring packet gradually contacts
this member as the applied load increases. There is also an
appreciable amount of damping due to inter-sleeve friction.

The torsional rigidity of a coupling of this type can be
calculated as follows :—

Referring to the loading diagram for one sleeve shown
at II1 in Fig. 53,

let T = torque transmitted by coupling, in Ibs.-ins.,
N = number of spring packets,
R = pitch circle radius of spring packets, in inches,
= tangential load on each spring packet = T/(N . R),
in Ibs.,
r = mean radius of any one sleeve, in inches,
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E =modulus of elasticity of material of sleeves, in
Ibs./sq. in.,
I = moment of inertia of cross-section of one sleeve
= b .#/12, in ins.* unit,
= length of sleeve, in inches,
t = thickness of sleeve, in inches,
v = tangential deflection at pitch circle of spring
packets, in inches.

Then
e I
resilience of any one sleeve = W = TR I_[M" .dx. (117)
In this case M,=P.7».sin3,
. (™ .
ie. W—mLPZ.r’.sm’.S.dx,
but z=r.8 or §=uafr.
Hence w=2r jmsmz sl dx
ence, =:E1), Lxfr.
=n.P2.7%(4.E.I)
=3.a.P2.A(E.b.85). . (130)
The strain energy is also given by the following expression i—
W =P.yf2.
Hence, y=2W[P=6.n.P.A[(E.b.5). . (131)

If there are # sleeves in each spring packet, y is the common
deflection at the pitch circle radius of all sleeves.

Let Py, P, P, etc., = the tangential load carried by the
various sleeves of each pack, for
example, load P, is the load
carried by the outermost sleeve.

K,, K, K, etc., = the corresponding values of y/P,
ie. Ky=9P,=6.7.r3(E.b.%3.
Then P = total load on pack !
=P, +Py+Ps+...+P,) Ibs
=y(E/Ky+ 1K + 1Ks + . . . + 1/K,),
whence y = P/(1/K, + 1/K, + 1/Ks3 + . . . +1/K,).
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The angular deflection of the input side of the coupling relative
to the output side is
8 =R,
ie. C = torsional rigidity of coupling = T/f =T . R/y.
Stress in Spring Sleeves.

Let £, far - - « fm eic., = bending stresses in the various
sleeves of each pack.
Then Fa=6.Pn.7,J(b. 20, . . (132)

Since the tangential deflection at the pitch line for the
whole spring pack is also the tangential deflection for each
sleeve of the pack, the following relationship is obtained from
Equation (131):—

E.b.y6.7 =P, r3t% =P, 13t
=P, rdid =. . . =P, 30

Also, since for maximum resilience the same stress must
occur in each sleeve, the following relationship is obtained
from Equation (132):—

b fio =Py .ryft,2=P,y. 7yt
=Py 1t =. . . =Pl
Combining these results,

talty = 7:311® OT Enftingy = 7,2(7%0s), . (133)
and PofPy=13r® or Po/Playy = 1287y, . (134)
ie. the thicknesses of consecutive sleeves are proportional to
the squares of the mean radii of the sleeves, and the tangential
loads at the pitch lines of consecutive sleeves are proportional
to the cube of the mean radii of the sleeves.

The selection of the best combination of sleeves is largely
a matter for trial and error, but this process is facilitated by
making the following simplifying assumptions for the first
attempt.

It has already been shown that 2,/f, = 7,%/7,%, and, since
the sleeves fit snugly inside one another,

ra =17, — (t; + 1a)/2,

Le. £y = tl(t.x.:%___("d'fa))”_
1
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If it is assumed that ¢, =¢,, and that higher powers of
¢ can be neglected, the above expression reduces to

by =1(I — 2. 4,/ry),
and ty = 1o(T — 2. £,frs),

by =tpoll —2 .ty sfrus). . . (135)
Also, for correct fitting of sleeves,

7y =17, — 05(t; + £o),

75 =15 — 0-5(fs + £3),

Tn=tpy — 05(tn-1 + a), . . (136)
where 7, and #, are the mean radius and thickness of the
outermost sleeve.

Example 32 shows the application of the above methods
to the design of a sleeve spring coupling.

ExaMPLE 32.—Calculate the torsional rigidity and load-carrying
capacity of a spring sleeve coupling to fulfil the following

specification :—
Pitch circle of spring packs == 3% ins. radius,
Bore of housing of spring packs = 275 ins.,
Number of sleeves per pack =6,
Number of packs =6,
Width of sleeves = 2-0 ins.,
Thickness of outermost sleeve = 0-100 in.

Since the bore of the housing for each pack is 2-y5 ins. and
the outermost sleeve is 0-100 in. thick, the mean radius of the
outermost sleeve is (1-375 ins. — 0-050 in.) = 1-325 ins,,

ie. 7, = 1325 ins. ; and ¢, = 0100 in.

The approximate dimensions of the remaining sleeves can
be determined by applying Equations (135) and (136), as shown
in the following tabulation :—

For example,
2, = £5(I — 2. §4/r;) = 0-T00(T — 2 X 0-100/1-325)
= 0-085 in.,
and 7, =7, — 05(; + ¥s) = I-325 — 0-5(0°X00 + 0085)
= 1233 ins.
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The value of ¢, obtained by this method differs from the
true value as follows :—
true value of £, = f; . 7,%/7,% = 0-100(1-233/1°325)% = 0-087in.,
or,ingeneral, ¢, = t, 4(ra/tn_1)%

The correct dimensions of the various sleeves can therefore
be quickly determined from the approximate dimensions in
columns 2 and 3 of the following table by applying the above
equation. The correct dimensions are given in columns 4
and 3 of the table —

! { Permissible

s | ! Defiectio

§ | Corrested D Toadon ' | Codine.

£

@ P i . t P,. UK,

1 | 1-325ins.| o'rooin. | 1325 ins. | o100 in. 214 Ibs. 1370

2 | 1233 0085 1232 0087 174 1120

3 | ris54 0073 1151 0076 142 910

4 | 1086 o0b4 1080 0:067 118 760

5 | 17026 0056 1017 0059 97 620

6 | 0973 0050 0961 0053 83 530
P=8281bs.| 1/K=5310

A consideration of the action of these sleeve springs shows
that the stress in any fibre is always uni-directional, even when
the applied torque on the coupling reverses. The greatest
stress range occurs, therefore, in couplings fitted to reversible
drives, in which case the minimum stress is zero. The safe
stress range for rectangular strip in bending is given in Fig. 54,
and for zero minimum stress the permissible maximum stress
is 85,000 Ibs. per sq. in.

The sixth column of the above table shows the maximum
permissible load on each sleeve and is obtained from Equation
(132), using a working stress of 85,000 1lbs. per sq. in.

Thus, for the outermost sleeve, where 7 = 1-325 ins.,
i=o0-1001n, and b = 2-0 ins.,

P=05.2.f6.7), from Equation (132),
ie. P, =20 X 0100 X 85,000/(6 X 1'325) = 214 lbs.
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The total maximum working load for all sleeves in one
pack is the sum of the values in column 6 of the foregoing
table, namely, 828 Ibs.,
jie. T = maximum working torque for coupling =828 X 6 X 35

(6 packs each containing 6 sleeves at 35 ims.
radius) = 17,300 Ibs.-ins.

Column 7 of the foregoing table gives the values of 1/K
for the various sleeves. As already shown, the common tan-
gential deflection at the pitch circle of the spring packs is

y = PJ(1/K) = 828/5310 = 0156 in.,
and the torsional rigidity of the whole coupling is
C = T. R}y, where R is the pitch radius of the spring packs,
= 17,300 X 35/0-I156 = 390,000 lbs.-ins. per radian.

The angular deflection between the input and output
shafts when the coupling is transmitting a torque of 17,300
Ibs.-ins. is therefore

6 = 17,300{390,000 = 0'0444 radian
= 254",

The deflection limiting central piece should therefore be
designed to permit a deflection of 4 2-5° so that a torque of
17,300 Ibs.-ins. can be accommodated in either direction
and to ensure that the maximum stress range in the spring
elements does not exceed the permissible value of 85,000 Ibs.
per sq. in.

Thus the maximum capacity of this coupling is + 17,300
1bs.-ins., and this can be made up of a fluctuating torque super-
imposed on a steady transmitted torque, provided the maxi-
mum value of the combined torque does not exceed the limit
set by the stop piece. For example, a fluctuating torque of
4 8650 1bs.-ins. could be superimposed on a steady torque
of 8650 lbs.-ins., in -which case the maximum combined torque
would be 17,300 lbs.-ins., whilst the minimum combined torque
would be zero.

The deflection limiting members should be hardened on
the surfaces which contact the ends of the spring sleeves, and

VOL. L.—17
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the sleeves themselves should be a neat sliding fit within one
another (diametral clearance 0-002 in. to 0-004 in.).

The spring packs should be fitted into their bores with an
initial deflection of about 0-008 in., i.e. the bores of the spring
pack housing should be about 0-008 in. less in diameter than
the free outside diameter of the outermost sleeve of the spring
pack assembly,

This initial deflection provides sufficient pre-loading to
eliminate back-lash, which is desirable when the coupling has
to transmit torque in either direction.

The sleeve spring coupling of Example 32 has approxi-
mately the same load carrying capacity and the same tor-
sional rigidity as the spoked coupling of Example 30, and the
helical spring coupling of Example 31, i.e. the capacity of the
couplings in Examples 30 and 31 is a fluctuating torque of
+ 10,000 lbs.ins. superimposed on a steady torque of 5000
Ibs.-ins. In this example, although the maximum fluctuating
torque which could be superimposed on a steady torque of
5000 Ibs.-ins. is 4- 12,300 lbs.-ins. it would be advisable to
restrict the fluctuating portion to a value somewhere in the
legion of 4 10,000 Ibs.-ins. to avoid continuous hammering
on the central stop piece and leave a reasonable margin for
occasional overloads.

The weight of the spring material in the sleeve spring
coupling is, however, 13 Ibs., compared with 3 lbs. for the
spoked coupling and 6 Ibs. for the helical spring coupling.
The sleeve spring coupling is therefore, in general, heavier
than a coupling employing helical springs of the type shown at
I in Fig. 53. This is mainly due to the somewhat large pro-
portion of unstressed spring material which must be provided
to take the spring reactions in the hub member (see Diagram
III of Fig. 53).

Spring Plate Couplings.—Fig. 55 shows a flexible coup-
ling in which the torque is transmitted through a number of
spring steel plates accommodated in slots cut in the coupling
flanges.

The torsional rigidity of this coupling is determined as
follows :—
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Let R = pitch radius of flexible plates, in inches,

» = number of plates,

L = effective span of one plate, considered as a beam
fixed at the ends, in inches,

3 = deflection of one end of the plate relative to the
other end, in inches,

P = reaction at each end of plate for a deflection y,
in Ibs.,

I = moment of inertia of cross-section of one plate,
about neutral axis, in inches* units,

E = modulus of elasticity, in Ibs. per sq. in.

! ] =t =

TR

Bl
DeﬂectsoanagPa N

T
Bending Moment, Diagram.
Fi6. 55.—Flexible coupling.

Then, applying the equations already given for the spokes of a
flexibly connected flywheel rim,
_E.1l.y _P.L®
P=—1— o Y=uET
6E.1.y 12E.I1.x.y

M="p T

b= - T ]

The angular deflection is therefore
§—2 = _P.IF
R nE.I.R
The total torque transmitted for a deflection y is
T=P.R.n.lbs.-ins.

radians.
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Hence, the torsional rigidity of the coupling is

C_T__IZP.R.”.E‘I.R__IZE.I.%.R2
e P.L? - L® :

(x37)

For steel plates of rectangular cross-section
E = 30,000,000 Ibs. per sq. in.,
3
1=%" b
12
3 2
Hence, C=W~li Ibs.-ins. fradian. (138)
The equivalent length of shaft of diameter D is obtained as

follows :—
Let L,= equivalent length of shaft of diameter D. Then

torsional rigidity of equivalent shaft is

_T_G.I,_=.D'.G
==

¢ T P

and, assuming G = 12,000,000 1bs. per sq. in. for steel,

4
C= 1177000 D

L
1177000 Dt _ 30000000 4%. 5.7 . R?
1e. = 13 .
Dt L2 .
‘Whence, L= e R ins. . . (x39)

Siress in Plates.—The maximum bending stress is the same
as already determined for the spokes of a flexibly connected
flywheel rim, viz.,

Juss ="

i.e. for rectangular steel plates

Sz = 31;‘;[' Ibs. per sq. in.
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In the present case the torque transmitted by the coupling

is
T=P.R.n I P=m.
.T.L .

Hence, fmx = a’;ﬁ_ﬁ 1bs. persq. m. . . (140)

The maximum stress should not exceed the values given
in Table 21.

Instead of providing separate slots for each plate, several
plates can be assembled in each pair of slots. This laminated

construction provides a certain amount of inter-plate damping
which might be useful in some cases.

ExampLE 33.—Calculate the dimensions of a flexible coupling
for a 23-in. diameter shaft, assuming that there are forty-
eight spring steel plates of rectangular cross-section, $-in.
wide.

The pitch radius of the plates is 4 ins., and the stress in
the plates must not exceed 50,000 Ibs. per sq. in. when the
shear stress in the shaft is 6000 Ibs. per sq.in. Theeffective
span is 2 ins.

Also calculate the length of 24-in. diameter shaft
having the same torsional rigidity as the coupling.

The torque transmitted by a 24-in. diameter steel shaft for
a maximum shear stress of 6000 Ibs. per sq. in. is
_ = 31416 X 25® X 6000
M= 16.D".f—-————————]:6
= 18,400 Ibs.-ins.
The stress in the plates is
__3.M.L
Jux =R
where L=2ins.; b=05in.; n =48 R =4ins.;
and Jraax = 50,000 Ibs. per sq. in.,
3 X 18400 X 2
at X 075 X 48 X 4
‘Whence, @ = 0124 in.

ie. 50000 =
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Equivalent length of 23-in. diameter shait is

L — DA L3 ) 254 X 2°
¢ T 2554°.0.7n. R? 253 X 01243 X 075 X 48 X 42
= II'15 ins.

Referring to Fig. 55, it will be seen that over the length of
the effective span L the sides of the grooves in the coupling
flanges are flared away from the plates to permit free deflection.
In practice, the shape of the sides is such that when the coupling
is transmitting the maximum permissible torque the plates
are in contact with the sides of the grooves. The effective
span of the plates is thus very small when overloads occur,
thus preventing over-stressing the material. Incidentally,
the alteration in the effective span when the torque becomes
excessive produces a corresponding alteration of the torsional
rigidity of the coupling. This alters the torsional vibration
characteristics of the system, and enables critical speeds to be
passed through safely.

Bibby Flexible Coupling.—This coupling is described
in Chapter ro, and is illustrated in Figs. 169, 170 and 171.

A fundamental and very important difference between the
Bibby coupling and other couplings of the type shown in Fig.
55 is that the spring elements of the Bibby coupling consist
of a series of plate springs or rungs which are connected to-
gether in grid formation as shown in Fig. 56.

This construction not only overcomes the very real diffi-
culty of anchoring the ends of the plates in the construction
shown in Fig. 535, but also provides considerably greater resil-
ience and freedom to allow for mis-alignment of the input and
output shafts.

Furthermore, the grid formation ensures that the rungs
bear only on one side of the grooves for a given direction of
torque loading. This avoids any tendency for the rungs to
become locked in the grooves, which sometimes occurs with
plain bars of the type shown in Fig. 55.

In one rather striking instance where a Bibby coupling
had been operated for a long time with an abnormal amount
of radial mis-alignment, and without lubrication, each, rung
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had worn on ome side only to about one-half its normal

thickness before fracture occurred.
The forces acting on one element of the grid spring are

shown in the left-hand diagrams of Fig. 57.

Let P = tooth reactions, in Ibs.,

T = torque transmitted by coupling, in Ibs.-ins.,
R = pitch circle radius of rungs, in ins.,

a = thickness of rung, in inches,

b = width of rung, in inches,

¢ = pitch of rungs, in inches,

L = length over teeth, in inches,

S = overall length of rungs, in inches,

Q = end reactions on each rung, in lbs.,

n = number of rungs,

E = modulus of elasticity, in Ibs. per sq. in.,
f» = maximum bending stress in rung, in Ibs. per sq. in.,
I = moment of inertia of cross-section of rung in ins.*

=b.a%12,

M = bending moment on rung, in lbs.-ins.,
W = resilience, in ins.-lbs.,

7 = radius of sides of teeth,

C = torsional rigidity of coupling, in Ibs.-ins./radian.

Then, referring to the top left-hand diagram in Fig. 57,

for equilibrium of each rung, P.L =Q.c,
or Q=P.Lfe

It should be noted that there is no unbalanced force on
each rung, and that the couple due to the tooth reactions
P is balanced by the couple due to the end reactions Q.
Furthermore, the end reactions Q of one rung are absorbed
by the equal and opposite end reactions of the adjacent rung,
so that there is no unbalanced exfernal end reaction.

The maximum bending moment acting on each rung is

M=0Q.¢/z2=P.L2
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Hence, the maximum bending stress in the rung is

»=M/Z, where Z=15.a%6,
for a rectangular cross-section,

ie fo=3.P.L/(b.a?.
Also, if T = torque transmitted by the coupling= P . R.#,
3.T.L
then, fo= Bt - . . (1404)

which is the same as the expression for the stress in the spring
elements of the coupling shown in Fig. 53.

Equation (1404) gives the maximum bending stress which
would occur in the rungs when transmitting a torque T, assum-
ing that this torque is not sufficient to cause the rungs to con-
tact the sides of the teeth, ie. assuming that the distamce
between the tooth reactions L is not altered when the coupling
is transmitting a torque T.

In practice, the maximum bending stress which can occur
in the rungs is limited by the radius of the sides of the teeth,
because, as the transmitted torque increases, the rungs come
gradually into contact with the sides of the teeth until, finally,
the reactions P occur close to the points of the teeth and the
rungs are bent to the radius of curvature of the teeth.

If the radius of curvature of the teeth is 7, the maximum
possible bending stress in the rungs is therefore

H=E.az.n. . . . (r41)
Resilience of Coupling—The shear and tensile resilience is

small and will be neglected in the following treatment.
Consider one-half of a rung, s-#«-» in Fig. 57.

Bending in Portion st.—

p— I 2
Wam s o
but M,== sing,
2
and M = maximum bending moment acting on rung

=Q.cf2.
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W M2 woclt | ) P
== sin?. «. dx.
Hence, 1=3TE Ijo

Also, r=c.a2, or o= 2xc,

where x is the length of arc subtending angle «,
Mz pEeclt 2
L J— p— 27
Le. W, = o IL sin® = . dx

=2 )
TE.IN16/°
Bending in Poriion t-u—Since in this case the bending

moment is constant and equal to the maximum bending
moment in the rung, viz M= Q.¢cz2=P .1z,

W, =L rdx,

2. E. 1]
: . M2
e W=gy().
but y—S/z—L/z——c/ =8 —-L—c)f2

. S—L—¢
Hence, W, E I(\ —————Z————)

Bending in Portion u-v.—Bending moment varies from
zero to the maximum bending moment in the rung, viz. M.,

ie. s=P.x

Hence, W;= ;_3 IJ Pz, %% dx

L3

- 48 E.T
but M = maximum bending moment on rung =P . L/2,
. M2 /L
ie. W= E_I(I—2>
Total Resilience.
Resilience per half-rung = (W, + W, + W)
M’ S — L —c¢, L
TE. 6 o+ * 12)
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Hence, total resilience of » rungs,
M2 (128 — 8L — 2570\

V=1 A

and since ¢ is small compared with S and L the expression
for total resilience of the coupling is

M2
6.E.1
* Torsional Rigidity of Coupling.
From Equation (125), C = T?%(2W).

Now, T = torque transmitted by coupling =P.R.#,
M = maximum bending moment on each rung = P. L/z.

W= 3.8—z2.L).n . . (r42)

Hence, C = torsional rigidity of coupling

12.2.E.I.R? . .

1538 — 2L) © Ibs.-ins./radian. . . (143)

The usual proportions of the rungs are given in Fig. 56, viz.,
S=36a; L=24a; b=4a; c=m.a

[Note : ¢ is the minimum pitch for forming the bends at the ends of the
rungs. The height of the teeth can be reduced to 075 . b where weight mast
be minimised.]

7 =ymaximum number of rungs permissible = 2 . R/a.
With these proportions Equation (r43) reduces to
C=TR2.E/4320. . . . (144)

Also, with these proportions the expression for the maximum
stress in each rung, Equation (140), reduces to

H=0.TRQ. . . . (1)
Finally, since T =Cé,
8 = amplitude of angular deflection across coupling
= T/C radian
= 57-3T/C degrees,

* This treatment neglects back-lash between the rungs and grooves.
A method of allowing for back-lash is given in Chapter 10,
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where T and C are obtained from Equations (140) and (143)
respectively.

The permissible working stress in the spring steel rungs
of couplings of this type is = 50,000 Ibs. per sq. in. for couplings
which are used as resilient members only, and 4 25,000 Ibs:
per sq. in. for couplings which may have to work under resonant
conditions, for example, when they are used in the construc-
tion of torsional vibration detuning flywheels. The lower
value of the permissible working stress allows for stress con-
centration at the bends at the ends of the rungs when the springs
are subjected to reversed bending loads.

ExaMPLE 34.—Calculate the principal dimensions of a coupling
of the type shown in Fig. 56, assuming that the trans-
mitted torque is = 10,000 lbs.-ins., and the required
torsional rigidity is 400,000 Ibs.-ins. per radian. The rung
proportions given in Fig. 56 may be used.

Torsional Rigiditv.—From Equation (144),

C =R3. E/4320,
ie. R? = 400,000 X 4320/30,000,000
=373,
or R = 3-86 ins.

Stress in each Rumg—Assuming that the coupling is not
intended to run continuously under resonant conditions, a
working stress of + 50,000 Ibs. per sq. in. may be used.

From Equation (145)

fo=9.TI(R? . )
Hence, =9 X 10,000/(50,000 X 14:9) = 0-12 in.

The principal dimensions of the coupling are therefore

a = thickness of rung = o0-12 in.

b = width of rung = 4.4 = 0-48 in.

S = overall length of rung = 36 . 4 = 4-32 ins.
L = overall length of teeth = 24 . 2 = 2-88 ins.
R = pitch circle radius of rungs = 3-86 ins.

# == number of rungs = 2. R/a = 64.
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The total weight of the spring elements in the coupling is
45 Ibs., which is very nearly the same weight as the spring
elements of the much larger diameter spoked coupling of
Example 30, and is much less than the weights of the helical
spring and sleeve spring couplings of Examples 31 and 32.
Since these alternative couplings have about the same tor-
sional rigidity and are designed with a similar factor of safety
it appears that the Bibby coupling is the most efficient of the
types investigated.

It is of interest to compare the relative capacity for storing
energy of the Bibby coupling with the coupling shown in
Fig. 55.

The torsional rigidity of a coupling of the type shown in
Fig. 55 having the same rung dimensions as the above Bibby
coupling is given by Equation (137),
ie. C=12.E.1.R? a3

= Iz X 30,000,000 X 0-000069 X I49 X 64/23-8
= 1,000,000 Ibs.-ins. per radian.

Thus the torsional rigidity of the coupling shown in Fig. 55
is two and a half times that of the Bibby coupling, in other
words, the energy storing capacity, or resilience, of the Bibby
coupling is two and a half times that of the coupling shown in
Fig. 55. This is also illustrated by the comparative resilience
diagrams in Fig. 57.

The weight of a coupling of the type shown in Fig. 55 will
not be appreciably less than that of the Bibby coupling, because
the active material in the overbanging ends of the Bibby rungs
is replaced by the inactive material required to anchor the
rungs in couplings of the type shown in Fig. 5.

It should also be noticed that the difficulty of anchoring the
rungs, which is a real disadvantage in couplings of the type
shown in Fig. 53, is completely overcome in the Bibby design.

Furthermore, by increasing the ratio S/L, the above com-
parison of resilience becomes even more favourable to the
Bibby coupling.

In cases where the coupling is required to operate con-
tinuously in resonance the working stress should not exceed
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+ 25,000 lbs. per sq. in., as already mentioned. Where the
space available for accommodating the coupling is such that
the proportions of the rung given in Fig. 56 are unsuitable,
Equations (140) and (143) can be used to determine the char-
acteristics of a coupling having more suitably proportioned
rungs.

Rubber-in-Shear Couplings.—In many cases the simplest
and most effective solution of a torsional vibration problem
is to tune the system so that no important resonant zone occurs
within the operating speed range. Tuning is carried out by
adjusting the inertia or the elastic characteristics of the oscil-
lating system, so that the frequency is either raised to such
a value that only high-order criticals of feeble intensity occur
within the operating range, or so that the frequency is lowered
to such a value that the operating range lies in the wide gap
between two low-order resonant zonmes. In many cases a
solution by increasing the natural frequency to a sufficiently
high value is undesirable, because it entails a disproportionate
increase in the scantlings of crankshafts and transmission
shafts, which in turn means a large increase in overall weight
of the power plant, a point of fundamental importance in
transport and aeronautical applications. .

Moreover, the trend towards higher operating speeds is
tending to make such a solution increasingly difficult, in other
words, speed increases are tending to do more than offset possible
frequency increases.

There remains the possibility of a solution by lowering the
frequency, and this implies either an increase in the polar
moments of inertia of the oscillating members or an increase
in the flexibilities of the elastic connections.

An increase in the polar moments of inertia is obviously
undesirable, since it not only implies an appreciable increase
in overall weight but also might introduce difficulties due to
the introduction of critical zones, corresponding to higher
modes of vibration, into the operating speed range. Provided
sufficiently compact flexible elements are available, however,
the alternative method, i.e. an increase in the flexibility of the
elastic connections, can be successfully utilised. This method
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avoids weight increases, and the flexible element can generally
be introduced in such a manner that troublesome critical
zones, due to other modes of vibration, are avoided.

H

il ]

Fie. 58.—Rubber-in-shear couplings.
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Various types of flexible couplings employing metallic
spring elements have already been described, all of which have
been successfully used in practice.

Their range of flexibility is somewhat limited, however,
since they tend to become unduly heavy and bulky when large
increases in the flexibility of the elastic connections is required.

An alternative type of flexible coupling, which can be built
in a very compact form, is the rubber-in-shear type shown in
Fig. 58. In its simplest form a rubber-in-shear coupling con-
sists of a flat steel plate on the input side of which is bonded
a disc of rubber. The other face of the rubber disc is bonded
to a similar steel plate on the output side of the coupling.

The use of rubber as a structural material is a comparatively
recent engineering development following the introduction of
reliable bonding processes, so that the following notes relating
to its physical and mechanical properties are of interest.

Pure rubber is almost never used for structural purposes.
Structural rubber is invariably an “ alloyed ” material, i.e.
the rubber is compounded with various other ingredients.
When subjected to a temperature of 150° C. the physical
properties of rubber compounds containing sulphur and certain
other ingredients become stabilised. This process, which is
probably the most important in rubber technology, is known
as vulcanisation. During the vulcanising process the com-
pound is usually confined within a metal mould and subjected
to a pressure of several hundreds of pounds per square inch.

Rubber is practically incompressible, having a bulk modulus
of 300,000 to 400,000 Ibs. per sq. in., and will not deflect if
fully confined. It is a non-conductor of electricity and a poor
conductor of heat. It is not easily injured by castor or other
vegetable oils, but mineral oils and solvents such as naphtha
readily attack it. Flexible glyptal lacquer or plasticised shellac
form a useful protective coating against oil drips.

Ageing of Rubber—Rubber and its compounds are subject
to a natural ageing effect which tends to stiffen the material,
to reduce its elasticity, and render it brittle. Ageing of rubber
is caused in two ways, by the continuation of the vulcanising
process during use and by oxidation.



FLEXIBLE COUPLINGS 273

Anti-oxidants are available which stop the continuation of
vulcanisation and restrain oxidation. Preservatives have little
effect on the hardness of rubber compounds, although those of
a resinous nature might have a slightly softening influence.
Permanent hardening with age is a very slow process, and as
a general rule aged vulcanised rubbers regain most of their
initial softness when heated, for example, when boiled in water
for a few minutes.

A point to be kept in mind when designing rubber com-
ponents is that thin sections exposed to the air should be avoided
since such sections are more easily destroyed by oxidation. In
the case of thick sections it is only a small depth of rubber
at the exposed surface that is affected.

The commencement of actual ageing can be considerably
delayed by stopping the vulcanising process short of the
optimum cure time. This leaves a percentage of free sulphur
which must be absorbed before the optimum is reached and
reversion can take place.

In some quarters this is considered to be the ideal state of
vulcanisation with a view to securing good ageing properties.
It should be borne in mind, however, that certain applications
require the use of rubber compounds containing as small an
amount of free sulphur as possible to avoid corrosion of parts
in contact with the rubber, for example, rubber-lined stern
tubes of ships.

Automobile experience indicates that rubber components
can be expected to give from eight to nine years useful life.
Other authorities state that a durability of from five to fifteen
years can be expected, depending on the exact quality and
the particular application. A reasonable estimate for design
purposes is at least four years, with a possible maximum of
eight years under favourable conditions.

Effect of Temperature on Rubber Compounds.—Since struc-
tural rubber compounds are obtained from substances manu-
factured at a temperature of 160° C. it is evident that the
durability of the finished product cannot be guaranteed for
steady temperatures exceeding 80° to 100° C. The rubber
becomes softer under increasing temperature, the deformation

VOL. L.—18
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under a given load increases, and the hysteresis loss decreases.
It is therefore important to protect rubber against rising tem-
perature, and care should be taken in design to shape the com-
ponents so that they are favourable for heat dissipation. It
should be kept in mind that rubber is a poor conductor of heat
and that whilst this is of advantage for heat insulation applica-~
tions it hinders the flow of heat generated under excessive
stress cycles and can be a source of serious temperature rise.

Safe practical temperature ranges for rubber compounds
lie between — 18° C. and +50° C. In exceptional circum-
stances steady temperatures as high as 80° C. can be tolerated
with certain compounds, but this value should not be regarded
as a figure to be used generally. The effect of low temperature
is to harden the rubber and render it brittle. For example,
at — 75° C. rubber becomes so brittle that it breaks under a
sharply applied blow.

This brittleness disappears again, however, when the
temperature is restored to normal. Special rubber compounds
are available which can be used at temperatures as low as
— 25° C. which is still, however, not as low as the minimum
temperature attainable at high altitudes in the case of aero-
nautical applications, e.g. — 45° C. at 30,000 ft., and —37° C.
at 35,000 it. and above.

In the case of rubber compounds used as flexible couplings
or for engine mounting systems, however, the vibratory nature
of the loadings can be assumed to cause sufficient internal
heating to maintain the temperature of the rubber at a toler-
able value even at high altitudes.

Hardness of Rubber.—Experiment has indicated that with
strict manufacturing control the qualities of rubber generally
used for flexible couplings and engine mountings give practically
the same elastic properties for a given shape and hardness.
The hardness of rubber compounds is measured by a standard
instrument known as the Shore Durometer and the degree of
hardness is expressed on 2 simple numerical scale, for example,
““ Shore Hardness 35, and so on. The Shore Durometer
consists of a spring-loaded flat-tipped tapering needle 1-5 mm.
in diameter tapered to 075 mm. With this instrument hard
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qualities give high hardness readings and vice-versa. The
softest grade of rubber registers about 30 and the hardest
about 9o, the latter representing hard vulcanite. The usual
range for structural rubber suitable for flexible couplings is
from 35 to 70 Shore. The Shore Durometer is a simple instru-
ment, but considerable skill is required to ensure that con-
sistent readings are obtained. In this respect the instrument
compares with the caliper rather than the micrometer, and
for this reason it is considered good practice to retain one
particular instrument for final checking of products and to
make one particular person responsible for carrying out the
tests.

Hardness increases with the proportion of mineral fillers,
and for high grade mixings carbon black pigments are ex-
tensively used for this purpose.

Hardness also increases with increasing sulphur content
and with an advance in vulcanisation. High proportions of
sulphur, e.g. 20 to 30 per cent., produce a rigid hard rubber.

This facility for changing the hardness of rubber compounds
over a wide range is of considerable value in cases where rubber
is used for controlling the vibration frequencies of oscillating
systems. This is a unique property of rubber. Thus the
shear modulus of structural rubber of Shore hardness 30 is
about 50 lbs. per sq. in., whereas for Shore Hardness 70 it
is about 150 Ibs. per sq. in., i.e. a three-fold increase. In the
case of steel, on the other hand, the modulus of rigidity lies
between 11,000,000 and 12,000,000 1bs. per sq. in. irrespective
of the physical or other mechanical properties of the material.

The flexibility of a rubber coupling can therefore be varied
over a wide range by changing the hardness of the rubber
without altering the dimensions of the coupling.

It should be borne in mind, however, that it is possible for
a skilled rubber tcchnologist to produce more than one rubber
mix indicating the same hardness but each having different
mechanical properties. It is therefore necéssary to adhere
strictly to a definite rubber mix for each specific application,
and to exercise strict control over every stage of the production
processes.
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Damping Properties of Rubber.—The damping properties of
rubber depend to some extent on the compounding ingredients
and their proportion. For example, pure gum has little
hysteresis although there is usually sufficient to be of some
practical value for damping purposes. An increase in the
proportion of lamp black has a marked effect on the damping
properties, and high hysteresis values are obtained by loading
the rubber with pigments.

Rubber compounds having high hysteresis are best avoided
for structural applications, however, because they have also
a high rate of creep, ie. they tend to settle down under load
so that they do not return to their original configuration when
the load is removed. This is fatal where the alignment of
the parts connected by the rubber element must be maintained.

Rubber compounds having high hysteresis and low creep
have not been discovered.

The work absorbed during each load alternation in the
case of rubber decreases with increasing frequency of alterna-
tion and tends towards a limiting value, The damping pro-
perties are also a function of the vibratory amplitude. This
implies that the vibrational characteristics of oscillating
systerns employing rubber as a spring element are not strictly
linear. It should also be noted that damping values derived
from static hysteresis experiments are not of much value.
For example, conical disc couplings of the type shown at IT
in Fig. 58 average 16 to I8 per cent. static hysteresis loss,
whereas the dynamic value is nearer 6 per cent.

It is very difficult, therefore, to make general rules relating
to the damping properties of rubber because of the great
differences of amplitude, frequency, and loading found in
practice between one particular example and another.

As a general rule the quickest method of finding a solution
in a particular case is to assume that the system obeys the
laws of linearity for the purpose of the initial design and then
by careful testiig to determine whether any alteration is
desirable. If the tests indicate that some change is required
this can usually be carried out merely by changing the hardness
of the rubber compound.
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The damping energy ratios for a typical range of structural
rubber compounds are given in the attached table. The energy
loss and dynamic magnifier can be determined by the methods
given in Chapter 7, as follows :—

Let i, = damping energy ratio,
3W = energy absorbed by damping per cycle,
W = strain energy at commencement of cycle,
8 = amplitude at commencement of cycle,
80 = reduction of amplitude per cycle,
M = dynamic magnifier,
A = logarithmic decrement per cycle.

Then, from Equation (300}, 3, = 2 . A = 3W/W,
and, from Equation (305), M=2.x/¢,

A= yf,[2 = 86/6.
For example, if ¢, = 018,
W =018. W,
80 =o009.4,

M = 6-283/0-18 = 35.

Working Stresses.—Permissible working stresses are natur-
ally governed by the quality of the rubber and of the bonding
process. The tensile strength of rubber compounds varies
widely with quality, for example, from as low as 100 lbs. per
sq. in. calculated on the original cross-section to as much as
4000 Ibs. per sq. in. of the original cross-section.

The elongation at rupture varies from as little as 10 per
cent. to as much as 800 per cent. Average values for good
quality structural rubber are tensile strength zoco to 3500 Ibs.
per sq. in., of original cross-section, and elongation 600 to 8oo
per cent.

Owing to its non-crystalline or amorphous character and
low elastic moduli rubber is not subject to fatigue failure
except in cases where excessive heat is generated in the material
through hysteresis. This is a further point in favour of avoid-
ing rubber compounds having high hysteresis.

With regard to bonding strength, modern brass plating
processes have an ultimate tensile strength at the bonding
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surface as high as 800 to 1000 Ibs. per sq. in., depending on
the hardness of the rubber, whilst in general applications a
bonding strength of at least 200 to 400 Ibs. per sq. in. of bonded
area can be safely relied upon.

Brass plating methods of bonding are generally accepted
as giving the best results. They can be used for bonding
rubber to any material which will take the brass plating, al-
though, so far, the greatest success has been obtained with
steel and to a lesser degree with one or two of the light alloys.

The main essential so far as steel is concerned is that it
must have a low carbon content, certainly not greater than
0-4 per cent., and preferably down to 0-18 per cent.

The most important characteristic from the point of view
of permissible working stress is, however, the creep characters
istic of the compound employed, and most working stress
limitations hinge about this single property.

Normal working stresses in tension, torsion, or shear should
be limited to from 40 to 70 Ibs. per sq. in. of cross-section,
whilst the strain should not be permitted to exceed about 70
to 8o per cent.

Creep tests over long periods confirm that these limitations
will ensure satisfactory service. The above values of per-
missible stress apply to both the rubber itself and to the bonded
surfaces.

In the case of rubber-in-shear flexible couplings a working
shear stress of 60 to 85 Ibs. per sq in. is reasonable, whilst
the coupling can be permitted to carry a compressive stress
of 85 Ibs. per sq. in. due to the axial thrust of a propeller or
air-screw. In exceptional cases the compressive stress can
be permitted to reach 130 Ibs. per sq. in. )

The properties of structural rubber suitable for use in
flexible couplings are given in the following table. The values
given in the table are from figures published by the United
States Rubber Company and relate to U.S. Structural Rubber.

‘Whilst these values are believed to be fairly representative
it should be kept in mind that considerable variations are
liable to exist between the products of different manufacturers.
It is to be hoped that with the increasing use of rubber for
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engineering applications an effort will soon be made to produce
standardised grades of rubber to definite specifications. This
would enable a suitable grade of rubber to be selected with
the same facility as it is possible to select definite grades of
steel for specific duties.

In the meantime it is advisable to obtain design data from
the individual manufacturer.

TABLE 23.
PROPERTIES OF STRUCTURAL RUBBER.
|
! Ult. Tensle Ave
Shore Specific | on Eloagation, | Shear Tensils Damping
Hardness. | Gravity. | Cross-Section.| PerCent. | ppiiny | Modulus. ey
Lbs./In.2. 205 | s fIn 2 -
30 1-01 2000 8350 48 128 016
40 1:06 2800 750 65 190 018
50 111 3500 700 84 240 039
60 117 3500 600 108 - (23 4
70 124 3000 700 166 — 077

Note.—Specific gravity of raw rubber = 0-923,
Bulk modulus of rubber = 300,000 to 400,000
Ibs. per sq. in.
Design of Rubber-in-Shear Couplings.—The strength and
torsional rigidity of the parallel disc coupling shown at I in
F1g 58 can be calculated by applying the well-known expres-
sions for shafts subjected to torsion.

Let T = torque transmitted, in lbs.-ins.,
D = outer diameter of rubber disc, in inches,
d = inner diameter of rubber disc, in inches,
fs = surface shear stress in Ibs., per sq. in.,
H = axial length of rubber disc, in inches,
C = torsional rigidity of coupling, in Ibs.-ins. radian,
G == shear modulus of rubber, in Ibs. per sq. in.

6.T.D .
Then  f,= W—I(m lbs. persq.in., . . . (146)
C=Tjp =" =9 G ingjradian. . (147)

32. H
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In this type of coupling the maximum shear stress occurs
at the periphery of the rubber disc and diminishes uniformly
to zero at the axis of the coupling in the same manner as for
shafts in torsion.

The conical disc type of coupling shown at II in Fig. 58
is more commonly employed for rubber-in-shear couplings,
since it provides a uniform distribution of shear stress across
the coupling, i.e. the shear stress at the periphery is the same
as that at the inner radius.

In this type of coupling
16.XK.T.D .
fi= o= Ibs. per sq. in., . . (148)
i g9
and C= ’l(é-)?-ﬁ@—)ﬁ—@ Ibs.-ins./radian, . (149)
where K has the following values :-
a/p. K.
I0 1°00
o8 0-88
06 o-8o
o4 073
02 067
00 063

As already explained the shear stress should be limited to
about 60 Ibs. per sq. in. to avoid trouble due to creep.

It is also desirable to calculate the surface shear strain.
Referring to Diagram III of Fig. 58,

let 6 = angle of twist across coupling = T/C,
o = angle of surface shear.
Then D.fjz=H.«a,
or o =D.08/(2. H) radian = shear strain. . (150)

As already explained this should not exceed 70 to 8o per
cent. or 40° to 45° to avoid trouble due to creep.

Diagram IV of Fig. 58 shows a method adopted in the
Pendulastic type of rubber-in-shear coupling to avoid stress
concentration and therefore a tendency for the bonded surface
to open slightly at the outer and inner peripheries.
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This is achieved by spreading the bonding areas at these
points as shown at @ and b in the diagram. Similar methods
are employed by other manufacturers.

It is also desirable to arrange the coupling bolts or studs
which connect the coupling flanges of the input and output
shafts so that they do not penetrate through the bonded surface
into the rubber. This avoids an interruption of the bonded
areas and also the introduction of points of stress concentration.

In designing bonded rubber parts the mould and the
moulding process have to be given careful consideration. An
important point is to ensure that stripping and removal of
the components is made easy, especially under mass production
conditions, since the moulds cannot be handled by bare hands.
Even with the easiest of moulds extraction requires some
skill. A further point is that any undue strain on the com-
ponent during the stripping process is liable to have serious
effects on the bond, since bonded rubber components are not
very strong at vulcanising temperatures.

Fig. 59 shows a design of rubber-in-shear flexible coupling
patented by Messts. Armstrong Siddeley Motors for air-screw
drives. An inner driving member is mounted on the air-screw
shaft splines, a disc of rubber being bonded to each side of
the steel driving disc. The outer faces of the rubber discs
are bonded to the driven plates, which in turn are bolted to the
air-screw hub, The bolts pass through holes bored through
the rubber and metal discs with sufficient clearance to permit
the normal amount of twist under service conditions. Damping
is provided by spring loaded friction washers inserted between
the driving and driven sleeves.

Fig. 60 shows a marine installation comprising two Pen-
dulastic conical disc couplings arranged one on each side of
the thrust block of a Diesel engine propeller drive. In this
case the engine itself is mounted on rubber and the couplings
permit sufficient angular freedom to act as universal joints
between the engine and the propeller.

Fig. 61 shows two designs of Metalastik rubber-in-shear
couplings. The right-hand photograph shows a normal type
conical disc coupling whilst the left-hand photograph shows
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a coupling in which stops are provided to limit the angular
movement to a predetermined amount. Limiting stops are
necessary in certain arrangements to guard against excessive

Conical
Frietion

Bonded Rubber Airscrew Boss
F1e. 59.~—Elastic coupling for air-screw (Armstrong Siddeley Motors).

twist and load when starting up or under occasional abnormal
shocks.

Fig. 61a shows a range of “ Dynaflex” rubber-in-shear
couplings.

The “ Couploflex ™’ type is made in two forms, namely, a
simple disc arrangement which is suitable for small powers



L

Fic. 6o.—Application of  Pendulastic " rubber-in-shear couplings in a marine

Diesel installation.

METALASTIK Coupling with METALASTIK
fimited angular movement. Coupling.
For waterpumps, dynames, etc. “Vee" type

Fia. 61.—'* Metalastik ”” rubber-in-shear couplings.
[To face page 282.
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and a three-plate arrangement suitable for powers of 5 h.p.
upwards. Fig. 615 shows a recent development of the three-
plate arrangement. The centre plate operates against the two
outer plates so that for a given overall diameter the three-
plate coupling is capable of transmitting appreciably greater
powers than the simple two-plate design.

In the design shown in Fig. 616 a number of rubber-lined
recesses are formed round the periphery of the centre plate.
The bolts and distance pieces which connect the two outer
plates pass through these recesses, so that in cases of abnormal
overloads the distance pieces contact with the ends of the
recesses, thus preventing undue strain. Additional strength
can be provided by replacing the separate distance pieces by
a continuous ring passing round the outside of the coupling.
This not only gives additional strength but can be made to
serve as a casing for protecting the rubber from oil drips.

Couplings of this type have been successfully supplied up
to 21 ins. outside diameter, transmitting 20,000 Ibs-ft. torque
for use on engine test installations.

The “ Radiaflex ” bobbin type coupling forms a very useful
and flexible arrangement, but its overall dimensions are con-
siderably greater than those of other types. Where space and
weight are not of primary importance, however, the bobbin
type coupling provides a comparatively inexpensive and re-
liable solution. It has, for example, been used successfully
on radial aero-engine test bed installations.

In the “ Cardaflex ” coupling the special hyperbolic con-
tour of the rubber element gives an even stress throughout
the rubber. This coupling has very great torsional and conical
flexibilities and is, therefore, suitable for applications where
these properties are required. For example, for driving in-
dependent auxiliaries from an engine where positive alignment
of the engine and the auxiliary cannot be maintained. In
such cases a Cardaflex coupling is provided at each end of the
auxiliary drive shaft and this enables quite appreciable relative
displacements to occur without detriment. The rubber element
of this type of coupling is remarkably resistant to destruction,
and in one test sustained a torsional deflection of 272° with
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TYPE SKETCH

COUPLOFLEX

COUPLOFLEX
HY
RADIAFLEX
RADIAFLEX
CARDAFLEX b

ROTULEX

Fi1G. 6xa.—"“Dynaflex” type rubber-in-shear couplings.
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REMARKS
Coupli r small powers O-15 to 3-5 H.P af 1000 RP M.
Suigég //gr all speeds of rolafion.
éam‘:lma{ - f‘om/derab/f_— w Ibbfbaur 5

ibili Misalis [~ jderable — 2mm, upuwards.

Flex’b’/’/y onica) iSd/l'gﬂrTleeg - l‘o'lg’d;ralg—‘f/p bm@°gnguldry
] displacement” of shafr.

Longiludinal — omparalively smadl,

Coupli r 5 H.P upwards of 1000 R.R M. with shafls
norgmnlfggﬁdligneq. Overall dimensions relslively :/n}::/l.
s s

Tosional — .L‘Lulr_zridera[é/e—d"!o 8 P
Flexibility FhralieZ Misalignment— {,s"dgb.cr ig;re::w misalignment

Qrical Misalignment —  Small. 3§ ° maximum.
Longiludinal — Very small.

For high speeds of rolaiion or high powers when Jmall overall
dimensions are required. Light, capablé of arrying high overloads.
Torsional — Normal — up o 5°
sopn | Paraliel Misalignment ~ Considerable —up Jo 5 mm.
Flexibility Conical _Misalignment — Normal — up o 5=
Longiludinel — Very small.
for all powers with speeds of rolaion up lo 1500 R.P M.
Recommended jor high ekstic qualities. May be used when overall
dinensions and Speeds permil, 1 parliculer for couplings fhe shefl5 of
which are lisble o faulty angulsr or linear ~alignment.
. et oierhes. &b 20
Flexibility rafie. ignmenl~ Congi — up min.
F— (onsiderable— 5.
7 T E’mmﬁul—up 15’":%.»:@ Ib
Flexible universal joint. Replaces mechanical and sfiding cardan
Joinfs.  Can be Combined with a cenlering mechanism in He
cdse of high speeds of rolalion.

onal — Very high— up lo 90°
F/exibilify Par Misalignmen! — Small— 1 16 3 mm.
ica]  Misalignmenl— Very high— 30°and over.

Longiludinal — Very high— 10 o 30 mm.

Flexible wniversal joinl. Replsces mechanical joint, In  parficulsr
‘where small overall diemelers are required.

Torsi —  (nsiderable — up 5 10

it Parallel _Misalignmen — Aboul 2mm.
Flexibilily \ &oical Fisslisnmont — Up & 30-
Longiludinal — 2 m.m— maximum.
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only slight knotting of the rubber and with no apparent damage
to the bond. On releasing the load the coupling returned to
its original static position and appearance.

The “ Rotulex ” coupling is used as a universal flexible
joint and has successfully replaced mechanical universal joints

i

ig

F1G. 615.—" Dynaflex ” rubber-in-shear coupling (3-plate type).

on automobile propeller shafts. The additional damping
provided by the rubber is useful for resisting starting shocks,
especially when the couplings are used as universal joints for
shafts with a comparatively large included angle between their
axes.
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CHAPTER 3.
GEARED SYSTEMS.

Equivalent Systems.—A geared transmission system
consists of a series of rotating masses of moments of inertia
Ja Jos etc., attached to shafts of torsional rigidities C,, C,,
etc., which are geared together so that the mean angular
velocities of the respective shafts and masses are g, g, etc.

The determination of the torsional vibration characteristics
of such a system is considerably simplified if the actual system
is first replaced by a dynamically equivalent system in which all
shafts and masses rotate with the same mean angular velocity,
or, in other words, in which the gear ratios of the several
elements of the dynamically equivalent system are all 1/1.

Assuming that the connections inside the gearbox are
torsionally rigid, the following relationships exist between the
properties of the original system and the properties of the
dynamically equivalent system :—

(i) Let ¢, = meanangular velocity of shaft # of the original
system,
g = mean angular velocity of all shafts of the
dynamically equivalent system,
N, = r.p.m. of shaft # of original system,
N = r.p.m. of all shafts of equivalent system,

then  g/N=g,/Ny or g/gn=N/Np
(i) Let M, = the mean or the fluctuating torque in shaft »
of the original system,
M = equivalent torque in corresponding shaft of
equivalent system,

then M,.g=M.g or M/Mn=qn/q=Nn/N'
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(i) Let 6, = angular amplitude of vibration of shaft = of
original system,
6 = equivalent amplitude of vibration of corre-
sponding shaft of equivalent system,
then 0)q = 4/g, or 66, = gjg. = N/N,.
(iv) Let J, = moment of inertia of mass on shaft # of original
system,
J = equivalent moment of inertia of mass on cor-
responding shaft of equivalent system,

then kinetic energy of mass J, on shaft # is
K,=}.Jn gt
Kinetic energy of mass J on corresponding shaft of equivalent

system is

K=1.J.¢

K,=K,

JiTn= (g:/9)* = (Na/N)2.

(v) Let C, = M,/b, = torsional rigidity of shaft » of

original system,

C=M/# = equivalent torsional rigidity of cor-
responding shaft of equivalent
system,

then strain epergy of shaft s,
P,=3%.M,.8,=%.C,.0.%
Strain energy of corresponding equivalent shaft,
P=1.M.6=1.C.07

and since

and since P, =P,
C/Cu = (6216)® = (gafg)* = (N/N)2
Summary —
M/M, = N,/N, . . . (z51)
0/6n = N/N,, R e )]
Ja=@/N)2, . .. (153)
C/C, = NL/N), . (154)

where N, = revs. per min. of shaft # of original system,
N = revs. per min. of all shafts of equivalent system.
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Equations (151) to (154) may also be used for converting any
quantities obtained by calculations based on the equivalent
system into corresponding quantities for the original system.

Frc. 62.—Geared systems,

X —sp—— ¢
Two-Shaft Systems.—Fig. 62¢ shows a simple geared
system consisting of masses of moments of inertia J, and J,
attached to shafts of torsional rigidities C, and C,; the shafts
being geared together by gears of moments of inertia J, and J,.
VOL. 1—I9
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The speeds of the two shafts are N, and N, revs. per min.
respectively.

Fig. 62b shows an equivalent system in which all shafts and
all masses of the original system shown in Fig. 62« are replaced
by dynamically equivalent shafts and masses all rotating with
the speed of shaft @, viz. N, revs. per min.,

ie. Jl =T
=[J.+7J a(\'a/N )%, (from Eqn. (153)],
b .é 5(No/No)? - [from Eqn. (153)],
Co=Cy(Ny/NJ2. . [from Equ. (154)].

The original system therefore reduces to the three-mass
system shown in Fig. 625, and the natural frequencies of
torsional vibration may be calculated from Equation (r9),
viz.

JI'JI ]1']8 JI'JS JB'Jﬁ
— w2 dilad2 g dreds  Jiads y J2Js
Qo Ja b Jo —w Ht 4 e 4 G J+J ; ]
W Jy JaJs
TG °

This equation may also be written

(Ju+ Jo + J) — we® (Jofue® + J /wlz + Jifwe? + Jofws?)
+ wet . Jofwi®. ) =0, (135)
where  w®, = v/C/], = phase velocity of natural vibration of
mass J, on its shaft regarded as
fixed at the gearbox,
wy = V/CyfJ s = phase velocity of natural vibration of
mass J, on its shaft regarded as

fixed at the gearbox,
w, = phase velocity of natural vibration of whole
system
_2z.w.F,
==

F, = natural frequency of torsional vibration of whole

system in vibs. /min.
There are two real toots of Equation (155), indicating two
possible modes of vibration. The connections inside the gear-
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box are assumed to be torsionally rigid, and the moments of
inertia of the shafts have been assumed to be negligible com-
pared with those of the masses and gears.

The arrangement shown in Fig. 62z is typical of many
practical applications of geared drives where the gearing is
usually single or double-reduction. If double-reduction gearing
is employed, care must be taken to use the correct speed for the
first reduction wheel and second reduction pinion when obtaining
the equivalent moments of inertia of these parts from Equation
(x53). The speed of the first reduction pinion is, of course, that
of the primary shaft, and the speed of the second reduction
wheel is that of the secondary shaft.

The following special cases should be noticed :—

@) EJy=Ja=] and C;=C,=C, ie wy=w=1w,

Equation (155) reduces to

Ut 2) = 2528 (14 1) + 0. Tufot = o,
Le. w2=w? or w¥z.J -+ Jo)/J. . (136)

In this case there are two possible modes of vibration. The
fundamental mode is a one-node mode with the node situated
at the gears. The fundamental frequency is therefore equal:
to the natural frequency of either mass, J; or Js, on its shaft
regarded as fixed at the gearbox.

(ii) If the moments of inertia of the gears are negligible com-
pared with those of the masses J; and J;, the system
shown in Fig. 628 reduces to the two-mass system shown
in Fig. 62c.

The natural frequency is therefore obtained from Equation
(16), viz.,
we? = Cy(J1 + Ja)/J1- Ja
but Cy=C;. Cy/(Cy + Cy).

5 G C(Ja+Ja)
Hence, w, =L TGEC) . . (159)
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Equation (157) may also be written

Equation (158) may be obtained directly from Equation
(155) by substituting J, = o in the latter equation.
In this case there is only one possible mode of vibration.
(iii) If the moments of inertia of the gears are negligible,
Ji=Ja=J] and C,=C;=C, iew,=w,=w,in
Fig. 628,
Equation (158) reduces to

W=l =

- (359)

ARy

Iu this case there is only one possible mode of vibration,
and the natural frequency is equal to that of either mass on its
shaft assumed to be fixed at the gearbox. The node is therefore
situated at the gearbox.

Equation (r59) also applies in cases where J, = J, and
C, = C, in Fig. 62a.

ExaMPLE 35.—Calculate the natural frequencies of the geared
system shown in Fig. 622, assuming the following values :

Jo = 27 tons-it. sec.?, J, = 18 tons-ft. sec.?,
Je = 16 tons-it. sec.?, J,; = 0-022 tons-ft. sec.?,

C, = r000 tons-ft. per radian,
C, = 600 tons-ft. per radian.

The normal speed of shaft @ is 100 r.p.m., and of shaft b
300 I.p.m.

The original system is first reduced to the dynamically
equivalent system shown in Fig. 62b, in which the speed of all
shafts and all masses is assumed to be, say, that of shaft a,
viz. 100 T.pan.,

ie. Ji = Jo = 27 tons-ft. sec.2,
Ja=J. + Ja@p/N,)? = 16 + 0022 (300/100)?

= 1-8 tons-{t. sec.?,
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Ja = Jo(Ny/N,)? = 1-8(300/100)*
= 16-2 tons-ft. sec.?,
C, = C, = 1000 tons-ft. per radian,
Cy = C4(No/N)2 = 600 (300/r00)?
= 5400 tons-ft. per radian.
Also w,? = C,/J, = 1000/2-7 = 370 (radians/sec.)?,
wo? = C,/J; = 5400/16-2 = 333 (radians/sec.)
Hence, from Equation (135),

(2:7 + 18 4 16-2) — w*(1-8/370 + 16-2/370 + 2:7/333
=+ 8/333) + w* X 1:8/(370 X 333) =0,

ie. 207 — 0°0622 . w? + 0:0000146 . w* = o,
w=TI¢T or 625 radians/sec.,
60.w

or F= =182 or 596 vibs./min.

2m

These frequencies correspond to the one- and two-node
modes of vibration respectively.

The critical speeds of torsional vibration may be determined
as follows :—

Assuming that a prime-mover having an impulse frequency
of six impulses per revolution is attached to shaft «, then the '
critical speeds of shaft # are 182/6 = 30-3 r.p.m. for the one-
node mode and 596/6 = 9g-3 r.p.m. for the two-node mode.
A torsiograph applied to shaft @ would therefore record vibra-
tions having six complete oscillations per revolution of shaft a at
each of these speeds. Since shaft b rotates at three times the
speed of shaft a, the corresponding critical speeds of shaft & are
30'3 X 3 =9I r.p.m. and gg:3 X 3 = 298 r.p.m. respectively,
i.e. a torsiograph applied to shaft b would record vibrations
having 182/9T = 596/298 = 2 complete oscillations per revolu-
tion of shaft &.

If, however, the prime-mover is attached to shaft b, the
critical speeds of shaft  are 182/6=30-3 r.p.m. and 596/6=g9-3
r.p.m. respectively, i.e. a torsiograph applied to shaft b would
record vibrations having six complete oscillations per revolution
of shaft b. Since shaft a rotates at one-third the speed of shaft
b, the corresponding critical speeds of shaft @ are 30-3/3 = 10X
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r.p.m. and 99-3/3 = 33-I r.p.m. respectively, i.e. a torsiograph
applied to shaft @ would record vibrations having
182/10-1 = 596/33°1 = 18
complete oscillations per revolution of shaft a.
In other words, if

n, = order number referred to shaft a,

ny, = order number referred to shaft b,

N, = R.P.M. of shaft g,

N = R.P.M. of shaft 5,

$ = gear ratio = N,/N,,

then, f, . Ng = 1 . N,
e N
1e. n,,—-nb.ﬁ;_p.nb,
or, My = 1, [P . . . . (1590)

Tabulation Method.—The natural frequencies of torsional
vibration of geared systems can also be determined by the
tabulation method described in Chapter 2 (see Tables 1 to 4).
In the case of geared systems, the tabulation is modified as
follows :—

Commencing at one of the free ends of the system, the table
is completed in the usual way until the gear faces are reached.
The deflection at the gear face, colurn F, is then multiplied by
the gear ratio to obtain the corresponding value after passing
through the gears ; whilst the total torque up to the same point,
column H, is divided by the gear ratio to obtain the corre-
sponding value after passing through the gears. The frequency
table is then completed to the end of the system in the usual
way.

Tables z4 and 25 are the frequency tabulations for the one-
node and two-node modes of vibration of the geared system
shown in Fig. 624, using the values given in Example 33.

The tables are started from mass J,, and the gear ratio* is

* Strictly speaking, the gear ratio is positive if the shafts ro:nme in the
same direction as in the case of epicyclic gears, and it is negative if the shafts
rotate in opposite directions, as in the case of simple spur gears. This sign
convention is important when dealing with systems having several branches,
but not in cases where there is only one branch.
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3/r. Fig. 63 shows the one- and two-node normal elastic curves
for this system, plotted from the specific deflections in column

F of the frequency tables.
This method may also

be used in cases where Ja

there are several masses
at each side of the gear-

box.

Three-Shaft Systems.
—Fig. 62d shows a geared
system consisting of three
shafts of torsional rigidi-
ties Cq Cp and C,, with
attached masses of mo-
ments of inertia J, J»
and J, respectively. The
moments of inertia of the
gears are Jo, J, and ]y,
and the speeds of the
shafts are N,, N, and N..

Fig. 62f shows an equi-
valent system in which all
shafts and all masses of
the original system shown
in Fig. 62d are replaced
by dynamically equivalent
shafts and masses all ro-

1

Curve (1-Node 7 fibins)

Jg
L %
Ca :
! “
| o |
= ot

lormal Elastic

Nnm:a/ Flastic
Curve (2-Node Vitns.)

Fic. 63.—Simple geared system.

tati.ng with the speed of shaft @, viz. N, revs. per min.,

Je=[a+] ,(Na/Na 2+J'f (Ne/No)?], [from Eqn. (153)]

- = Ja

Jo= LA0/N,)2,
To= TN/
Cy =G,

Cp = Go(N/N,)2,
Cg = Co(No/No)%

.. [from Eqn. (153)]
. [from Eqn. (153)]

. [from Eqn. (154)]
. [from Eqn. (154)]

The natural frequencies of torsional vibration of the
system shown in Fig. 62f may be obtained from the following

equation —
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Je+ s+ I + (J1+Jz + J)Js
G

Uut Jot Jo + 30 — ]

(J1+J2+J3)L_|
+w“[Jl:Jc3(J,zch)+L =-1:J2) i LJﬁ-Js)
___L_L___JaL
C,.Cs.
This equation may also be written
(Ja+ T+ 3+ 7))
— w(Ja + Ja + J/w® + (Jo + Jo + Jo) fw?
+ (Jy + Jo + Ja) fws?]

+wl(J: + Jfont wet + (Jo + Jo)/ws? . w5 +
(Ja+ Js)/wx= w?] — wb. J./(0?. ws? . w?) =0, (160)
where 1w, = v/C,/], = phase velocity of natural vibration of
mass J, on its shaft regarded as

fixed at the gearbox,

w, = v/C,fJ, = phase velocity of natural vibration of
mass J, on its shaft regarded as
fixed at the gearbox,

wy = V/C,/J, = phase velocity of natural vibration of
mass J, on its shaft regarded as
fixed at the gearbox,

w, = phase velocity of natural vibration of whole
system

= 2. .F[6oradians per sec.,
F = natural frequency of torsional vibration of whole
system in vibs./min.
There are three real roots of Equation (160) indicating three
possible modes of vibration of the whole system.
The following special cases should be noticed :—

(i) The arrangement shown in Fig. 6z¢ consists of two masses
Ja and ], attached to the extremities of one shaft with
a third mass J, connected through gearing to an inter-
mediate point in the same shaft.
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In this case the equivalent system, Fig. 6zf, is obtained as
follows :—

Ji=Jo

Js Ua + Jo(N3/Ng), .. [from Eqn. (153)]
Js = Ju(No/No)?%, . [from Eqn. (153)]
Ji = J. (since J, and Jc are a.ttached to the same shaft),
Cy = Co,

C, = C,(N5/N,)?, .. . [fromEqn. (154)]
Cy = C, (since N, = N,).

The natural frequencies may be determined from Equation
(160), using the above equivalent values.

This arrangement is found in marine installations of the
type where an exhaust steam turbine is geared into the main
propelling shaft between the direct-coupled main engine and
the propeller (see Figs. 174 and 175).

lI

(ii) If the moments of inertia of the gears are negligible com-
pared with those of the masses J,, Js, and J,, ie if
J: = o, Equation (r60) reduces to

(Ju+ Js + Jo) — wH{{Js + J)fwd + (Ju+ J.)/wzz
+ (Ja+ Ja) fs?]
F ol w?) + Jof(wsd . ws?) + Jo/(wi®. we)]=0. (161)

In this case there are two p0551b1e modes of vibration.

(@) I Jy=J, N,=N, and C,=C, ie. w,=uw,, the
system shown in Fig. 624 reduces to that shown in Figs.
62g or 62h.

The arrangement shown in Fig. 62g is typical of installations
where two identical prime-movers are connected by gearing to
a common transmission shaft, e.g. geared oil engines for marine
propulsion.

The arrangement shown in Fig. 62k is found in motor-car
transmission systems, where J, is the moment of inertia of
each rear road wheel assembly, and C, is the torsional rigidity
of each back axle shaft.

The arrangements shown in Figs. 62¢ or 62k may be replaced
by the equivalent system shown in Fig. 624, in which all shafts
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and all masses are assumed to rotate with the speed of shaft a,
viz. N, rev./min.,
ie. Ji=Ja

Jo=1e + 2. Jals/No)],
Js=12. JuNs/No)* = z]s,

C, =0,
Cy = 2. C,(N3/N,)% = 2C,.
[Noie.—~In the general case where there are # geared masses
instead of only two, J, = [J. + # . Ja(N»/NG)%,
Cy=1n.Cy(Ny/N,)? and  Jy = n. Jo(No/No)%]
The system therefore reduces to a three-mass system, and the
natural frequencies may be obtained from Equation (155) by
substituting J; for J; and C, for C,, i.e. @, = Cy/J;.
Alternatively, the natural frequencies may be obtained
from Equation (160). In applying Equation (160), however, it
should be noted that in the present case J; = J, and w, = w,,
i.e. for the arrangement shownin Figs. 62¢g or 624, Equation (160)
reduces to

Ji+Jet+2.J9)
— wll(Js + 2. Jo)fe® + 2(J1 + Ja + Js) [w?]
+ wdl2(Js + Jo)/ws® . @t + (Jy + Jo) f0sf]
—wt. Jyful. wt=o0. . . . . (162)
Equation (162) shows that there are three possible modes of
vibration, whereas Equation (155) indicates only two.
The third mode, however, is merely the natural frequency
of mass J; in Figs. 62g or 62k on its shaft regarded as fixed at

the gearbox, viz.,
we? = Cp/Js = Cu/Js. . . (163)

The other two frequencies given by Equation (162) have the
same values as the two frequencies given by Equation (155).

It is simpler, therefore, to obtain the values of the three
possible frequencies by applying Equations (155) and (163)
rather than Equation (162).

Alternatively the natural frequencies and the shapes of the
normal elastic curves can be obtained by applying the tabulation
method to the equivalent system shown in Fig. 624.
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The tabulation method is also useful when there are several
masses on each shaft.

In the case of two multi-cylinder engines geared to a common
propeller shaft, it is important to remember, however, that in
addition to the various modes of vibration obtained by applying
the tabulation method to the complete equivalent system, there
are other modes corresponding to vibration of the duplicated
engine systems regarded as fixed at the gearbox.

The following special characteristic of an installation con-
sisting of two identical oil engines geared into a common pro-
peller shaft should be noted. If the crankshafts are set in
phase (an arrangement commonly adopted to provide syn-
chronised starting and manceuvring), and the indicator diagrams
from all cylinders are identical, those critical speeds correspond-
ing to modes of vibration where the duplicated crank masses
swing against each other about nodes at the gearbox are
unexcitable. In the case of four-stroke cycle internal com-
bustion engines corresponding cylinders of each engine must
fire simultaneously for 4l harmonic orders to cancel, i.e. the
firing interval between corresponding cylinders must be o°
and not 360°. The phasing of geared engines is considered in
greater detail in Chapter 6.

(iv) If the moment of inertia of the gears in the arrangements
shown in Figs. 62¢ and 62k is negligible, ie. if J,=0o,
the expression for calculating the natural frequencies
reduces to

wrE=1w," or ®?2.w} i w{:i }: ] (164)
where  w,® = C;/J, = C,/J; = phase velocity of mass J,
on its shaft regarded as

fixed at the gearbox.

In this case there are two possible values for the natural
frequency; the lowest or fundamental value, F=— 60 w,

corresponding to vibration about a single node situated at the
gearbox.
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(v) Referring to Fig. 62f, if [, =J,=]Jyand C, =C, =C,,
ie. @, = w, =, the expression for calculating the
natural frequencies reduces to

a(3'J1Tj" Jz). X . (165)

wr=w> or w

In this case there are two possible values of the natural
frequency ; the fundamental value corresponding to vibration
about a single node situated at the gearbox.

If the moment of inertia of the gears is negligible, Equation
(165) reduces to

w2 = w2

In this case there is only one value for the natural frequency,
corresponding to vibration about a single node situated at the
gearbox. The natural frequency of the whole system is there-
fore equal to the natural frequency of any one of the masses on
its shaft regarded as fixed at the gearbox.

The foregoing methods of reducing the number of possible
modes of vibration of a geared system by a suitable adjustment
of the moments of inertia of one or more masses or of the
elasticities of one or more shafts is the principal underlying the
“ nodal drive " originated by Dr. J. H. Smith in collaboration
with Messts. Workman, Clark & Co., Ltd., Belfast, for sim-
plifying the problem of dealing with torsional vibrations of
marine geared turbine installations.

Exaupie 36.—Calculate the matural frequencies of torsional
vibration of the geared system of Example 35, assuming
that mass J, is duplicated, i.e. the system becomes similar
to that shown in Fig. 6zg.

Referring to Figs. 6zg and 624, and using the values given in

Example 35,

Ja= 2-7 tons-ft. sec.?,

J» = 1-8 tons-ft. sec.?,

J. = 1°6 tons-ft. sec.?,

Ja = 0-022 tons-ft. sec.?,

C, = 1000 tons-ft. per radian,

Cy = 600 tons-ft. per radian,
and N,/N, = 300/100 = 3/1.
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Hence, in Fig. 62i

Ji = Jo = 27 tons-ft. sec.?,
Je=1[Jo+ 2. JaN3No)¥ = [1:6 + 2 X 0022 X 3%
= 20 tons-ft. sec.?,
Jo=2.LOWNJ  —2x18x3
= 324 tons-ft. sec.?,
C, = C, = 1000 tons-ft. per radian,
Cy = 2. C4(N,/N,)? =2 X 600 X 3*
= 10,800 tons-ft. per radian.
From Equation (163) :

w* = CyfJ5 = 10800/32:4 = 333,
w, = 1825 radians/sec.,
_6o.w

ie. F
T 2.m

° = 955 X 1825 = 174 vibs./min.

From Equation (155) :
(Ji+ Jo + Js) — w2(Jafws® + Jsfun® : L/wz’ + Jofws?)

/w:lz Wy" =0,
where % = C,/J, = 1000/2-7 = 370,
wyt = G,/J; = 10800324 = 333,

ie. (27 + 2.0 + 32°4) + w.2(2°0/370 + 32:4/370 + 2-7/333
+ 20/333) + wit. X 2-0/(370 X 333) =o0.

37°1-0°E070 . w2 -+ 0:0000162 . w2 =0,
w2 = 367 or 6238,
w, = I9'I5 or 79-0 radians/sec.,
F.= 955 @,
= 183 or 755 vibs./min.

The three possible values of the natural frequency of tor-
sional vibration of this system are therefore 174, 183, and 455
vibs./min. The lowest or fundamental frequency, viz. 174
vibs./min., corresponds to vibration about a node situated at
the gearbox. *

Multi-Shaft Systems.—The system shown in Fig. 64
consists of # masses connected by # shafts to a common gearbox.
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Let Jp Jo Jor - - Ju= the equivalent polar moments of
inertia of the elastically con-
nected masses,

CypCyyCy. o - Ca= the equivalent torsional rigidities
of the connecting shafts,
Jiasrn = the equivalent polar moment of
inertia of the combined gear
Mass.

[Note.—The expression “ gquivalent ’ means that the actual
values of these quantities have been reduced to equivalent
values by taking into account the gear ratios, as already
explained (see also Ex. 37).1

@y, g, @y . - - Wy, = phase velocities of the natural
vibration of each of the elas-
tically connected masses on its
shaft considered as fixed at the
gearbox,

w = phase velocity of natural vibration
of the whole system.

Then 0,*=Cy/J;; @’ = CofJs; we= Cs/Js- - - ©2=CalJ 0

and it can be shown that
C,

G
J("“)_w’—w1’+w’~—w,’+w’-—ws’ .

G o+ Ca (266)

w?—w,?

For example, in the case of a two shaft system,
__ G Cs
L | R R N
which can be written
J. + Jat+ Ja) — ‘-"’(Jl/"-‘zﬁ + Jz/“"x’ + Js/wlﬂ + Ju/‘“x’)
+ 4

wt. Jolw,®. wat = 0.

This is the same as Equation (155) when the slight difference
in notation is taken into account.
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The following special cases should be noted :—

When o, =w, =wy=...=w,=Q,

C. C C L.
(w2~n*)"{J<n+n -G "2:, 17;,) +C”)} =0, (167)
ie w?=Q% or [(C’+Cz+£’j;' o - C") +n=]. (168)

For example, in a two-shaft system, the roots of Equation
(167) become
Jl J 2 J 3
2 s 2 ) J3
=gQ? or QI T ] . . (x69)

The expression for the second root of Equation (167) can be

written
[hthtlt 7o)

w? =02

-t Tat J(m-n]_ (
(2+1)
This expression clearly shows that when Ji,. is very

large compared with (J; + Je + Ja+ . . . + Ja). the second
root of Equation (167) is very

nearly equal to the first, irre- J2 J3 Jn
spective of the number of shafts. 1y
In general, therefore, a system G\ I/
C 1] Aln

of the type shown in Fig. 64, con-
sisting of » shafts and (# + 1) -
masses may have as many differ- RITONN
ent modes of natural vibration as &
there are shafts, ie. # different
modes, and it is necessary to en- ‘

sure that excessive torque varia- J,f

tion does not occur through g . 4.—Multi-shaft system.
resonance between the frequency

of the torque impulses and the natural frequency of any one of
these modes,

If, however, the characteristics of the system are chosen
so that the natural frequency of each mass on its shaft regarded
as fixed at the gearbox is the same for all the masses, then the
possible number of modes of natural vibration of the system

VOL. L—20




306 TORSIONAL VIBRATION PROBLEMS

as a whole is reduced to two, irrespective of the number of
masses. The natural frequency of one of these two modes is
merely the natural frequency of each mass on its shaft regarded
as fixed at the gearbox, as shown in Equation (168).
Furthermore, Equation (170) shows that if the moment of
inertia of the gearbox masses is very large compared with
the total moment of inertia of the elastically connected masses,
then the natural frequencies of the two possible modes of vibra-
tion of the system as a whole are very nearly equal, and the

J}l_'

¢f = 50000 Je

Jj;})

N M
Gear Ratio--¥ | Gear Rafo=~3/) 2]
Ca =4000
Jam10 J;\'

Actual_System
Torsionat  Rigidities in Lbs. Ins/ Radian
Momenls of Inertia in Lbs. Ins. Sec.?

Fic. 65.—Four-shaft system.

torsional vibration characteristics of the system are not materi-
ally affected when one or more of the elastically connected
masses is disconnected from the system.

It is therefore apparent that by tuning the system in this
manner, either by adjusting the torsional rigidities of the
several shafts, or by adjusting the moments of inertia of the
several oscillating masses, or by adopting a particular gear
ratio between one part of the system and another, or by com-
bining these methods, the problem of avoiding dangerous
resonant conditions may be considerably simplified.

Generally it will be found most convenient in practice to
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adjust the torsional rigidities of the connecting shafts, for

example, by inserting suitable flexible couplings in the shaits.

Preferably these couplings should be constructed with a high

damping capacity, for example, by incorporating springs

having a2 non-linear load-deflection characteristic, or by in-
corporating a material having high internal damping capacity,
such as rubber.

ExampLe 37.—Calculate the natural frequencies of torsional
vibration of the four-shaft geared system shown in
Fig. 65.

The equivalent system is obtained by replacing the side
shaft masses and shafts by equivalent masses and shafts
rotating at the speed of the centre shaft,
ie. J1 = Ja= 10 Ibs.-ns. sec.?,

Jo=1J. - @) =4 X13= 60 Ibs.-ins. sec.?,
Ja = J,=5Ibs.-ins. sec.?,
Ja=1,- (33 =9 x 13 = 135 Ibsins. sec,
T =L+ @) . To+ (39 - Ja=130 + 4 X 19)
+ (9 X 5) = 115 Ibs.-ins. sec.?,
C, = C, = 40,000 Ibs.-ins. [radian,
C, = C,. (2% =4 X 200,000= 800,000 lbs.-ins./radian,
C, = C, = 50,000 Ibs.-ins. /radian,
Cy=C,.(3) =9 X 300,000 = 2,700,000
Ibs.-ins./radian.
Hence, w;* = Cy/J: = 40,000/I0 = 4000,
wy? = C4fJ» = 800,000/60 = 13,333,
wg? = Cy/J 5 = 50,000/5 = 10,000,
wy? = CyfJ4 = 2,700,000/135 = 20,000.

The frequency equation is obtained by inserting the above
values in Equation (166),

800000 50000 + 2/700000

. 40000
ie IIS=—m—— .
5 @ + +m’—loooo @2—20000

4000 ' wP—13333
Whence, by trial and error,

! = 4105, 10,080, 14,650, OT 49,700,
or @ = 641, 1004, 1210, OF 22277 radians/sec.,
and F = 9350 = 612, 960, 1156, or 2127 vibs./min.
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ExampLe 38.—Calculate the necessary torsional rigidities of
the flexible couplings which must be inserted in three of
the shafts of the system shown in Fig. 65 so that the natural
frequencies of each mass on its shaft regarded as fixed
at the gearbox are equal. Calculate also the natural
frequencies of this modified system.

Since the alteration is to be made by inserting flexible
couplings in three of the four shafts of the system shown in
Fig. 63, it is necessary to choose as basis the shaft and mass
giving the lowest frequency when the shaft is regarded as
fixed at the gearbox. From Example 37 it is seen that mass
Jo on shaft C, has the lowest frequency when the shaft is re-
garded as fixed at the gearbox,

i.e. from Example 37, w,® =02 = 4000.

Let €, = modified value of C,,
C,” = modified value of C,,
C,” = modified value of C,.

Then, since all masses on their shafts regarded as fixed at
the gearbox must have the same natural frequency, i.e. the
same value of w?,

Shaft C,: €], = C,/15 = 4000,

ie. C," = 60,000 1bs.-ins. per radian.

Also, 1,C, = 1/C, + 1/C,”", [from Eqn. (77)],

ie. 1,60,000 = 1/200,000 + 1/C,”.

Hence, C.”" = 85,700 Ibs.-ins. per radian,

where C.”" = required torsional rigidity of flexible

coupling in shaft C,.
Shafi C,: C,'/5 = 4000, or C, = 20,000 Ibs-ins. per
dian

radian.
Also, 1/C, = 1/C, + 1/C,",
ie. 1/20,000 = 1{50,000 + 1/C,”,
whence C,"" = 33,400 Ibs.-ins. per radian,
where C,” = required torsional rigidity of flexible

coupling in shaft C,.
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Shaft C,:  C/lx5 = 4000, or C,' = 60,000 lbs.-ins. per

radian.
Also, 1C/=1/C,+1/C",
ie. 1/60,000 = 1/300,000 + 1/C,",
whence C,”" = 75,000 Ibs.-ins. per radian,
where C,"" = required torsional rigidity of flexible

coupling on shaft C,.

Natural Frequencies of Complete System.—The various
quantities in the equivalent system shown in Fig. 65, given
in Example 37, are modified as follows by the above
alterations :—

C, = C, = 40,000 Ibs.-ins./radian, as before, since this is the
basic shaft.
C, = C,'(2% = 240,000 Ibs.-ins. radian.
C, = C,’ = 20,000 Ibs.-ins. radian.
Cy = C,(3%) = 540,000 Ibs-ins. [radian.
The moments of inertia of the masses are unaltered, i.e.
Ji=10; Jo=060; Jo=35; Ja=135; and J(usn = 115
Ibs.-ins. sec.?,
and w,® = w,? = w,? = w,? = Q? = 4000.
Hence, from Equation (168),
({40000 - 240000 - 20000 -+ 540000)
\

o3 + 400)

w?= 4000 or
= 4000 or II,300,
ie. w =632 or 1063 radians/sec.,
and F =603 or 1015 vibs./min.

In this case, therefore, there are only two modes of natural
torsional vibration compared with four in the previous example.
One of these modes is merely the vibration of each duplicated
branch regarded as fixed at the gearbox. The two natural
frequencies can be brought closer together by increasing the
moment of inertia of the gears, as already explained.

Thus, if the equivalent moment of inertia of the gears is
increased tenfold the frequencies become 603 and 688 vibs./min.,
a difference of only 14 per cent.
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Multi-Shaft Systems : Tabulation Method. — The
natural frequencies of the multi-shaft system shown in Fig.
65 can be determined by the tabulation method, as shown in
the foliowing Tables :—

TABLE 26.
FreQuENcy TABULATION : MassEs J; axp J, oX Smarr C,

F o= 2127 Viks. Min: 2 = 49,700,

L S 5 Jete 0 zmate | o lmeu
2 10 | 497000 100 4“ 497,000 497,000 | 40,000 | 1242
I | I
f3n [ 1401,000] —II42 | —17,012,000 | —16,515000 — —
! | i

ie. §, = specific amplitude at J, = — 11°42,
T, = resultant specific torque due to vibration of J, and J,
= — 16,515,000.

TABLE 27.
FereEQUENCY TABULATION: Mass J, ox Smarr C,
: A ) ' . J.eta ZJ.wt.0. C.  |ZT.erec
H 1
' 5 | 248,500 l z 248,500 2 248,500. @ | 50,000 | 4,97 .
i '
- } — | -307.2! — - — =

i ! j
ie. 6, = specific amplitude at J, = — 3:97 . «,
but, from Table 26, 6, = — 1142,
hence, —3Q7.x== — II"42, or o= 288,

ie. Table 27 becomes

, 5

248,500 2-88 715,000 715,000 50,000 14,30

— —11-42 — - — —_

i.e. T, = resultant specific torque due to vibration of J,
= 715,000.
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TABLE 28.
FREQUENCY TABULATION: MASSES J, AND J, oN SzaFT C,.

2 [ e X J.at.6, .ete. | |glevec

| p— i

? 135 | 745,500 1 8 745,500 .B|  745,500.8 | 200,000 | 3.73.8
10 | 497,000 | —2:73.B|~1,355,000. 8] —609,500.8 | — -

ie. 6, = specific amplitude at J, = — 2-73. 8.

The gear ratio between J, and J, is — 2/1,

hence 0,= —2.0,=2 X 1142 = 22-84,

or — 273 . B =2284,

and B=—2836,

i.e. Table 28 becomes

I5 | 745,500 —8:36 | —6,240,000 —6,240,000 | 200,000 { —3120

10 | 497,000 22:84 11,390,000 5,150,000 — —

i.e. Ty = resultant specific torque due to vibration of J, and J,
= 5,150,000.
TABLE 29.
FREQUENCY TABULATION: MASSES Jq AND J, on Smart C,.

I J.et 8. J.o2.0. ZJ.e2.6, C.  |Znenofc,
15 | 745,500 3 745,500 . 8 | 745,500.8 | 300,000 2.48.3
5 | 248,500 | —=1:48.8| —367,000.8 | 378,500.8 — —_
ie. 6, = specific amplitude at J, = — 1-48. 8.

The gear ratio between J, and J, is — 3/1,
hence 6= —3.0,=73 X 1142 = 3426,
or — 148 . 8 = 3426,

and & = — 2310,
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i.e. Table 2o becomes

i |
15 0 745500 —I3I0 —x,":oo.ooo"r —l7,208,aoc‘300.ooo —57'36

244,300 3425 5,508,000 — 8,700,000

i.e. T, == resultant specific torque due to vibration of J,and J,
= — §,700,000.
Having selected a trial value for the frequency of the
system, Tables 26 to 2g are built up as follows :—

Table 26.—This is the basic table and is compiled by select-
ing one of the branches of the geared system and assuming
unit amplitude at the mass at the free end of this branch.
In the present example shaft C, has been chosen as the basic
branch, although any other branch could have been selected.
The basic table terminates at the point where the other branches
join the basic branch. Any continuation of the basic branch
bevond the point at which the other branches join it, as in
this example, is itself to be regarded as another branch having
a gear ratio of 1/x. Table 26 gives the specific amplitude at
the point where the other branches join the basic branch and
also the resultant specific torque, ie. the torque for unit de-
flection at the free end of the basic branch, due to vibration
of all masses on the basic branch.

Table 27.—This table applies to the continunation of the
basic shaft, i.e. to mass J, on shaft C,, and is commenced by
assuming an amplitude « at the free end of the branch. The
table then gives the amplitude at the point where this branch
joins the basic branch in terms of «.

The absolute value of « is determined from the value ob-
tained for the amplitude at the junction point from Table 26,
taking care to allow for the gear ratio between the basic branch
and the branch under consideration. In the case of Table 27
the gear ratio is 1/1 since this branch is merely a continuation
of the basic branch.

When the numerical value of « is known Table 27 is com-
pleted and gives the value of the resultant specific torque due
to vibration of all masses on this branch.
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Tables 28 and 29 are compiled in the same way as Table 27,
by assuming amplitudes f and § at the free ends of the respec-
tive branches and equating the corresponding amplitudes at
the point where the branches join the basic branch to the
known amplitude at this point, given by Table 26, taking
care to allow for the gear ratios between the subsidiary branches
and the basic branch. Note that since the driving and driven
shafts rotate in opposite directions the gear ratios are
negative.

The foregoing method of compiling the frequency tables
ensures that the geometrical relationships between the various
component parts of the geared system are maintained.

If the value selected for the frequency of the system is in
fact the frequency of one of the modes of natural vibration of
the system there will be no external torque acting on the
system, and this is the criterion which must now be applied
to the results given by Tables 26 to 29.

From these Tables we have—

T, = resultant specific torque due to vibration of all masses
on the basic branch = — 16,515,000.

T, = resultant specific torque due to vibration of all masses
on shaft C;= 715,000, and since the gear ratio be-
tween this branch and the basic branch is 1/r, the
resultant specific torque referred to the basic branch is

T, = I X 715,000 = 715,000.

T = resultant specific torque due to vibration of all masses
on shaft C, = 5,150,000, and since the gear ratio
between this branch and the basic branch is — 2/1, the
resultant specific torque referred to the basic branch is

Ty = — 2 X 3,150,000 = — 10,300,000. .,
T, = resultant specific torque due to vibration of all masses
on shaft C, = — 8,700,000, and since the gear ratio

between this branch and the basic branch is — 3/1,
the resultant specific torque referred to the basic
branch is
T, = 3 X 8,700,000 = 26,100,000.
e,
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Hence, resultant specitic torque for whole system,
ST =T, T/~ T — T4
= 15,515,000 — 715,000 — 10,300,000 + 26,100,000
=,
i.e. the selected value is the natural frequency of one of the
modes of vibration of the whole system.

I Dugrammr:r Arrangement of Aciug! i,.:fm 9z
=
B .r ongary
‘-—gearm Turbine
G M Flywheel  Cranks
Na Fr-vry &earing
Cb ; Cep 1Cd;
==
Propetier = p ;
‘ Sug ke VF

Reciprocaling Engine

Eguvdlenr Syster Pefered. B_Apprex:male Eguvelent System
q'f‘romw S Joeed Reterred fo_Propelier Sheft Speed

Fig. 66.—~Geared marine installation.

The specific amplitudes at all masses, i.e. the amplitudes
for unit amplitude at mass J, on the basic shaft, are given
in the tables, and these enable the normal elastic curves to
be plotted and the positions of the nodes to be determined.
The tables also give the actual specific torques at all points
in the system.

The tabulation method can be extended to deal with systems
having any number of branches with any number of masses
on cach branch. In a great many practical cases, however,
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the actual system can be reduced to a simpler equivalent
system which can be treated by the shorter methods and
formule previously described. In cases where the tabulation
method is necessary, however, the arithmetical work can be
reduced by applying the shorter methods to an approximately
equivalent system. This will give some indication of the
frequency values to be assumed in compiling the frequency
tables.

The following example illustrates the application of the
foregoing methods fo a typical geared installation from marine
engineering practice.

ExaMpLE 39.—Determine the natural frequencies of the
principal modes of vibration of the system shown in
Fig. 66, assuming the following data :—

Moments of Inertia of Masses. Torsional Rigidities of Shafts.
Ja = 81070 Ibs.-ft. sec.® C,= 455,000 Ibs.-ft. radian
JIv= 820 -Cp = 145,000
Jo= 30 Ce = 2,940,000
Ja= 335 Cq = 5,725,000
J.= 195 C,= 162,000
Jy= 195 €= 179,500
Jo= o3 Speeds of Shafts.

Ja= 2570 Ng= 110 revs./min.
Ji= o003 Ny = 255
Js= 68 N.= 530

Ng = 4,500

This system consists of a steam turbine (mass J,;) and a
reciprocating steam engine (masses J4, J. and J,), geared
into a common propeller shaft.

The turbine is connected through double reduction gearing
and the reciprocating engine through single reduction gearing.
Flexible couplings are provided between the turbine and the
secondary pinion ; between the reciprocating engine fiywheel
and the engine pinion; and between the primary gearwheel
and the propeller. The flexibility between the engine fiywheel
and the engine pinjon is further increased by a quill shaft,
and a quill shaft is also provided between the secondary gear-
wheel and the primary pinion in the turbine drive. The
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torsional rigidities given above include allowances for these
flexible couplings and quill shafts.

Approximate Calculation of Natural Frequencies.—The first
step is to reduce the whole system to an equivalent system
referred to propeller shaft speed, because this will enable the
principal characteristics of the system to be judged for the
purpose of reducing it to the simplest possible approximately
equivalent system,

The equivalent system is determined by the methods already
described, as follows :—

Diagram I in Fig. 66 shows the actual system in diagram
form, whilst Diagram II shows the equivalent system referred
to propeller shaft speed, N,.

In Diagram II :

Ji = J. = 810 lbs.-ft. sec.2,

Ja=Ju + J(NyNo)* + J,(N/N,)*

= 82 + 3(255/110)* + 0-3(530/x10)?
= 105 lbs.-ft. sec.%.

Ja = JoN;'N.)* = 335(255/110) = 180 Ibs.ft. sec.2

Jo = Js = J{NyNo)* = 19'5(255/110)* = 105 Ibs~ft. sec.2.

Jo = JaNo N + J:No/No)* = 25(330/110)?

-+ 0:03(4500/110)*
= 630 lbs.-ft. sec.%."

Jz = Ji(Na/N,)® = 6-8(4500/x10)* = 11,370 lbs.-ft. sec.2.

C, = C; = 455,000 lbs.-ft./radian.

Cy = C4Ny/N,)* = 145,000(255/110)*

= 780,000 Ibs.-ft. radian.
C3 = C,N,/N,)* = 2,940,000(255/110)*

= 15,800,000 Ibs.-ft./radian.
Co = CalNy/N,)* = 5,725,000(255/110)*

= 30,800,000 Ibs.-ft./radian.
G5 = C,(N,/N,)* = 162,000(330/110)2

= 3,750,000 lbs.-ft. radian.
Ca = C,{Ny/N,)* = 179,500(4500/110)*

= 300,000,000 lbs.-ft./radian.
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The flywheels representing the various masses in Diagram
11 of Fig. 66 are approximately to scale, and from this diagram
and the above values of the equivalent moments of inertia and
torsional rigidities, it is seen that the system reduces to a three
branched arrangement, the junction of the three branches
being at the primary gearwheel.

The propeller shaft branch consists of a single mass, the
propeller, flexibly connected to the primary gearwheel.

The turbine branch consists of two masses, the turbine itself,
and the secondary gear assembly, connected by a shaft of
comparatively small flexibility to the main gearwheel.

The reciprocating engine branch consists of three masses,
the engine crank masses and the flywheel, flexibly connected
to the main gearwheel.

Since the equivalent torsional rigidity of the shaft con-
necting the turbine to the secondary gear assembly is very
large compared with that of the shaft connecting the secondary
gear assembly to the primary gearwheel, there will not be much
error in regarding the turbine and the secondary gear assembly
as one mass.

Similarly, since the equivalent torsional rigidities of the
shafts connecting the crank masses and flywheel of the re-
ciprocating engine are very large compared with that of the
shaft connecting the flywheel to the main gearwheel, there
will not be much error in regarding the two engine crank masses
and the flywheel mass as one mass.

Hence the equivalent system shown at II in Fig. 66 can be
replaced by the approximately equivalent system shown at
III, without introducing much error.

In Diagram III of Fig. 66 :

1 = 810 lbs.-ft. sec.?, C, = 455,000 lbs.~it./radian,
Js =105, C, = 780,000,
Js=Js+ T+ Ts C; = 3,750,000.

= 180 + 105 4 105 = 390,
Jo = Js + Jz = 630 + 11,370
= 12,000.
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The mutural frequencies can now be determined by means of
Equation {16,

- Ca . (166)

Le. J(mx)—m,__w’g : ot — g

where, in this case,
eyt =€, J; = 455,000 810 = 562,
wg? = C, J5 = 780,000 300 = 2000,
wst = C; Jg = 3,750,000,12,000 = 312,
Jinen = Jo = 105.
Hence, the frequency equation is

455000 1 780000 + 3750000
w?— 562 ' 0! —2000 ' w?— 312

105 =

Inspection of Diagram III of Fig. 66 indicates that because
of the very large moment of inertia of the turbine and because
this inertia is connected to the primary gearwheel by a shaft
which is much more rigid than the other two shafts, the fre-
quencies of two of the principal modes of vibration of the
systern will probably be very nearly the same as the frequencies
of the propeller and reciprocating masses on their shafts re-
garded as fixed at the primary gearwheel, ie. w? = 562 and
2000 respectively, or F =226 and 427 vibs./min. These
values are a useful aid in solving the frequency equation.

The true values of the three roots of the frequency equation
are

w? = 534, 1733, and 48,000,
i.e. w =231, 41°6, and 219 radians/sec.,
or F =221, 397, or 2090 vibs./min.,, corresponding to
vibration with one, two, and three nodes re-
spectively.
Tabulaiion Method.—This is essentially a trial and error
process, although in most cases the values obtained from an
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approximately equivalent system, such as that shown at III
in Fig. 66, will considerably reduce the amount of labour in-
volved in determining the final tabulations for each mode of
vibration.

The following tables show the final frequency tabulation
for the three-node mode of vibration of the system shown at
I in Fig. 66. The value of w* determined by the tabulation
method is 47,500, corresponding to a three-node frequency of
2080 vibs./min., which is very nearly the same as the value
determined from the approximately equivalent system shown
at III in Fig. 66.

In the following tabulations the reciprocating engine branch
has been taken as the basic branch :—

TABLE 30.
FREQUENCY TABULATION : RECIPROCATING ENGINE BRANCH.

F = 2080 Vibs.[Min. ; w? = 47,500,

Mass, | J. J.at 8 J.e*.6. ZJ.at.6. C. ZJ. et 0/C.
Jr 1 19°5 | 926,000 1:0000 926,000 | 926,000 | 5,725,000| 0-1618
Je 119°5] g926,000; 08382 776,000 | 1,702,000 | 2,040,000 |  0-5790
Ja |33°5 | 1,590,000] 02502 412,000 | 2,114,000 | 145,000 | 14580
Je | 30| 142,500|—143208 | —2,040,750| 73250| — -

ie. 6, = specific amplitude at engine pinion = — 14-3208,
T, = specific torque at engine pinion = 73,250,
and since gear ratio = — 1T0/255 = — 1/2:32 (negative be-
cause driving and driven shafts rotate in opposite directions),
hence, 8, = specific amplitude at primary wheel
= 14-3208/2'32 = 6175,

T,' = specific torque at primary wheel
= — 73,250 X 2'32 = — 170,000.
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TABLE 31.
Fregrency Tastrarioy: TURBINE BRANCH.
f
J J.et 8. Joote | Eeta C.  |=I.erefc
[ | : /
L e | 323,000 z | 323,0002 . 323,000% 179,500{ 1-800x
o | i
A l o0y 1425 —of0o.x 1,140z | 3218602 — —
: ) i
i
i Secomdary Gear Ratio = — 530/4500 = ~ 1/85.
|
| i |
I izsa mSy,oooi o8x 85 | 111,700 ~B35 (321,8602) | 162,000{ —16-15
| =0054% -+ 1X1,700%
! { = —2,618,300%
Jg 103 14,250 2 162442 | 231,500%| —2,386,8000 -_ —
i 1 :
and since gear ratio = — 110530 = — 1/4-82 (negative be-

cause driving and driven shafts rotate in opposite directions),

85" = specific amplitude at primary wheel =
— 16:2442/4-82 = — 33750,

ie. —~ 33752 = 6-175, from Table 30,

or o= — I-83.

Hence, Table 31 becomes
63 323,000 | — 1'83 ~591,000 | ~591,000 | 179,500 |— 3-295
003 1425 1465 2,085 | —588,915 - —_

Gear Ratio = — 1/8'5.

250 | 1,187,000 | — 0172 | ~—204,500 4,795,500 | 162,000 296
o3 14,250 | —29°772 | —423,500 | 4,372,000 — -

ie. #, = specific amplitude at turbine primary pinion =

29772

T, = specific torque at turbine primary pinion = 4,372,000,
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and since gear ratio = ~ 110/530 = — 1/4-82,
hence, 8," = specific amplitude at primary wheel
= 29-772/]482 = 6175,
T, = specific torque at primary wheel
= — 4,372,000 X 4-82
= -~ 21,070,000.

TABLE 32.

FREQUENCY TABULATION : PROPELLER BRANCH.

T )

|
ilhss.'].} J.ot 6. ‘ Joet.6. ZJ w6 C. £]. w2, 8/C.]
!

Je 820} 38,500,000 § 38,500,0008]  38,500,0008( 435,0008| 8468

Js | 82! 3,800,000[ —83:6. §/—325,000,0008/—286,500,0008, — —_

ie. @, = specific amplitude at primary wheel = — 83-68
= 6175, from Table 30,
or, = — 6175836 = — 0-074.

Hence, Table 32 becomes

810 | 38,500,000 | —0074| —2,840,000 | —2,840,000 | 455,000 | ~6-249

S

8z | 3,890,000 6-175| 24,080,000 | 21,240,000 — —

i.e. T, ==specific torque at primary wheel = 21,240,000.
The resultant torque due to vibration of all the masses in the
system is
ZT=(T,'+ T4 +T3)= — 170,000 — 2X,070,000-21,240,000==0.
Hence the selected value w® = 47,500 corresponds to one
of the modes of torsional vibration of the system. The specific
amplitudes and torques at all points in the system are given
in the above tables, the former indicating that there are three
nodes, one in the shaft connecting the engine flywheel to the
engine pinion, one in the shaft connecting the turbine to the
secondary pinion, and one in the shaft connecting the propeller
to the primary gearwheel.
VOL. L—21
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Tuble 33 contdns the final frequency tabulations for the
three principal modes of torsional vibration of the system
shown in Fu 60, The locations of the nodes are shown in
the disgram at the foot of each tabulation. For the one-node
maode the node is located in the shaft between the secondary
weurwheel and the primary turbine pinion. For the two-node
mude there is one node in the shaft between the secondary
geurwheel and the primary turbine pinion, and one in the
shaft between the propeller and the primary gearwheel. For
the three-node mode one node is in the shaft between the
turbine and the secondary turbine pinion, one in the shaft
between the reciprocating engine and its pinion, and one in
the shaft between the propeller and the primary gearwheel.

The following general conclusion can be deduced from the
shapes of the normal elastic curves in the dynamically equiv-
alent system, i.e. the equivalent system in which the masses
are assumed to have the same angular velocity. In this
example the propeller shaft is chosen as the reference shaft
and the normal elastic curves in the dynamically equivalent
svstem referred to propeller shaft speed are also shown at
the foot of Table 33.

One-Node Mode~—Since the specific amplitude at the pro-
peller is considerably larger than that at any other point in
the dynamically equivalent system the principal forcing and
damping torques are those originated by the propeller.

Furthermore, the most effective method of altering the
tuning of the one-node mode of vibration of this installation
is either to alter the polar moment of inertia of the propeller
or to alter the torsional rigidity of the propeller shaft. Due
to the small specific amplitudes at the turbine and recipro-
cating engine (in the dynamically equivalent system), changes
in the moment of inertia of either of these masses will produce
comparatively small changes in the tuning of the one-node
frequency.

Tuwo-Nodz Mode—1In this case the normal elastic curves
in the dynamically equivalent system indicate that the specific
amplitnde is considerably greater at the reciprocating engine
than at any other point in the system. Hence the principal
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TABLE 33.
FREQUENCY TABULATIONS : MARINE-GEARED INSTALLATION.
One-Node Mode ; F = 221 Vibs. Min.; o* = 533.
T . ; ;
!um.‘; 1. ! J.ot 3 6 J.at6. | If.et.e ‘ c. J ‘lé"’.-.!,
| | ! [
RECIPROCATING ENGINE BRANCH.
Is 195 i 10,400 1°0000 10,400 ] 10,400 15,725,000 | 00018
Jo 195 | 10,400 09982 10,390 20,760 2,940,000 | 00071
Jal33s | 17e0| egu 17,750 I 8540 | 14500 | 02660
Jel 301 1,600 07251 1,160 38,800 —_ —
Gear Ratio = — 1/2-32.
8 = —Zzl_?f—:f ==—0313; T =~ 38,800 X 2:32 = — g0,000.
TURBINE BRANCH.
I;| 68 3,630| 17600 i 64,000 64,000 x79500 0356
i [ 003 6] 17244 276 64,276 —
Gear Ratip =— 1/8-5.
I l 250 13,300 | — 2°025 — 26,900 — 573,900 | 16:,000 - 354
1. 160 1515 242 |- 573,658
Gear Ratio = — 1/4-82.
. 513 .o
8y =— —4—8; =-—0313; Ty = 573,658 X 4-82 = 2,760,000.
PROPELLER BRANCE,
Ja | 810 432,000] — 6150 | — 2,656,300 2,656,300 455000 | — 5-837
5| 8 43,700 — 0313 | — 13,700 |~2,670,000 .z

Tz =— 2,670,000; ie. (T, + T, + Ty =o.
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TABLE 33 (continued).
Two-Node Mode; F = 395 Vibs.[Min. ; o' = 1710,

Mass.| J. J.ok ‘ 8. ‘ J.ot0. ZJ. 020, ‘ C.
RECIPROCATING ENGINE BRANCH.

Jr | 195 33,350 10000 33,350 33,350 | 5,725,000 00058
Je | 195 33,350 09942 33,100 66,450 | 2,940,000 0'0226
Ja | 333 57,300 09716 55700 | 122,150 | 145000 | 08420
Jo | 30 5130| 0.1296 666 122,816 — —

Geay Ratio =~ 1/2°32.
6/ = —

1296
d 22 =~ 00356; T, =~ 122,816 X 2-32 = — 284,200,

2°3;

TuURBINE BRANCH.

I;| 68 11,620! 0507 l 5,016 5.916| 179,500 l 0033

I 003 51 0474 24 5,940 — -
Gear Ratio =— 1/8-5.

In 350 42,800 | — 0-056 — 2,390 — 52,938 162,000 | — 0325

Jo o3 513| o269 138 — 52,800 — | i
Gear Ratio = — 1/4-82.

. 0269 ,
0 =— roale 0056 ; Ty = 52,800 X 4-82 = 254,220,

PROPELLER BRANCE.

Ja | 810 ’ 1,385,000 0027 37,800 37,800) 455,000 0083

Il 82 140,000 | — 0-056 — 7,820 29,980 — —

Ty = 29,980; ie. (Ty + Ty’ + Ty) =o.

Hormar Evasric Lunvés
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TABLE 33 (continued).
Three-Node Mode; F = 2,080 Vibs.[Min. ; w® = 47,500.

Mass.| T J.ot 6. ‘ J.00.6, 2F.at.0, . ‘ &gz__g
RECIPROCATING ENGINE BRANCH,

Je | 195 | 926,000  1-0000 926,000 926,000] 5,725,000| 01618
Jo | 195 926,000| 08382 776,000 | 1,702,000 2,040,000 05790
Ja | 335 | 1,590,000| 02502 412,000 | 2,114,000 145,000 | 14580
I | 30 142,500 | —14-3208 | —2,040,750 73,250 j— —

Gear Ratio = — 1[2:32.

3208
8 = ﬂz.:?z_°= 6:175; Ty =— 73,250 X 2'32 = — 170,000.

TURBINE BRANCH.

I;| 68 323,000| ~1-830 —591,000 | —591,000| 179,500 | —3:295

Ji| oo3 1,425 1465 2,085 | —588,015 — —
Gear Ratio = — 1/85.

In l 250 | 1,187,000 —0'172 —204,500 4,795,500 | 162,000 296

Jo 1 o3 14,250 |—29°772 —423,500 4,372,000 - ’ -

Gear Ratio = — 1[4'82.
8 = 23‘:;? =6175; Ty =~ 4,372,000 X 4-82 =~ 21,070,000.

PROPELLER BRANCH.
Ja | 810 | 38,500,000| —0-074 —2,840,000
5| 82 3,890,000 6175 24,080,000

Ty = 21,240,000 ; ie. (Ty" + Ty + Ty) = 0.

—2,840,000]
21,240,000

455,000 | —6249

Nogmar Epastic CurvEs

-Node
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forcing and damping torques for this mode of vibration are
those originated by the reciprocating engine. Due to the
small specific amplitudes at the propeller and turbine these
components are unlikely sources of excitation or damping.
For the same reasons the most effective method of altering
the tuning of the two-node mode of vibration is either to
alter the polar moment of inertia of the reciprocating engine
masses or to alter the torsional rigidity of the shaft connecting
the engine flywheel to the engine pinion.

Three-Node Mode.—In this case the specific amplitude in
the dynamically equivalent system is much greater at the
primary gear masses than at any other point in the system.
Hence the principal forcing and damping torques for this
mode of vibration are those originated by the primary gears.
Although there may be considerable damping action at the
gears it is unlikely that any severe period disturbance will
be originated by modern accurately cut gearing. For this
reason it is unlikely that the system will be subjected to any
severe resonant vibration of the three-node mode.

The most effective method of altering the tuning of the
three-node mode of vibration is either to alter the polar moment
of inertia of the primary gear masses, or to alter the torsional
rigidity of the shaft connecting the primary turbine pinion to
the primary gearwheel. Alterations in the moments of inertia
of the propeller, turbine, or reciprocating masses are not likely
to have much effect on the three-node vibration frequency due
to the relatively small specific amplitudes at these points.

General—A study of the normal elastic curves in the
dynamically equivalent systems for this installation shows
that alterations in propeller inertia will affect the tuning of
the one-node mode of vibration without having much effect
on the two- and three-node modes, and that propeller torque
variation is the principal cause of excitation and damping of
one-node vibrations.

Engine torque variation and torque variation due to errors
in the construction of the gearing are not likely to have any
pronounced effect in exciting one-node vibration due to the
relatively small specific amplitudes at these points.



GEARED SYSTEMS 327

Alterations in the moment of inertia of the reciprocating
engine masses will affect the tuning of the two-node mode of
vibration without having much effect on the one- and three-
node modes, and the principal cause of excitation and damping
of two-node vibrations is that due to the reciprocating engine.

Propeller and gearing damping will be comparatively
small, due to the relatively small specific amplitudes at these
points.

Alterations in the moment of inertia of the turbine and
secondary gearing will not have much effect on any mode of
vibration, because in all cases the specific amplitudes at

.these points are relatively small. For the same reason, apart
from the fact that the turbine exerts a semsibly constant
torque, the turbine and secondary gearing are unlikely sources
of excitation or damping.

Alterations in the moment of inertia of the primary gear
masses alter the tuning of the three-node mode of vibration
without having much effect on the one-node mode. They
will also affect the two-node mode, but not to the same degree.
Errors in the manufacture or erection of the primary gearing
are the most effective sources of excitation of three-node vibra-
tions, but such errors should not occur in modern gearing.

The principal source of damping of three-node vibrations
is also at the primary gears, since the specific amplitude at
this point is much greater than at any other part of the system.

It is also worth noting that the frequency of the propeller
on the propeller shaft regarded as fixed at the gearbox is
226 vibs./min., which is only 2-5 per cent. greater than the
one-node frequency given in Table 33.

Hence the characteristics of this installation, so far as
one-node vibrations are concerned, can be examined with
sufficient accuracy for practical purposes by regarding the
propeller on its shaft as a separate system fixed at the gearbox.
The amplitudes of the one-node critical speeds can then be
determined from considerations of propeller excitation and
damping forces acting on this separated system.

The frequency of the engine masses on the engine pinion
shaft regarded as fixed at the gearbox is 427 vibs./min., which
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is about 8 per cent. greater than the two-node frequency
given in Table 33. Hence a good approximation to the
characteristics of two-node vibration of this system will be
obtained by regarding the engine on its shaft as a separate
system fixed at the gearbox. The amplitudes of two-node
vibration can then be determined from a consideration of
engine excitation and damping forces acting on this separated
system.

As already explained, if the gearing is well made there
should be no serious three-node vibration.

Since the engine system consists of more than one mass
there is also the possibility of higher modes of vibration than.
the three-node mode. These are unlikely to be the cause of
serious resonant vibration, however, because their high fre-
quency implies that only high-order disturbances of feeble
magnitude will occur in the running speed range.

These conclusions have been borne out in practice.

Geared Aero-Engine/Air-screw Combinations.—The
gear ratios commonly employed in aero-engine practice vary
from about o-4 to about o+y. The simplest arrangement is
a straightforward spur gear having a pinion on the crankshaft
geared into a wheel on the air-screw shaft. The wheel may
have either external or internal teeth, and in either case the
axis of the air-screw shaft is offset from the crankshaft axis.
It should be noted that the amount of offset is less when an
internally toothed wheel is employed, and that with internal
teeth in the air-screw gearwheel the air-screw rotates in the
same direction as the crankshaft. The torque reaction on the
gearbox is thus the difference between the input and output
torques, whereas it is the sum of these torques when an
externally toothed wheel is used on the air-screw shaft.

The principal disadvantage of internally toothed wheels,
however, is the difficulty of providing adequate support for
the overhung pinion on the crankshaft, and the overhung
wheel on the air-screw shaft.

The most popular type of gear is one in which the axis of
the air-screw shaft is concentric with the crankshaft axis,
and the air-screw and crankshaft rotate in the same direction.
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The former consideration provides a compact gear assembly,
whilst the torque reaction on the gearbox and therefore the
strain on the nose of the engine is appreciably reduced when
the input and output shafts rotate in the same direction, being
equal to the difference of the input and output torques instead
of their sum.
Fig. 67 shows a number of types of concentric reduction
gearing, each of which is used in current aero-engine practice.
The type shown at I in Fig. 67 consists of a pinion A secured
to the driving end of the crankshaft and gearing into a primary
gearwheel C mounted on a layshaft. This primary wheel is
rigidly connected to a secondary pinion D mounted on the
same layshaft, ‘which in turn gears with the secondary gear-
wheel B secured to the air-screw shaft. In actual practice
there may be three or four layshafts evenly spaced round the
crankshaft pinion and air-screw shaft gearwheel, each taking
a share of the load.
The overall gear ratio is determined as follows :—
Let A = number of teeth in crankshaft (primary) pinion,
B =number of teeth in air-screw shaft (secondary)
gearwheel,
C = number of teeth in layshaft (primary) gearwheel,
D = number of teeth in layshaft (secondary) pinion.

_A.D

. air-screw shaft speed
Then  Gear ratio = crankshaft speed =?t=t 5 (z71)

The air-screw rotates in the same direction as the crankshaft
and the dimensions of the gears are chosen so that the air-screw
shaft is concentric with the crankshaft.

In determining the equivalent dynamic system it is also
necessary to know the speed of the layshaft gears. This is
determined as follows :—

layshaft speed
crankshaft speed b= Al - (72)

Diagram II of Fig. 67 shows an epicyclic gear consisting
of a bevel gear A secured to the driving end of the crankshaft,
which gears into a number (usually three) of planet wheels C,



330 TORSIONAL VIBRATION PROBLEMS
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Alrscrew Gear  Engine

2- Node Nar !
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Alrscrew N qu r ZEngine

Airscrew  Gear  Engine
Equivalent System

Equivalent .fyrtm\l/kzﬁmd &o Engine Speed

F16. 67.—Geared aero-engine/air-screw systems,
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free to rotate on arms formed integral with the air-screw
shaft. The planets C also gear into a bevel gear D which is
secured to the engine crankcase, and is therefore restrained
from rotating.

Let A = number of teeth in bevel gear on crankshaft,
C = number of teeth in each planet wheel,
D = number of teeth in bevel gear which is secured to
crankcase.

_ . air-screwshaftspeed 1
Then p = gearratio= cankehaft speed — T T DJA" (173)

ie. the gear ratio is independent of the number of teeth in the
planets, the air-screw rotates in the same direction as the crank-
shaft, and the air-screw shaft is concentric with the crankshaft.

lanet speed
Also = cralilkshaftp speed 2(t/K), - - (174)
__ teeth in each planet

= Teeth in fixed bevel C/o.

where K

The above expression for p, is strictly correct only when the
axes of the arms are at right angles to the axis of the crankshaft.

$, approaches the value R(r + 1/K) as the axes of the
arms approach a condition where they are parallel with the
crankshaft axis, i.e. as the arrangement shown at II in Fig. 67
approaches the arrangement shown at ITI.

The following table gives some commonly used values of
D/A, and the corresponding gear ratios :—

D/A . . . 07500 07750 1-000 1250 1-500

2 = Gear ratio .| 0666 0571 0500 0444 0400

Diagram III in Fig. 67 shows an epicyclic gear consisting
of an annulus A with internal teeth, secured to the driving
end of the crankshaft, and a cage B, secured to the air-screw
shaft. Cage B carries a number of planets (usually three or
four), C, which gear into the annulus A and into a sun wheel D,
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which is secured to the crankcase and is therefore restrained
from rotating.
Let A = number of teeth in annulus,
C = number of teeth in each planet,
D = number of teeth in sun wheel.
. _ air-screwshaftspeed _ 142K
Then  p = gearratio=— ot faft speed  2(1+K) (x75)

teeth in planet ¢/D.

where K = teeth in sun
lanet speed 1 + 2K
Also £, = crzfnkshaftp speed ( 2K ) =#+1/K). (176)

The following table gives some commonly used values of
K with the corresponding gear ratios :—

F1xep SuN.
teeth in planet
K= e i i3 4
2= ———IOIWV 0666 0625 0600
speed of engine
speed of planets
= 2:000 2°500 3°000

1

"~ speed of engine

Diagram IV in Fig. 67 shows an epicyclic gear, similar to
that shown in Diagram III, except that the annulus is secured
to the crankcase and is therefore restrained from rotating,
whilst the sun is secured to the driving end of the crankshaft.

Let A = number of teeth in annulus,

C = number of teeth in each planet,
D = number of teeth in sun.
_ . _ airscrewshaftspeed 1
Then  $ = gearratio = crankshaft speed ~ z(1+K)’ 77)
teeth in each planet
teeth in sun

where K = = C/D.

The air-screw rotates in the same direction as the crank-
shaft and the air-screw shaft is concentric with the crankshaft.
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planet speed

Also 1= nkshaft speed

—1/(2K) = —p(x+1/K). (178)

The following table gives some commonly used values of
K with the corresponding gear ratios :—

Fixep ANNULUS.

__ teeth in planets

7 Tteeth in sun 12 1/3 1/4
speed of air-screw|
= speed of engine 0333 0375 0400
speed of planets
1= —1:000 —1'500 — 24000

speed of engine

The above tables show that a simple epicyclic gear with a
fixed sun (Type III in Fig. 67) is not suitable for gear ratios
below 0-600, whilst with a fixed annulus (Type IV in Fig. 67)
it is not suitable for gear ratios much above 0'400. This is
because the planets become too small.

It should be specially noted that a simple epicyclic gear
of Types III and IV cannot be used for a gear ratio of 0-500,
since the ratio K would be zero, i.e. the planets would have
no dimensions. )

For gear ratios in the neighbourhood of o-500, therefore,
it is necessary to use either a compounded epicyclic gear of
Types III and IV or else to use gears of the types shown at
T and II in Fig. 67.

Equivalent System.—The equivalent system for a geared
radial aero-engine/air-screw installation is shown at V in
Fig. 67. In this diagram,

Ja= moment of inertia of air-screw,

Je = moment of inertia of air-screw shaft portion of gear

assembly,

J» = moment of inertia of crankshaft portion of gear

assembly,

J. = moment of inertia of engine masses.

C, = torsional rigidity of air-screw shaft,

C, = torsional rigidity of crankshaft.
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Also, let N, = r.p.m. of crankshaft,
N, = r.p.m. of air-screw shaft,
p = gear ratio = N,/N,.

The moments of inertia of the air-screw and engine are
determined by the methods already discussed and this calls
for no special comment except to mention that although the
air-screw blades are generally assumed to be rigid, the effect
of blade flexibility can be very noticeable. This point will
be discussed later.

The determination of the moment of inertia of the gears
and the allocation of the appropriate amounts to the air-screw
and crankshafts is straightforward in cases where a simple
spur reduction gear is employed.

Where concentric gears of the types shown in Fig. 67 are
used, however, the equivalent moments of inertia are deter-
mined as follows :—

Referring to Diagram I in Fig. 67—

Let J, = moment of inertia of crankshaft pinjon A about
its axis of rotation,
J» = moment of inertia of air-screw shaft gearwheel B
about its axis of rotation,
J, = moment of inertia of each layshaft assembly, wheels
C and D, about their axis of rotation,
» = number of layshaft assemblies.

Since ‘neither the crankshaft nor the air-screw shaft can
exécute torsional vibrations without at the same time causing
corresponding vibration of the layshaft assemblies, allowance
must be made for this in evaluating the equivalent moments
of inertia of the gearing.

If there is a flexible connection between wheels C and D
on the layshafts the system must be regarded as consisting
of six masses and three shafts as shown in the small diagram
at Vin Fig. 67. This system is composed of the air-screw Jq
and the air-screw gearwheel J, at the ends of the air-screw
shaft C; ; the layshaft gears at the ends of the layshaft; and
the engine J, and the engine pinion J, at the ends of the
crankshaft C,.
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As a general rule, however, the layshaft gears can be
regarded as rigidly connected, so that the equivalent dynamic
system reduces to a system composed of four masses and two
shafts, as shown at V in Fig. 67, where

Jo=1Jos and Jo=J, + Jp - 2:* -,

ie. the moment of inertia of the layshaft gear assemblies is
combined with the moment of inertia of the crankshaft pinion,
where

1 = AJC = speed of layshafts/speed of crankshaft.

The natural frequencies of the system may then be deter-
mined by tabulation.

Alternatively the system may be further simplified by
reducing all moments of inertia and torsional rigidities to
equivalent values referred to crankshaft speed, as shown at
VI in Fig. 67.

In this diagram, using the methods already discussed,
Jo=Ja-2* Jo=Jo+J.- 2% Ji=Juw
Ca=0Cp. 9% C1=C,,

speed of air-screw shaft
speed of crankshaft

The natural frequencies of torsional vibration may then
be determined from Equation (xg), viz.,

(Jl+J2+J3)—w2(J1C-TL+‘]:1(:;1‘Ij

J1~Js .L__J_ ‘”‘-J1~Ja~Js__
+ o) c,.c, ~—©
The determination of the equivalent moment of inertia of
an epicyclic gear assembly differs somewhat from the fore-
going treatment,

where P= = Ny/N,.

Referring to Diagram III in Fig. 67:

Since torsional vibration of either the crankshaft annulus
or the air-screw shaft cage produces corresponding vibration
of the planets, allowance must be made for this in determining
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the equivalent moment of inertia of the gearing. The following
treatment assumes no elastic deflection to take place between
the various elements of the gear assembly due to transmission
of torque.

Let J, = moment of inertia of annulus member A
attached to crankshaft, about its axis of
rotation,

J, = moment of inertia of cage member B attached
to air-screw shaft, about its axis of rotation,

J, = moment of inertia of each planet C about an
axis through its centre of gravity, i.e. about
the axis of the planet spindle,

J. = moment of inertia of each planet about the
crankshaft axis, assuming the mass of each
planet to be concentrated at the centre of
gravity of the planet, ie. J, does not include
the moment of inertia of the planet about
its own axis of rotation,

7 = number of planets.

Then, referring to Diagram V in Fig. 67,
Jo=Jot+Jens Jo=Js+Ju- 027

where g, = Planetspeed oy Ny g
'™ crankshaft speed N, '

number of teeth in planet

K= number of teeth in sun °

The equivalent system referred to engine speed, Diagram
VI in Fig. 67, is determined as already described.

The determination of the equivalent gear inertias J, and J,,
for the arrangements shown at II and IV in Fig. 67, differs
in detail from the above treatment, as follows :—

For arrangement I1 :
Jo=Jo+nU0e+Jo2), and Li=J,+Js . £:2. 5

where, in this case,
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J, = moment of inertia of each bevel planet about the
crankshaft axis, assuming the mass of each planet
is concentrated at the centre of gravity of the
planet,

J, = moment of inertia of arms carrying the planets, about
the crankshaft axis,

J, = moment of inertia of bevel wheel secured to crank-
shaft, about its axis of rotation,

J, = moment of inertia of each bevel planet, about the
planet spindle,

Nyrx
b =30/K) = ().
K = number of teeth in each planet C

number of teeth in fixed bevel D’
# = number of planets.

Noie—In the above expression for J, the term J,/2 is the
moment of inertia of each planet about a diametral axis through
the c.g., and is included because the planets rotate once round
their diametral axes for each revolution of the air-screw shaft.

For arrangement IV :

Jo=Jot+Jp-n; and Jy = J, + J, - 2% %,
where  J, = moment of inertia of cage member B attached

to air-screw shaft, about its axis of rotation,

J, = moment of inertia of each planet C about the
crankshaft axis, assuming that the mass of
each planet is concentrated at the centre of
gravity of the planet,

J, = moment of inertia of sun wheel D secured to
crankshaft, about its axis of rotation,

J, = moment of inertia of each planet C about an
axis through its centre of gravity, i.e. about
the axis of the planet spindle,

pr= = pla + 1K) == = + /K,

K = teeth in planet/teeth in sun,
# = number of planets.
VOL. 1.—22
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Exampre 40.—The equivalent moments of inertia and shaft
stiffnesses shown at V in Fig. 67, for a single-row radial
aero-engine, air-screw installation with concentric reduction
gear have the following values :—

J, = moment of inertia of air-screw = 480 lbs.-ins. sec.2,
J, = moment of inertia of air-screw gear = 0-8 lbs.-ins.
sec.2
J» = moment of inertia of crankshaft gear = 0-8 lbs.-ins.
sec.?
J . = moment of inertia of crank masses = 6-5 Ibs.-ins. sec.2,
C; == torsional rigidity of air-screw shaft = 8,000,000 1bs.-
ins./radian.
C, = torsional rigidity of crankshaft = 2,500,000 Ibs.-ins./
radian.
. air-screw speed
# = gear Tato = ¢ kshalt speed
cause the air-screw rotates in same direction as
the engine).
Determine the natural frequencies of the installation.
The characteristics of the equivalent system referred to
engine speed (Diagram VI in Fig. 67) are as follows :—
Ja=17J;. = 480 X 0-5? = 120 lbs.-ins. sec.?.
2 =Jpy+ Jo. p? =08 4 (0:8 X 0:52) = 1°0 Ibs.-ins. sec.2.
J1=Jas= 65 lbs.-ins. sec.2,
Cy = Gy . p2 = 8,000,000 X 052 = 2,000,000 lbs.-ins./radian.
C, = C; = 2,500,000 Ibs.-ins./radian.

= 0500 (positive be-

Hence, from Equation (1g),

(J1+J2+Js)_wz(11(.]-é'l|‘.]a)+Jx(](1:j‘.]'z)> : ot Ji Js. L—O,

I'CZ

ie. (654 10 + 120) — mﬂ(ES(Z—Is'ga‘:b?O) + %)

!X 65 X 10X 120 _
2500000 X 2000000
or 0°00039w*  IQII-3w? 4 318,750,000 == 0.

g
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There are two real roots to this equation, namely,
w? = 173,000 OF 4,725,000,

ie. w = 416 or 2175 radians/sec.,

and

F = 3970 or 20,750 vibs./min.
Alternatively, by tabulation method :

TABLE 34.

One-Node Mode ; Geared Radial Engine ; F=3970 Vibs.[Min. ; w?=173,000
Mass. J. J.ot 6. J.ot.0, Z] . w2, 6.

Js 1,125,000
Engine;

C.  |£T.02.6/C!
I-0000 1,125,000
Ts o8 138,400

1,125,000 2,500,000
05500 76,000| 1,201,000

65

0'4500

Gear ratio = 05
Je o8| 138,400 o0-2750 38,000/ 2,440,000 (8,000,000 0-3050
Ja |480°0 83,000,000 300 | — 2,490,000, =0 —_ —
Air-
screw

TABLE 3.

Two-Node Mode ; Geared Radial Engine ! F = 20,750 Vibs.[Min. ;
w? = 4,725,000.
J.on Joat.0 Z].wt.6, ¢ |z7 erofc)
65 30,700,000|  1'0000| 30,700,000/ 30,700,000|2,500,000
Engine

o8 3,780,000| —11-3000| - 42,700,000

12-300

—12,000,000]| —_
Gear Ratio = 0°500,

o8 3,780,000| —5-6500|~—21,350,000| —45,350,000|

4800 2,270,000,000|  0°0200| 45,400,000 -0
Air-

screw

8,000,000

— 56700
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The frequencies given by the tabulation method are seen
to be in agreement with the formula frequencies. In the case
of the one-node mode the node is situated close to the air-
screw, and the air-screw amplitude is very small, indicating
that there will be no appreciable air-screw damping or excitation.

In the case of the two-node mode one of the nodes is situated
in the crankshaft near to the engine, whilst the other node is
situated in the air-screw shaft very close to the air-screw. The
air-screw amplitude is very small, so that there will be no
appreciable air-screw damping or excitation in this case also.

Approximate Formula for Estimating the Natural
Frequencies of Radial Aero-EnginefAir-screw Installa-
tions.—When the oscillating system is reduced to an equivalent
system referred to crankshaft speed, as shown at VI in Fig.
67, it will be found that the equivalent moment of inertia of
the combined gear masses is small compared with that of the
engine masses, whilst the equivalent moment of inertia of the
air-screw is large compared with that of the crank masses.

Hence a reasonably good approximation to the frequency
of the one-node mode of torsional vibration can be obtained
by neglecting the gear masses and by assuming that the node
occurs at the air-screw. The system then reduces to a simple
torsional pendulum consisting of the engine masses J,, at
one end of a shaft of torsional rigidity C, where

C,.Ca
Ci+6C,

i.e. F,= one-node frequency = 955v/C/J,

C= in the notation of Diagram VI of Fig. 67,

C,.
= 9'55\ 72—~ , approX.
TSN T+ ¢ PP
In Example 40,

1= 65 Ibs.-ins. sec.?; C, = 2,500,000 1bs.-ins./radian,
C; = 2,000,000 Ibs.-ins./radian.

2500000 X 2000000

65 X 4500000

= 3950 vibs./min. approx.

Hence, F, = 9-55\/
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This value is only about 1/2 per cent. less than the value
obtained by tabulation.

Since the moment of inertia of the air-screw is large and the
moment of inertia of the gears is small compared with that of
the crank masses, alterations of air-screw or of gear inertia do
not appreciably alter the one-node natural frequency of tor-
sional vibration of radial engines. The most effective method
of altering this frequency is, therefore, to alter either the
moment of inertia of the engine masses, or the torsional rigidity
of the crankshaft or air-screw shaft.

In the case of the two-node mode of vibration of geared
radial engines the nodes occur very close to the air-screw and
engine masses. The system, therefore, is approximately
equivalent to a single mass J, in Diagram VI of Fig. 67,
situated at the junction of two shafts of torsional rigidities
C, and C,, the other ends of these shafts being fixed.

The approximate frequency equation for this mode of
vibration is therefore

B, =955 V/(Cy + Ca)/J, approx.,
using the notation of Diagram VI of Fig. 67.
In Example 40,
J. =10 lbs.ins. sec.? (equivalent inertia of gear
masses referred to crankshaft speed),
C, = 2,500,000 Ibs.-ins./radian,
C, = 2,000,000 Ibs.-ins./radian.

Hence, F;= 955 V(2,500,000 +2,000,000)/I:0= 20,250 vibs./
. min. approx.

This is only 1-5 per cent. less than the frequency obtained
by tabulation.

Alterations in the moment of inertia of the air-screw or of
the engine masses do not appreciably alter the two-node fre-
quency. The most effective way of altering the two-node
frequency is therefore by altering either the moment of inertia
of the combined gear masses, or the torsional rigidity of either
the crankshaft or the air-screw shaft.
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In general, therefore, alterations in the moment of inertia
of the engine masses alter the tuning of the one-node mode of
torsional vibration of a geared radial engine system without
appreciably affecting the two-node mode, whilst alterations in
the moment of inertia of the gears alter the two-node mode
without appreciably affecting the one-node mode. Altera-
tions in the torsional rigidity of either the crankshaft or the
air-screw shaft affect both modes.

Changes in air-screw inertia, within practical limits, do not
appreciably affect either mode of vibration.

Normally, there are no troublesome two-node criticals in
the operating range of a geared radial engine, because only
high-order harmonics of the second-degree or two-node forcing
torques are present in the operating range, and these are of
comparatively feeble intensity. The one-node criticals are
usually the crux of the torsional vibration problem of this type
of installation.

The natural frequencies of geared radial aero-engine/air-
screw installations vary from about 3000 to 6000 vibs./min.
These values are somewhat lower than the values for corre-
sponding direct drive engines, due to the additional flexibility
imparted to the system by the gearing.

The oscillating systems of multi-row radial engines are
preferably dealt with by similar methods to those employed
for in-line engines. :

In-Line Geared Aero-Engine/Air-Screw Combina-
tions.—Fig. 68 shows a typical six-cylinder in-line aero-
enginefair-screw installation, where

J. = moment of inertia of crank masses per cylinder =
moment of inertia of rotating parts plus one-half
moment of inertia of reciprocating masses (in the
case of engines having two or more banks of cylinders
operating on a single crankshaft, J, is the moment
of inertia of the rotating parts of each crankthrow,
plus one-half the moment of inertia of the recip-
rocating parts of all the cylinders operating on one
crankthrow. As a general rule the moment of
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inertia of the reciprocating parts of the master
cylinder will differ somewhat from that of each of
the auxiliary cylinders, i.e. the total moment of
inertia of the reciprocating parts for each crank-
throw is not the moment of inertia of the recip-
rocating parts of one cylinder multiplied by the
number of cylinders operating on one crankthrow),

[, = moment of inertia of the air-screw,

], = moment of inertia of crankshaft gear,

J, = moment of inertia of air-screw shaft gear,

C, = torsional rigidity of each section of crankshaft between
adjacent cylinders,

== torsional rigidity of driving end of crankshaft,
C, = torsional rigidity of air-screw shaft.

The equivalent system, referred to crankshaft speed is shown
at IT in Fig. 68, where

Ji=J. ¢, =¢C,
=Ju+Pa-Jb: C,=C,
Jo=10"J» Co=9.0Cy,
air-screw r.p.m.

# = gear ratio = N, /N, = engine r.p.m.
[# is positive or negative according to type of gear, as already
explained].

Approximate Expressions for Calculation of One~-node Tor-
sional Vibration Frequewcy—The moment of inertia of the
combined gear masses referred to crankshaft speed is usually
of the same order of magnitude as the moment of inertia of
one set of crank masses, i.e. J, is usually approximately equal
to J;, and G, is usually approximately equal to C,.

The equivalent system shown at II in Fig. 68 is therefore
approximately the same as the simple two-mass system shown
at III, where

Ji=n.Ji+ ],
I 2 I
aTatete
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Hence, F, = one-node frequency = 9%\/ (i(jh%]a),
3-J4

k = correcting factor given in Table 6
= 091 for 4, 6 and 8 crankthrows.

ExaMpLE 4I.—The moments of inertia and shaft stiffnesses
of the system shown at I in Fig. 68 have the following

values i— )
J. = 0-350 lbs.-ins. sec.?; Ju = 0-100 Ibs.-ins. sec.? ;
» == 0:675 Ibs.-ins. sec.?; J» = 120-0 lbs.-ins. sec.? ;
C, = 6,500,000 Ibs.-ins./radian ; C, = 7,500,000 1bs.-ins./

radian ;
C; = 4,500,000 lbs.-ins. per radian ;
air-screw r.p.m.
engine r.p.m.
one branch in this example the sign of this value
is unimportant].
Determine the natural frequency of the one-node mode of
torsional vibration.
The characteristics of the equivalent system referred to
crankshaft speed are as follows (see Diagram II, Fig. 67) :—
J1 = J. = 0350 Ibs.-ins. sec.?, .
o
J'z=J,.+19’~Ja=0~100+(4—><9;‘75l
= 0400 lbs.ins, sec.?,
Js=9$2.J, = 4 X 120/9 = 53-3 lbs.-ins. sec.2,
C, = C, = 6,500,000 Ibs.-ins./radian,
C, = C, = 7,500,000 Ibs.-ins./radian,
Cy = 2%.Cy = 4 X 4,500,000/9 = 2,000,000 lbs.-ins./radian.

p = gear ratio = = 2/[3 [since there is only

Hence, the approximately equivalent two-mass system
(Diagram III in Fig. 68) has the following characteristics :—

Ja=n.J;+ Jo= (6 X 0-35) + 04 = 2-5 Ibs.-ins. sec.?,
Js = 53-3 lbs.-ins. sec.2
I x 20 I T

20 | I
G, =T, T& 1 ¢, = #500000 T 7300000 T 2000000
1

= 1063000’
i.e. C4, = 1,063,000 lbs.-ins./radian.
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Hence, for a six-cylinder engine (& = 0:91),
F, =933 10630000533 +25) _ 7000 vibs./min.
17001 533 X 2°5 )
Alternative Caloulation, using the Tabulation Method :
TABLE 36.
One-NoDE MoDE, GEARED Stx-CYLINDER in-LINE ENGINE.

'F = 6920 Vibs.[Min. ; 't = 526,000,

i]“ml.ﬁ Z].02.0
bs.-Ins.

C AR
Lbe-Ins, |Lbs.-Ins./Rad. J;h:.h:;'c

.ot [}
Mass. Lbs‘-lnjs‘Sec.% Lu»{m./m. Radian,

J. 035 184,000 | 10000 | 184,000 184,000 | 6,500,000 | 00283
J. 035 184,000 | 0g7r7 | 179,000 | 363,000 6,500,000 | 0:0558
N 035 184,000 | 0:9150 | 168,500 | 531,500 6,500,000 | 0:0817
I, 035 184,000 | 08342 | 153,500 685,000 | 6,500,000 | 01055
I, 035 184,000 | 07287 | 134,000 819,000 | 6,500,000 | 01260
J. 035 184,000 06027 | 111,000 | 930,000 | 7,500,000 | 01240
Ta 010 52,600 | 04787 25,200 | 955,200 —_ —

Gear Ratio = p = 2(3.

5 0675 355,000 0-31911 113,500 1,546,300| 4,500,000 | 03436
I, 12000 63,100,000 —o~oz45‘—1,546.3oo o -

(See Table 24 for method of applying the gear ratio.)

The one-node frequency by the tabulation method is
therefore only about T per cent. lower than the frequency
calculated by the approximate formula, when the appropriate
correcting factor from Table 6 is applied.

Table 36 and Diagram II of Fig. 68 show that the node for
the one-node mode of torsional vibration is very close to the
air-screw, so that alterations in the moment of inertia of the
air-screw within practicable limitations do mot affect the
onemode frequency to any appreciable extent. The most
effective method of altering the one-node frequency is either
to alter the moment of inertia of the engine masses furthest
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from the node, or the torsional rigidity of the shaft sections
nearest to the node.

For example, the addition of balance weights to the crank-
webs of an in-line engine lowers the one-node frequency by
5 to 10 per cent., depending on the amount of counter-weighting
employed.

Alterations to crankthrow dimensions within practicable
limits do not, as a rule, produce much change of frequency.
It will generally be found desirable to confine any alteration
of crankshaft dimensions to the journals, because the effect
of altering the dimensions of the crankpins is to produce an
appreciable alteration in the moment of inertia of the rotating
parts, which practically cancels the effect of such dimensional
changes on the inter-crank stiffness.

In the case of crankshafts with rectangular webs, however,
it is possible to obtain a useful alteration in inter-throw stiffness
without much alteration in inertia by changing from rectangular
to oval webs.

The one-node natural frequencies of geared in-line aero-
enginefair-screw combinations varies from about 4500 vibs./min.
in large multi-bank engines to about 14,000 vibs./min. in small
single-bank four-cylinder engines.

The possibility of vibration with more than one-node should
not be overlooked, although it is usually the one-node fre-
quency which is the crux of the torsional vibration problem
in installations of this type. The two-node frequency can
be evaluated approximately by reducing the equivalent system
to a three-mass system, as shown at IV in Fig. 68, where

Js =6 X 035 = 2-10 lbs.~ins. sec.?,
1/Cs = 1/C, + 2:5/C, = 1/7,500,000 + 2°5/6,500,000,
or Gy = 1,930,000 lbs.-ins./radian.

Then, applying Equation (1g), the one-node frequency of
this three-mass system is 6525 vibs./min. and the two-node
frequency is 30,600 vibs./min. The correct values of these
frequencies, determined by the tabulation method, are 6920
vibs./min. and 22,000 vibs./min. for the one-node and two-node
modes respectively. The three-mass method gives, therefore,



348 TORSIONAL VIBRATION PROBLEMS

a fairly good approximation to the one-node frequency, but
is unreliable for two-node frequency calculations. The value
obtained by the three-mass method is, however, a useful
guide in starting the two-node frequency tabulations.

Assuming that the maximum operating speed in this ex-
ample is 2000 r.p.m., since the 3rd order one-mode critical
speed occurs at 6920/3 = 2307 crankshaft r.p.m., the one-
node torsional vibration characteristics will require very careful
analysis. In the case of the two-node mode of vibration only
orders higher than the xoth occur in the working speed range,
so that troublesome two-node vibration is unlikely in this case.

Examples do occur in practice, however, where two-node
vibration cannot be disregarded, for example, in the larger
sizes of power-plant, or in cases where the maximum operating
speed is exceptionally high, or when the equivalent inertia of
the gear assembly is large, and especially if it is separated from
the air-screw by a comparatively flexible air-screw shaft.

In such cases a solution can sometimes be obtained by so
tuning the system that all troublesome one-node criticals occur
below the operating speed range, whilst all troublesome two-
node criticals occur above the operating range.

The shapes of the respective normal elastic curves are the
best guides to the tuning characteristics of a given system.
For example, the normal elastic curves in Diagram II of Fig. 68
indicate that for the one-node mode of vibration alteration in
air-screw inertia is unlikely to cause any noticeable change
in the value of the one-node frequency because the air-screw is
very close to the node. As already mentioned, the most effective
place to carry out changes of this description is at the masses
furthest away from the node where the vibratory amplitude
is greatest. Alterations in the stiffness of the shaft sections
remote from the node, on the other hand, will not make any
appreciable change in frequency, whereas changes of shaft
stiffness at the node will produce the greatest effect. Thus
an alteration in the stiffness of the air-screw shaft C,, or in the
stiffness of the engine pinion shaft C,, will produce the greatest
change in the one-node frequency of the system shown in Fig.
68. In this connection it is of interest to mention that for a
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given degree of flexibility between the air-screw and the crank
mass adjacent to the gear assembly the shortest arrangement
is obtained when the high-speed shaft, i.e. C,, is made as short
as possible (see Example 62).

The same general rules apply to the tuning of the two-node
frequency. Thus the two-node normal elastic curve in Diagram
II of Fig. 68 indicates that changes in air-screw inertia will
not have much effect on the two-node frequency, since the
node is practically at the air-screw. Changes in the gear
inertia or in the inertia of the crank masses at either end of
the crankshaft will, on the other hand, produce the greatest
tuning effect because the relative vibratory amplitude at these
points is large. Alternatively, effective tuning will be obtained
by changing the stiffness of the air-screw shaft C,, or that of
the crankshaft section at the crankshaft node. An interesting
feature is that changes in the stiffness of the pinion shaft C, are
unlikely to produce much change in the value of the two-node
frequency, because the slope of the normal elastic curve between
the gear assembly and the adjacent crank mass is small.

Now it has already been mentioned that changes of pinion
shaft stiffness do alter the ome-node frequency, so that the
following useful characteristic of the system is revealed,
namely :—

Changes in the stiffness of the air-screw shaft change both
the one-node and the two-node frequencies, whilst changes
in the pinion shaft stiffness change the one-node frequency
without having much effect on the two-node frequency. This
is a characteristic which might be useful in certain cases as a
means for obtaining a favourable tuning of both the one and
the two-node frequencies.

Diagram V of Fig. 68 shows a method of providing additional
flexibility without an abmormal increase of length. The
arrangement consists of a quill shaft accommodated inside
the hollow air-screw and gearwheel shafts.

The driving torque is transmitted through splined or other
suitable connections, and since all bending loads are carried
by the outer shafts the quill has only to carry. the torque
loading. The body of the quill is a simple highly polished rod
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free from stress-raising discontinuities, so that it can be per-
mitted to carry a higher nominal stress than an air-screw or
pinion shaft of orthodox design.

These factors enable the diameter of the quill to be made
appreciably smaller than the diameter of a normal type of
air-screw shaft, and since the stiffness of a shaft is proportional
to the fourth power of the diameter it follows that a quill drive
will be much more flexible than a normal drive of the same
overall length.

If necessary a quill drive can also be provided between the
crankshaft and the engine pinion, although this device is seldom
used in aero-engine practice.

An interesting variation of the quill drive is also shown in
Diagram V of Fig. 68, namely, the incorporation of a friction
damper which is inserted between the gear and the air-screw
so as to take advantage of the comparatively large relative
vibratory amplitude between these two parts which results
from the introduction of the quill. The friction surfaces of
the damper are loaded by a suitable arrangement of springs
or by the axial pull or thrust of the air-screw.

An arrangement of this type has been developed by Junkers.

Quill drives are also used for driving auxiliaries such
as super-chargers, and in some designs a safety device is
provided which consists of a much stronger tubular shaft
surrounding the quill. The tubular shaft is in two parts,
one connected to the driving member and the other to the
driven member. These two parts are connected by loosely
fitting dogs, the circumferential clearance being sufficient to
permit all normal torsional deflections of the quill. In the
event of a quill failure, however, or of abnormal vibratory
motions the dogs come into action and the drive is taken through
the outer tube. A protective device of this type is also useful
in cases where the auxiliary shaft, in addition to its normal
duty, is used for connecting a starting motor to the crankshaft,
since it enables the heavy starting torques to be transmitted
through the dogs instead of through the quill.

Gear Flexibility.—In the foregoing discussion it was as-
sumed that no elastic yielding occurred in the gear assembly.
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Actually, a considerable amount of yielding does take
place, due to deformations at tooth contact surfaces; bending
of teeth under the pitch line loads ; deflections of wheel discs ;
and deflections of gear housings due to torque reaction from
the gearing. The allowance to be made for gear flexibility
varies from zero to about 30 or 40 per cent. increase in the
equivalent flexibility between the air-screw and the first crank
mass. The corresponding reduction in one-node frequency
varies from zero to about 15 per cent.

The increase of 30 to 40 per cent. in flexibility of the equi-
valent air-screw shaft applies to simple spur gearing, and to
concentric bevel gears of the type shown at II in Fig. 67 where
there is appreciable flexibility in the arms carrying the bevel
planet wheels. The increase in flexibility of concentric spur
gears of the types shown at I, IIT, and IV in Fig. 67 is small
because the reaction members are comparatively rigid, and the
torque reaction on the reaction member is the difference between
the input and output torques instead of the sum as with simple
Spur gears.

An important contributory factor to gear flexibility is the
backlash of the gears. In an article in The Engineer, 23rd Aug.,
1935, page 199, entitled “ Torsional Vibrations with Angular
Backlash,” W. A. Tuplin shows that the effect of backlash
increases with an increase in the ratio (angular backlash/angle
of twist produced by mean torque), or with a decrease in the
ratio (amplitude of vibratory torque/mean torque).

In a drive with no angular backlash each critical speed is
fairly sharply tuned, whereas with angular backlash the natural
frequency has not a single value but increases as the amplitude
of vibration increases up to a certain limiting value which is
determined by the ratio (angular backlash/angle of twist pro-
duced by mean torque). The effect of backlash is therefore
to widen the range of speed over which severe vibration may
be experienced and for this reason it is desirable to mini-
mise backlash. It is also important to avoid torque reversal
at the gear teeth throughout the operating speed range, and
this implies a small value of the ratio (amplitude of vibratory
torque/mean torque), so that for this reason also it is necessary
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to minimise backlash, thereby narrowing the speed range over
which severe vibration may be experienced when starting or
stopping the engine, if there happens to be an unavoidable
critical zone in the speed range between the idling and running
ranges.

A simple approximate method for investigating the effect
of backlash is given in Chapter 10.

* Air-Screw Flexibility.—The foregoing methods of cal-
culating the natural frequencies of torsional vibration of aero-
engine/air-screw installations assume that the air-screw is
rigid, i.e. that it can be replaced by a rigid fiywheel having the
same polar moment of inertia as the actual air-screw. It is
well known that the blades of an air-screw can themselves
vibrate in a great many different flexural modes and the
advent of the metal air-screw, particularly the modern high
duty types of large diameter and controllable pitch, has focussed
attention on the necessity for dealing with air-screw blade
vibration in a satisfactory manner.

It has been shown in theory and proved by experiment that
the practice of regarding the air-screw as a rigid body is apt
in many cases to result in quite important errors in the evalua-
tion of the natural frequencies of torsional vibration of engine
air-screw systems.

For example, Professor Lilrenbaum gives an interesting
example in an article entitled “ Vibration of Crankshaft-
Propeller Systems,” S.A.E. Jowrnal, December, 1936, which is
shown in Fig. 69. Diagram I shows the torsional vibration
resonance curves mentioned in Liirenbaum’s article. These
curves are plotted from torsiograph measurements in a four-
cylinder in-line aero-engine. The dotted curve was obtained
with the engine running on the test bench coupled to a brake
propeller. In this case both the 6th and 8th order major
critical speeds are clearly defined, and correspond to a fre-
quency of about 11,000 vibs./min. The full line curve is
plotted from torsiograph measurements taken with an air-
screw fitted to the same engine, the only difference from the

* See Appendix to Volume I for a practical method of dealing with air-
screw blade flexibility. [
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former condition being the substitution of the air-screw for
the brake propeller. In this case there are two 6th order

+ 1
- 8 Torvionl_Vibration of Engine/Airsccew Jslem
6 — I
ok 12 With Brake /] \ | Normal
S Propeller on I\ Operating T
33 Test Sand | Speed <5y |
L X 10 L
S = / 6\
K / N\
&S g4 -8 A
°
£9 A / /
& 06
// \\ . 7 \
0-4 7 - -
o2 S A Smith £ irscrew

1200 1400 1600 1800 2000 2200

Engine Speed, R.PM.~—>—

I Interference Diggram 10th,

gl6ooo
= Natural Freguenc
§- Torsiondl ibrdrl%n%r

12000 —Engine/Alrscrew System +
e —— =1
g M il
3 Nalural® Frequencies
§8000 rof Flexural Vib"-

i '
L]

Wbration Fre
§

Z T

.

6th,

4th.

2nd.

800 1200 1600 2000

400
Engine JSpeed. RPM.—>
F1e. 69.—Vibration of engine/air-screw system.

critical speeds, one about 4 per cent. above and the other
about 5 per cent. below the 6th order test bench critical.

VOL. 1—23



354 TORSIONAL VIBRATION PROBLEMS

Diagram II is an interference diagram for this installation.
This chart shows very clearly the points at which there is co-
incidence between the frequencies of all exciting impulses and
the natural frequencies of the various modes of vibration of
the installation. The frequencies of the excitation impulses
are shown by the excitation lines radiating from the origin.
Thus the 2nd order excitation line is obtained by noting that
the frequency of the second order impulse is 2 per revolution.
Hence at, say, 2000 r.p.m. the excitation impulse frequency is
2 X 2000 = 4000 impulses/min.

It is customary to show only the important excitation
lines on the interference chart. In the present example, since
the engine is a four-cylinder in-line type the important ex-
citations are the 2nd, 4th, 6th, etc., harmonic components of
the engine torque curve.

The natural frequency of torsional vibration of the engine/
air-screw system, assuming a rigid air-screw, appears as a
horizontal line at the frequency 10,950 vibs./min., on the
interference diagram, whilst the natural frequencies of the
various modes of flexural vibration of the air-screw blades
appear as slightly tilted horizontal lines. The increase in the
flexural vibration frequency of the air-screw blades with
r.p.m. is due to the effect of centrifugal force in increasing the
flexural rigidity of the blades as the rotational speed increases.
A potential danger zone exists at all points where an excitation
line crosses a natural frequency line. In the present example,
the interference diagram shows that there is coincidence
between the 6th order harmonic of the engine torque curve,
the natural frequency of torsional vibration of the engine/
air-screw system, and the 2nd degree mode of flexural vibration
of the air-screw blades, at a speed of about 1825 r.p.m. This
is therefore a particularly severe danger zone.

The result of this condition at 1825 r.p.m. is shown at I
in Fig. 69. With the brake propeller both the 6th and 8th
order criticals are clearly defined at the calculated speeds,
so that evidently the error in neglecting the flexibility of the
blades of this propeller was negligible. In the case of the
air-screw, however, the effect of blade flexibility is very pro-
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nounced, the air-screw, in fact, functioning as a vibration
absorber for the crankshaft system, and splitting the original
resonance peak into two smaller peaks.

A conception of the effect of blade flexibility can be obtained
from the diagrams shown in Fig. 70.

Fie. 70.~—Vibration of engine/air-screw system,

Diagram I shows a simple two-mass system with rigid
flywheels at each end of the shaft. Assuming that the moment
of inertia of the engine masses is J, = 0-4 lbs.-ins. sec.?, and
that of the rigid air-screw is J, =35 lbs-ins. sec.?, whilst
the torsional rigidity of the shaft is C, = 500,000 lbs.-ins. per
radian, then the natural frequency of torsional vibration of
the system is
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Cy ,+ 500000(0°4 4 5°0
955«/ Ut Jo) g5/ oolest )

= II,I00 v1bs /mm
In Diagram II the rim of the flywheel representing the
air-screw is shown connected to the shaft by flexible spokes,
If it is assumed that the flexibility of the spokes is such that
the natural frequency of the rim on the spokes is the same as
the natural frequency of the engine masses on the shaft, then

C = combined torsional rigidity of spokes and shaft
=C,. C,,/(C, + Cy):
where C, = 500,000 lbs.-ins./radian.
Also, CD/JP = C,/J,,
ie. C,=C,.J,/J. = 6,250,000 Ibs.-ins. /radian.
500000 X 6250000
and t= 6450000
- CJ,+J — o-xea /462500 X (04 + 570)
955«/ 955 04 X350

= 462,500 Ibs.-ins./radian.

Hence,
== 10,650 Vlbs /mm

This value is about 4 per cent. lower than the value obtained
when the air-screw is assumed to be rigid.

Since the flexibility of an air-screw blade varies throughout
its length and is smallest at the root, Diagram III is probably
a closer approximation to the actual conditions. In this
diagram a proportion of the air-screw inertia, viz. J ,, is assumed
to be rigidly connected to the shaft, whilst the remainder, viz.
Ji=(Js—J.), is represented by a flywheel rim connected
by flexible spokes to the hub.

As before, it will be assumed that the natural frequency of
the flexibly connected rim on its spokes is the same as the
natural frequency of the engine and hub masses on their shaft,
ie. that the rim system is tuned as an undamped vibration
absorber for the engine/hub system.

Under these conditions the following relationship holds :—

Cy_Clle+Ta)

AN
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In the present example the following values will be
assumed (—

Jo=04; Ja=40; Je=10 (e J,=Js+4 J:=50,

as before).

C, = 500,000.

Hence,
__ 500000 X I-0(04 4 40) . .
Cy= v 1,375,000 1bs.-ins. /radian.

The natural frequencies of the combined system can be

calculated by means of Equation (19), i.e.

(J¢+J;.+L)—w“(‘]'(‘]€:]‘) } JS(JE‘Z'J)I))_’_w‘-cit:é’:'lf: 0

In this case the frequency equation reduces to
7,425,000 — 9:gw? 4 0-0000032w* == 0,

ot = 99 & VOBOT — 9504
00000064

Hence, F = 10,800 or 12,850 vibs./min.

or = 1,280,000 or 1,815,000.

The effect of flexibility in this case is to split the * rigid ”’
resonance peak into two peaks, one about 16 per cent. higher
than the original and the other about 3 per-cent. lower than the
original.

The value 10,800 is a one-node mode, the node being situated
in the shaft as shown at III in Fig. 70. The normal elastic
curve shows that the hub amplitude for the one-node mode is
zero, but that there is an appreciable tip amplitude which is
a possible source of high blade root stress at resonance. The
value 12,850 vibs./min. is a two-node mode with one node in
the shaft and the other node in the blades.

The normal elastic curve for the two-node mode indicates
that the tip amplitude is larger than the amplitude at the engine.
Hence this mode of vibration is a possible cause of blade tip
failures. It should be specially noted that in cases where the
flexibility of the air-screw blades is such that the blades act
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as vibration absorbers for the engine shaft, very large blade
tip amplitudes can be daveloped without correspondingly
large shaft amplitudes. Thus torsiograph records from the
shaft are not always a safe criterion of blade stressing, and it
is now recognised that blade as well as shaft motion must be
investigated.

Diagram IV in Fig. 70 shows the actual air-screw blades
replaced by a series of flywheel rims connected by flexible
spokes. The system then reduces to a shaft with the engine
masses at one end and a series of more or less closely coupled
masses at the other end representing the air-screw. This is
probably a truer picture of the actual state of affairs in an
enginefair-screw system, and indicates the possibility of a
large number of different modes of yibration.

Indeed, the problem of calculating the coupled frequencies
of an enginefair-screw system remains unsolved, although
some light was thrown on the subject by Major B. C. Carter
in his paper “ Airscrew Blade Vibration,” Jowrnal R.Ae.S.,
1937-

The importance of measuring both shaft and blade move-
ments is becoming well recognised as the only safe method
of ensuring the stability of the complete installation, and
methods are now available for taking vibration records
from air-screw blades under running conditions, both on the
test bench and in flight, as well as for taking reliable torsio-
graph records of shaft vibration. An excellent description of
this work is given in a paper by Frank W. Caldwell entitled
“ Propellers for Aircraft Engines of High Power,”” Gesammelie
Vortrige de Hauptversammiung, 1937, der Lilienthal-Geselischaft
[fiir Luftfahriforschung.

Engine Frame Vibration.—The introduction of flexible
engine mounts, particularly those which make use of rubber
in shear, for connecting an engine crankcase to its supporting
frame, has added a further complication to the calculation of
the natural frequencies of torsional vibration of the complete
system. These mounts permit the whole engine aggregate,
including the air-screw in the case of aero-engines, to execute
torsional vibrations relative to the supporting frame or fuselage.
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The natural frequency of torsional vibration of the crankcase/
mount system can be calculated from the moment of inertia
of the non-rotating parts of the engine aggregate and the
torsional rigidity of the mounts. It is customary to regard
this frequency as separate and distinct from the natural fre-
quency of torsional vibration of the enginefair-screw system,
the latter being calculated from the inertias and elasticities
of the engine and air-screw rotating and reciprocating parts
and their connecting shafts.

For ungeared engines there is not much error in regarding
these two frequencies as separate phenomena, because the only
coupling between the two is the inertia coupling which exists
between the pistons.and cylinders. This inertia coupling is
very slight and is not.of practical importance.

In the case of geared engines, however, the gearing
introduces a strong reaction torque on the crankcase so that
any vibratory movement of the gearing causes a corresponding
vibratory movement of the crankcase, i.e. crankcase and
crankshaft oscillations are strongly coupled.

This implies that the crankcase and crankshaft frequencies
can no longer be regarded as separate phenomena, the general
effect of the coupling being to replace the uncoupled frequencies
by two new coupled frequencies. The lowest coupled fre-
quency is lower than the lowest uncoupled frequency, and
the highest coupled frequency is higher than the highest
uncoupled frequency.

In an article entitled ““ The Torsional Critical Speeds of
Geared Airplane Engines,” Journal of the Aeronautical Sciences,
October, 1937, J. P. Den Hartog and J. P. Butterfield showed
that these deviations might be as much as 15 per cent. in either
direction.

The following method of calculating the coupled frequencies
is similar to the method already described for branched systems
with several masses on each branch. It is therefore applicable
to the most complicated arrangements, although the arith-
metical work becomes formidable as the complexity increases.
It is therefore advisable to simplify the system as much as
possible before commencing the calculation.
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Diagram I of Fig. 71 shows a geared system employing
simple spur gears.
Let @ = angular velocity of pinion,
b = angular velocity of wheel,
¢ = angular velocity of crankcase.

In accordance with the usual convention it is assumed in
the first instance that all motions have the same sign, and
that clockwise rotation is positive.

Then, from the velocity diagram in Fig. 71, assuming positive
values from left to right,

. a.

Linear velocity of periphery of pinion =7
=R.

Linear velocity of periphery of wheel
Linear velocity of wheel centre, referred to
centre of pinion = (R + 7). ¢.

=

Hence, at point of contact of pinion with wheel,
(R-l—r).c—R.b:r.a,
_R.b+r.a_b—p.a
R+7r I—p
air-screw speed
crankshaft speed

or ~ (z79)

. b r
where p = gear ratio = il -
The expression for p is obtained by making ¢=o0 in
Equation (179).
Also, since for simple harmonic motion, velocity is directly
proportional to amplitude, Equation (179) expresses the geo-
metrical relationships between the angular amplitudes, where

a = angular amplitude of pinion,
b = angular amplitude of wheel,
¢ = angular amplitude of crankcase.

From the tooth load diagram, assuming clockwise torque
positive,
Torque of engine on pinion
=T, =P.r,
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Torque of air-screw on wheel
=T, =P.R=—T,Jp, . . (x80)

Torque of crankcase on gear
=Te=—PR+7)=—(T,+T,). (z81)

1 Spur Gear 1 Gncentric_Spur Gear.

Tooth Load Diegram

Velocity Diagram

Sun ‘ Cdg?
Velociry Diagram Toth Losd Dwagran
Fic. 71.—Geared aero-engines.

In the following treatment the oscillating system is divided
into three branches, namely, the crankshaft branch terminating
at the engine pinion; the air-screw bramch terminating at
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the air-screw gearwheel ; and the crankcase branch terminating
at the gearbox. The frequency tables are set down for each
branch in the usual way, commencing at the free end of each
branch, assuming a value for the natural frequency of the
combined system.

The chosen value of the frequency constant corresponds to
one of the natural frequencies of torsional vibration of the
combined system when the geometrical relationship given in
Equation (179) and the torque relationships of Equations
(z80) and (181) are fulfilled.

A convenient method of carrying out the tabulations is
to regard one element of the system, for example, the flexi-
bility of the crankcase mounts, as an adjustable variable and
determine the dimensions of this element which make the
chosen frequency a natural frequency of the combined system.

The following example is based on the system of Example
41, 1.e. referring to Diagram I of Fig. 71.

ExXAMPLE 42.—

J, =035 lbs-ins. sec.?; J,=o0-100 lbs.-ins. sec?;
J» = 0:675 Ibs.ins. sec.2,

J, =1200 Ilbs-ins. sec?; J,= 4000 lbs-ins. sec.?;
J, = 10,000 Ibs.-ins. sec.2,

C, = 6,500,000 Ibs.-ins./radian ; C, = 7,500,000 lbs.-ins./
radian.

Cy = 4,500,000 Ibs.-ins./radian.

C, = torsional rigidity of the engine mounts.

Gear ratio = air-screw speed/crankshaft speed

=7R=p=—2[3.

Determine the value of C; so that one of the coupled fre-
quencies is, say, F = 1500 vibs./min., and then determine the
other coupled frequency.

Note.—The values of the polar moments of inertia and of
the torsional rigidities are the actual values, i.e. no adjustment
must be made to take into account the different speeds of
rotation of the shafts.
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TABLE 37.

Cranhshaft Branch ; F = 1500 Vibs.[Min. ; w® = 24,700.

363

Mass, J Joot 6 Jout.6 |E].at.0. [+ X].02.00C.
Je 035 8,650 | 170000 | 8,650 | 8,650 6,500,000 | 00013
Jo | 035 8,650 | 09987 | 8,625 | 17,275| 6,500,000 | 00027
Jo | "035 | 8650 | 09960 | 8,615 | 23,890| 6,500,000 | 0-0040
Je 035 8,650 | 09920 | 8,580 | 34,470/ 6,500,000 | 0-0053
Jo | 035 | 8650 | 09867 | 83540 | 43,010| 6,500,000 | 00066
Jo | o35 | 8650 |og8or | 8,480 | 51,490 7,500,000 | 0:0069
Jo | 030 | 2470 09732 | 2400 | 53800 -
Col. 1 2 3 4 5 6 7

Whence T, = 53,890 Ibs-ins., & = 0-9732.

Table 37 is constructed as follows. Columns 1, 2, and 6
can be filled in from the available data. The amplitude at the
first mass is assumed to be unity and the table is then completed
in the normal manner.

The final amplitude in column 3 is the specific amplitude
at the engine pinion, i.e. ¢; and the final torque summation
in column 5 is the resultant specific torque of the engine on the
engine pinion, i.e. T,.

TABLE 38,

Air-screw Branch ; F = 1500 Vibs.|Min. ; w? = 24,700,

Mass, ‘\ I | J.at l 3 I J.ot6. EJ.0%6. < PR
i
Jp [r20-000|2,965,000{ o | 2,965000.x | 2,965,000.« |4,500,000 0:66. o
I 0675 16,666 (034 . of 5,660. | 2,970,660. & — —_
Col. ] 1 2 3 4 5 6 7
‘Whence Ty = 2,670,660 . «; and b = 0:3400 . «,
but T, = — Tu/p, from Equation (180),

ie. 2,970,660 . « = 53,800 X 3/2 = 80,835,

or

o= 00272 ;

i
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by substituting this value of «, Table 38 becomes

T, | 1201000 2,065,000 | 00272 | 80,680 | 80,680 | 4,500,000 | 00179

Is 0675 16,666 | 0-0093 155 | 80,835 — —

Le. T, =80835 and b= 00093.

Table 38 is constructed as follows. Since unit amplitude
has already been assumed for the amplitude at the first mass
of Table 37, a value-« is assumed for the amplitude of the first
mass in Table 38.

Table 38 commences at the air-screw mass and is completed
in the usual manner. The final amplitude in column 3 is the
specific amplitude at the air-screw shaft gearwheel, ie. it is
the amplitude at this point corresponding to unit amplitude
at the free end of the engine crankshaft.

The final torque summation in column 35 is the specific
torque at the air-screw shaft gearwheel.

The air-screw shaft gearwheel amplitude and torque are
expressed in terms of the assumed air-screw amplitude, «.

The value of « is obtained from Equation (180), using the
value of T, given by Table 37. This enables numerical values
to be inserted in Table 38.

TABLE 39.

Cramkcase Branch ; F = 1500 Vibs.[Min.; w* = 24,700

Mass. 1 Joo2 6. J.a2.0. ZJ.0%.0. C PANN:T

J, |10,000| 247,000,000 |—0-0Y63 |— 4,034,725 | — 4,934,725 [ 9,820,000 | —0:4113
Jr | 400 o880000| 03950} 3,000,000 |~ 134,725 — -
2 3 4 5 6 7

Table 39 commences with the frame (or fuselage) inertia
Jo- This is given as 10,000 Ibs.-ins. sec.2in the present example,
but it is 2 quantity which is generally difficult to obtain. In
the absence of a definite value, it will be sufficiently accurate



GEARED SYSTEMS 365

to assume in most cases that J, is about 100 times greater than
J,. For instance, in accordance with this rule, if J, had been
assumed to be 40,000 Ibs.-ins. sec.? in the present example,
then the value of torsional rigidity of the crankcase mounts
would have been 10,100,000 lbs.-ins. per radian, a difference
of only 3 per cent. Due to the increased moment of inertia
of the frame, the frame amplitude would have been reduced
to =+ 0-0041 radian for 4 1-0 radian at the free end of the engine
crankshaft, but the frame motion is in any case very small
and therefore not of much practical importance.

In constructing Table 39 the values of J,, J,, J,.w? and
J; . w® can be entered in the table from the known data.

The final torque summation in column 5 is the torque of
the crankcase on the gearing, i.e. T,, and this can be calculated
from” Equation (181), using the values of T, and T, given by
Tables 37 and 38, ie.

T, = — (Ta + To) = — (53,890 + 80,835) = — 134,725 Ibs.-ins.

The final deflection in column 3 is the deflection at the
crankcase, i.e. ¢, and this can be calculated from Equation (179),
using the values of @ and b given by Tables 37 and 38,

ie o= b—p.a 00093 + 06666 X 0-9732
- TT1—p 16666
= 03930 radian.

This value is entered at the bottom of column 3.

The final torque in column 4 can now be calculated from the
final values in columns 2 and 3, i.e. final value to be entered in
column 4 = (03950 X 9,880,000) = 3,900,000 Ibs.-ins.

The value in the top line of columns 4 and 5 is obtained by
subtracting the bottom value in column 4 from the bottom
value in column 3, i.e. value to be entered at the top of columns
4 and 5 = (— 134,725 — 3,900,000) = — 4,034,725 lbs.-ins.

The top line of column 3 is obtained by dividing the top
value of column 4 by the top value in column 2, i.e. top value
in column 3= (— 4,034,725/247,000,000) = — 0-0163 radian.

The change in deflection given in column 7 is obtained by
subtracting the final from the initial deflection in column 3,
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ie. top line of column 7 = (— 0-0163 — 0:393) = — 0:4I13
radian.

Finally, the torsional rigidity of the crankcase mounts,
i.e. the top line of column 6, is obtained by dividing the top
line of column 5 by the top line of column %, i.e. torsional
rigidity of mounts = (4,034,725/0'4113) = 9,820,000 lbs.-ins.
per radian.

It should be noticed that Table 39 is constructed by using
the arithmetical processes normally employed when building
up a frequency table. )

Although the various operations appear somewhat lengthy
when described in detail, the actual work is carried out very
rapidly once the construction of a normal frequency table is
understood.

From Table 39 the torsional rigidity of the crankcase
mounts for a coupled frequency of 1500 vibs./min. is 9,820,000
Ibs.-ins./radian, and that the node occurs in the mounts them-
selves, ie. in the connection between the crankcase and the
frame.

If the crankcase on its mounts is regarded as a separate
system, the uncoupled frequency is

Fe 9.55\/9%%# vibs.fmin,

In the present example

. 9820000(400 + 10000)
F=955 400 X 10000
= 1525 vibs./min.,

also the uncoupled frequency of the crankshaft/air-screw system
is 6920 vibs./min., from Table 36 of Example 41.

Hence the coupled frequency which has just been calculated

is the lower mode of coupled vibration, and this is about 1-5
" per cent. lower than the lower uncoupled frequency.

It is interesting to note that the specific amplitude at the
crankcase is large, indicating that at speeds in the neighbour-
hood of resonance between the engine impulse frequency and
the natural frequency of the crankcase on its mounts very
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large vibratory movements of the flexibly mounted crankcase
are likely to occur. This is borne out in practice. For example,
in the case of automobile or aero engines employing rubber-
in-shear in the crankcase attachments to the frame, very large
crankcase movements are experienced at low r.p.m. when
passing through the crankcase/mount resonant speed unless
stops are provided to limit the motion.

For this reason these attachments should have sufficient
flexibility to place the frequency of the crankcase/mount
system well below the lowest engine impulse frequency at
idling speeds. In practice it is usual to design the mounts so
that the lowest engine impulse frequency is about /2 times
the crankcase/mount frequency, considering the crankcase on
its mounts as a separate torsionally flexible system. Example
41 shows that when the two uncoupled frequencies are far
apart there is not much error in regarding the crankcase/mount
and the engine/air-screw systems as separate systems, and in
any case the actual value of the coupled frequency will be
somewhat lower than the uncoupled frequency, so that the
actual ratio between the engine impulse frequency and the
crankcase/mount frequency will be somewhat greater than
v2. The resonance curve in Fig. 75 shows that when the
frequency ratio is /" 2 the dynamic magnifier is unity, ie.
there is no dynamic magnification of the torque impulses.
Hence, if the frequency ratio is somewhat greater than vz,
there will be a slight additional attenuation of the torque
impulses, so that the error in regarding the crankcase/mount
-system as a separate system is in the right direction.

In a six-cylinder in-line, 4-S.C., S.A. engine, for example,
the main impulse frequency is three impulses per revolution,
and Table 37 shows that so far as the crankcase/mount
frequency of the system is concerned all cylinders vibrate
with approximately equal amplitudes. It will be shown later
that under this condition the only unbalanced harmonic com-
ponents of the engine torque are those having a frequency
equal to an integral multiple of one-half the number of cylinders
in the case of a 4-S.C., S.A. engine, ie. the 3rd, 6th, gth, etc.,



368 TORSIONAL VIBRATION PROBLEMS

components for a six-cylinder engine. Thus in the case of a
six-cylinder in-line 4-S.C., S.A. engine the lowest engine im-
pulse frequency is three impulses per revolution. If the engine
is to run satisfactorily at an idling speed of 700 r.pam., corre-
sponding to a minimum impulse frequency of 3 X 700 = 2100
impulses per minute, the crankcase/mount frequency should
be not more than 2100/V/2 = 1490 vibs./min. The 6th order
impulse frequency of this engine at a speed of 700 r.p.m. is
6 X 700 = 4200 vibs./min., which is far removed from the
proposed crankcase/mount frequency.

It should also be noted that since Table 37 shows that all
parts of the crankshaft branch vibrate with approximately
equal amplitudes, there is practically no twist and therefore
no vibration stress in the shaft, due to this mode of vibration.
Also, Table 38 shows that the specific amplitudes of the air-
screw branch are very small, so that there will be practically
no vibratory movement of this section of the system.

In other words, the engine pinion rolls back and forth on
the practically stationary air-screw gearwheel, carrying all
parts of the engine crankshaft mass system and the crankcase
with it but without causing any appreciable distortion of the
crankshaft,

The principal vibratory stress occurs therefore in the
connections between the crankcase and the frame. "

The foregoing characteristics are typical of systems where
the uncoupled frequency of the crankcase/mount system is
considerably lower than the uncoupled frequency of the crank-
shaft/air-screw system. The absence of any severe vibratory
stress in the crankshaft when passing through the resonant
speed of the lower coupled frequency is an additional advantage
of systems arranged in this way.

Higher Frequency of the Coupled System.~The method is
similar in every respect to that already described.

A clue to the probable higher frequency of the coupled
system can be obtained by calculating the higher uncoupled
frequency, viz. that of the crankshaft/air-screw system. This
frequency is given in Table 36 of Example 41, viz. F = 6920
vibs.fmin. With this value as a guide the higher coupled
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frequency of the same installation was calculated by trial and
error, using the tabulation method just described.

The final frequency Table is given in Table 40, from which
the higher coupled frequency is seen to be F = 7030 vibs./min.
or about 1-5 per cent. higher than the uncoupled frequency of
the crankshaft/air-screw system. Table 40 shows a very con-
venient standard method of setting down computations of
this type.

One node of the higher coupled mode of vibration is located
in the air-screw shaft, close to the air-screw, and the other
node is Jocated in the connections between the crankcase and
the frame.

The specific deflection of the crankcase is very small, so
that the vibratory motion is almost entirely confined to the
crankshaft and air-screw branches.

In general, therefore, when the natural frequency of the
crankcase on its mounts is appreciably different from the natural
frequency of the crankshaft/air-screw system, there is not much
error in assuming that the coupled frequencies are substantially
the same as the uncoupled frequencies, i.e. the crankcase/mount
and the crankshaft/air-screw systems can be regarded as separate
systems. In the present example, for instance, the error due
to neglecting the coupling effect is only 1-5 per cent.

Concentric Spur Gear.—Diagram II of Fig. 71 shows an
aero-engine/air-screw system in which the air-screw shaft is
concentric with the engine crankshaft (see also Diagram I
of Fig. 67).

The method just described for a simple spur gear arrange-
ment requires some modification when other types of gear are
employed. The following treatment of a concentric spur gear
can be applied to systems having any number of oscillating
masses on the various branches, although in Diagram II of
Fig. 71 a single-row radial engine is shown merely for the
purpose of minimising the arithmetical work by having only
a single engine mass to deal with. It will also be assumed
that the pitch radii of the layshaft pinions and wheels are the
same as the pitch radii of the engine pinion and air-screw shaft
gearwheel respectively, since this is the arrangement which

VOL. L.—24
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370
TABLE 40.
FreqUENCY TABULATION: HiGHER-COUPLED MODE.
F = q030 Vibs.[Min. ; ® = 542,500} p =—2[3.
Mass.| J. Lt A J.%.0, PARNR . d
by
]
g
T | o35 160,000 1°0000 190,000 190,000 |6,500,000 | 00292 | 4
Je | o35 190,000 0-9708 184,400 374,400 | 6,500,000 | 00576 .._“q‘
Jo | o035 190,000 | 0:9132 173,400 547,800 16,500,000 0:0844 |
Jo| o35 190,000 0-8288 157,400 705,200 | 6,500,000 | 0'1085 5
Jo| o35 190,000 | 07203 136,900 842,100 |6,500,000 | 0'1295 z
Ja| o35 190,000 05908 112,100 954,200 |7,500,000| 01272 | ¥
Ja| o0 54,250| 04636 25,100 979,300 — — g
Whence T, = 979,300 and a = 04636. '
Jg |120°000 | 65,100,000 o 65,100,000¢| 65,100,000 | 4,500,000 | 14450
Jo | o675 366,000 | —~13:450 |~ 4,925,000, | 60,175,00000 —_ —_ 4
]
g
Whence T = 60,175,000 =— To/p = 979,300 X 3/2 = 1,468,900, E
or, o = 0'0244. 5
:
T |120000| 65,100,000 00244| 1,580,000 | 1,580,000 4,500,000 |0:3531 | &
L | oby5 366,000 |~0-3287 | —120,700 | 1,468,900 — — é
<
Whence T, = 1,468,900 and b= ~ 03287 i
4
Jo | 10,000 15,425,000,000| 0-0000 115,700 115,700 | 9,820,000 | 00118 | §
Ir 400 | 217,000,000(—0-0T18 |~ 2,563,000 |—2,448,200 —_ — 5
P
)
Where T, =— (T, + Ty) = (979,300 + 1,468,900) = — 2,448,200 8
. <
— o2y + 04636 X 2 S
- =~ oor18. <
T +2f3 &
v

Check :

(Ta + Ty + T = (979,300 + 1,468,900 ~ 2,448,200) = o,




GEARED SYSTEMS 371

is most likely to be preferred in practice in cases where there
is only one layshaft. If there are several layshafts it might
be found advantageous from the point of view of tooth loading
to increase the diameter of the engine pinion and reduce the
diameter of the layshaft pinion.

Let & = angular velocity of engine pinion,
b = angular velocity of air-screw shaft gearwheel,
¢ = angular velocity of layshafts,
d = angular velocity of crankcase,
» = radius of engine and layshaft pinions,
R == radius of air-screw shaft and layshaft gearwheels.

Then, from the velocity diagram, Case II, Fig. y1:
At point of contact of engine pinion and layshaft gearwheel,
R+7n.d—R.c=7r.a . . (182)
At point of contact between layshaft pinion and air-screw
shaft gearwheel,
R4+7.d—r.c=R.b . . (183)
Subtract (182) from (x83),
¢(R—7=R.b—7.a,
R.b—7.a
or c="g= . . (184)
Equations (182), (183), and (184) establish the geometrical
relationships which must be fulfilled by the motions of the
various elements of the gearing.
air-screw speed = ba.
engine speed
This can be obtained from Equations (x8z) and (x83) by
assuming that 4, the crankcase velocity, is zero and then
solving the equations simultaneously,
ie. bla = r*[R?,
a result which agrees with Equation (171) for the case where

the number of teeth in primary and secondary pinions and in
primary and secondary wheels are equal.

The gear ratio =
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Equation (182) also shows that when the crankcase is
stationary the ratio (layshaft speedfengine speed) = — #/R,
which agrees with Equation (172).

Torque Relationships.—From the tooth load diagram of
Case II, Fig. 71,

T, = torque of engine on engine pinion = P .7,
T, = torque of air-screw on air-screw shaft gearwheel
=—0.R
T, = torque of crankcase on gear = (Q — P)(R +7),
T, = torque on gear due to inertia reaction of layshaft
gears = J . w?.c.
Also T,=F®.R—Q.r)=]J,.0?.c.

The foregoing geometrical and torque relationships enable
the coupled frequencies to be calculated by the tabulation
method already described for plain spur gearing. The following
example gives the details of a typical calculation :—*

ExaAMPLE 43.—This example is based on the system shown at
II in Fig. 71.

* In cases where the pitch radii of the layshaft wheels and pinions are
not the same as the pitch radii of the air-screw shaft gearwheel and engine
pinion respectively, the following more general expressions should be used :—
Let 7y = radius of engine pinion,

74 = radius of layshait pinion,
R, = radius of layshaft gearwheel,
R, = radius of air-screw shaft gearwheel.

The ining symbols are
Then, from the geometry of the gearing (R, + 7,) = (R, -+ #,), and the
geometrical and torque relationships become

Ry+r)d —Ry.c=7.a, . . . . (185)
Ry +7)d—ry.c=Ry.b, . . . . (186
Ry.b—v.a

= ————'R‘ — y: § (187)

R
P)Ry 4+ 72) = (0~ B)R, + 1)y
wtiom (PR~ Q7).
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Where J, = moment of inertia of crank masses = 6-5 1bs.-ins.

sec.?,

J, = moment of inertia of air-screw = 480-0 Ibs.-ins.
sec.k,

J. = moment of inertia of engine pinion = o-23 Ihs.t
ins. sec.?,

J» = moment of inertia of air-screw shaft gearwheel
= 1-35 lbs.-ins. sec.?,
J, = moment of inertia of layshaft gears = 2-0 Ibs.-

ins. sec.?,

J; = moment of inertia of crankcase = 300-0 Ibs.-ins.
sec.?,

J, = moment of inertia of frame = 30,000 Ibs.-ins.
sec.?,

., = torsional rigidity of engine shaft = 2,600,000
Ibs.-ins. /radian,
C, = torsional rigidity of air-screw shaft = 8,000,000
Ibs.-ins. radian,
C, = torsional rigidity of connections between crank-
case and frame,
7 = radius of engine and layshaft pinions = 1-75 ins.
R =radius of air-screw and layshaft gearwheels
= 2-5 ins.

Note.—J, is the total moment of inertia of the layshaft
gears about the axis of rotation of the layshaft, i.e. it is equal
to the moment of inertia of each layshaft assembly multiplied
by the number of layshafts.

$ = gear ratio = air-screw speed/crankshaft speed
= 7%R? = 0-49.

Calculate the torsional rigidity C, of the flexible connections
between the crankcase and the frame for a coupled frequency
of 3020 vibs./min., i.e. w? = 100,000, then determine the natural
frequency of the other mode of coupled vibration.
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TABLE 41.
Crankshaft Branch ; F = 3020 Vibs.[Min.; w?® = 100,000.

Mass. I J.wt 6. J.0%.6. | ZJ.0%.0. C. Z]. w2, 8/C.

J. 165 650,000 | 10000 | 630,000 | 650,000 |2,600,000| 02500

Ja | 025 25,000 | 07500 18,750 | 668,750 — —

Whence T, = 668,750; and a = 07500,
but T.=P.r=175.P, from tooth load diagram,
ie. P = 668,750/175 = 382,143.
TABLE 42.
Air-screw Branch ; F = 3020 Vibs.|Min. ! w* = 100,000,

Mass. | I .o o Joer | et ¢ lzroensg
Ja | 48070 48,000,000 3 48,000,000¢. (48,000,000 | 8,000,000 | 6:0000
Ts 15 150,000 | —5°0000 [— 750,0000. |47,250,0000 — —_
Whence T, = 47,250,000¢; and & = — 5:0004,
but Ty=—0Q.R=-—25.0Q, fromtoothload diagram,
ie. Q = — 47,250,000¢2-5 = — 18,900,000a.. . (188)
Also T, = inertia reaction torque of layshaft gears

=J,.wt.c

=20 X 100,000 X ¢ = 200,000 . ¢,
but T,=(P.R—Q.7) from tooth load diagram
= 382,143 X 25 + 18,900,0000 X 175

i = 955,357 + 33,075,000¢,
Le. 200,000 . ¢ = 955,357 -+ 33,075,000,
or ¢ = 47769 + 1653750 . . . . (189)

Again, from Equation (184),
c=R.0—7.0)/R—7)
_ T 25 X 506 —I75 X 0775
25— 175 '
ie ¢ = —16:6660 — 1-75. . . . . (x90)
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From Equations (189) and (xgo),
®=—00359, and ¢= — 1153.
When this value of « is substituted, Table 42 becomes

J, | 4800 {48,000,000| —0'0359 | —1,720,000 | —I,720,000 | 8,000,000 | ~0-2150

Is I3 150,000 ©I791 26,900 | —1,693,100 —_ —_—

Whence T, = —1,693,100; b= 0-1791; and Q = 677,000,
T, = 200,000 . ¢ = — 200,000 X I-I53 = — 230,600,

TABLE 43.

Cramkcase Branch ; F = 3020 Vibs.[Min.; o= 100,000.

Mess. | J. J.o 3 Jeot6 | EJ.et.6 C ZL.wt6)C,

Jo |30,0003,000,000,000/ 00041 | 12,355,000/12,355,000/33,000,000 0'374%
I 300| 30,000,000 —03700 | —1II,100,000| I,255,000, —
Col. I 2 3 4 5 6 7

Where T, = torque of crankcase on gear = last line of
column 3
=(Q —P)(R +#) (from tooth load diagram)
= (677,000 — 382,143)(2°5 + I75) = 1,255,000,
and d = amplitude at crankcase = last line of column 3
= (R.c+7.4)/R +7 (from Equation (182))
_ T 25 X TI53+ 175 X 075 _
25 + 175
Hence, C,= torsional rigidity of the connections between
crankcase and frame = 33,000,000 lbs.-ins./
radian.

— 0°3700.

Note—ZT = resultant torque on gearbox
=T+ T+ T, +T,)
= 668,750 — 1,693,100 + 1,255,000
— 230,600 = 50,
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ie. the resultant torque is practically zero, which is a good
check on the accuracy of the foregoing treatment.

The natural frequency of the crankcase/mount system
considered as a separate system is 3160 vibs./min., whilst
the uncoupled frequency of the engine/air-screw system is
3910 vibs./min, Hence the frequency which has just been
calculated is the lower coupled frequency and this is 44 per
cent. lower than the lower uncoupled frequency. For this
mode of coupled vibration there are two nodes, one in the air-
screw shaft close to the air-screw, and the other in the elastic
connections between the crankcase and the frame.

Higher Mode of Coupled Vibration.—The most direct method
of determining the natural frequency of the higher mode of
coupled vibration is to carry out several sets of tabulations of
the type just described, but for different assumed values of
the natural frequency, adjusting the torsional rigidity of the
elastic connection between the crankcase and the frame in each
case, so that the necessary torque and gear deflection equations
are satisfied. A curve is then constructed showing the varia-
tion of frequency with torsional rigidity of the elastic con-
nections between the crankcase and the frame. The value of
the higher coupled frequency can then be read off the curve
at the known value of the torsional rigidity of the elastic con-
nections, viz. 33,000,000 lbs.-ins./radian.

The following tables give the final tabulations for the higher
coupled frequency :—

TABLE 44.

Crankshaft Branch ; F = 4075 Vibs.[Min. ; w* = 182,000.

Mass, | J. J.on LA J.02.0. EAR NS C. ZJ. 0%, 6/C.|

J. |65 | 1,183,000 |1-0000| 1,183,000 | 1,183,000 2,600,000 0455

Jo o025 45,500 0545 24,800 | 1,207,800 —_ —_

Whence T.=1,207800; a = 0345 ;
P = 1,207,800/175 = 690,000.
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TABLE 45.

Atr-screw Branch ; F = 4075 Vibs.[Min.; w?® = 182,000,

Mass. | J.

I. o 6. J.wt,0, ZJ.wt.6. C. ZJ .a.8/C)|
Ja | 48070 | 87,360,000 o 87,360,000¢: 87,360,000¢ | 8,000,000 | I0-92a
I 1'5 273,000 |—9°92a | —2,710,000% |84,650,0000 —_ —_
Whence T, = 84,650,0000; b= — gg2;

Q = — 84,650,000¢/2'5 = — 33,860,0000,
also T, =J.. 0. ¢ =20 X 182,000 X ¢ = 364,000. ¢,
but T,=®.R—0Q.7) = 690,000 X 2:5

+ 33,860,000¢ X 175
= 1,725,000 + 59,260,000¢,
ie. ¢ = 474 + 162810,
again, c=R.b—r.a))R—7)
_ T 25 X 992a — I75 X 0'545
25— X75 !
or ¢ = — 33Ix — I272,
hence, o= — 00307, and ¢= — 0256, and Table 45
becomes
Jp | 4800 | 87,360,000 [—0-0307 | —2,682,000 | —2,682,000 | 8,000,000 ~0-3352
I 5 273,000 | 03045 83,000 | —2,599,000 — —_
Whence T, = —2,509,000; b=03045;
Q = 2,509,000/2'5 = 1,039,500,
and T, = 364,000 . ¢ = — 364,000 X 0:256 = — 93,200.

TABLE 46.

Crankcase Branch ;| F = 4075 Vibs.[Min.; o® = 182,000.

Joot 0. Jeat.6. | 27.at.6. C.|E.at.60C

Mass. | J.
Jo |30,000
.T 7 300

15,460,000,000| —0+0005 |~2, 545,000 —2,545,000|34,200,000| —0-0745

54,600,000 0'0740| 4,030,000| 1,485,000 — —_
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Where T, = (Q — P)(R + #) = (1,039,500 — 690,000)4-25
= 1,485,000
and d=R.c+7.a[R+7)=(—25 X 0256
+ 175 X 0545)/4'25 = 0074.
Note.—ZT = (T, + Ty + To + T,) = (1,207,800
— 2,599,000 + I,485,000 — 93,200) = 600,
ie. the resultant torque is practically zero, and also the tor-
sional rigidity of the connections between the crankcase and
the frame in Table 46 is very nearly the same as the value in
Table 43.

Hence the value F = 4075 is the natural frequency of the
higher coupled mode of vibration of this system. The natural
frequency of the enginefair-screw system, considered as a
separate system is 3910 vibs./min., so that the higher coupled
frequency is about 4} per cent. higher than the higher uncoupled
frequency.

In this system, therefore, where the uncoupled frequency of
the crankcasefmount system is comparatively close to the
uncoupled frequency of the engine/air-screw system, the effect
of the coupling provided by the gearing is to lower the lower
uncoupled frequency by about 4% per cent. and to raise the
higher uncoupled frequency by about 4% per cent. It should
be noted that if plain spur gearing of the same ratio had been
used instead of concentric gearing the gear reaction would
have been greater, and therefore the coupling effect would
have been even greater than 4% per cent.

Epicyclic Gear.—Diagram III of Fig. 71 shows another
common type of concentric gear, i.e. an epicyclic gear. The
particular arrangement shown in this diagram employs a fixed
sun so that the gear is suitable for ratios of 0-600 to 0-666 as
already discussed.

Thus, if the annulus is driven by the engine and the air-
screw by the planet cage, the air-screw will rotate at 0-600
to 0-666 of the engine speed, depending on the tooth relation-
ships employed. Alternatively, if the engine drives the planet
cage and the air-screw is driven by the annulus, the air-screw
will rotate at 1:666 to 1-5 times engine speed, but this type of
gear is not usually found in aero-engine practice.
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For gear ratios between 0-333 and o-400 the annulus is
fixed and the engine drives the sun and the air-screw is driven
by the planet cage. In this case the air-screw rotates at 0-333
to 0400 of the engine speed.

The following treatment is based on an epicyclic gear with
fixed sun, as shown in Fig. 71, but the method is also applicable
to the case where the annulus is fixed merely by making the
appropriate changes in the engine and air-screw branches of
the system before commencing the tabulations.

Referring to Diagram III of Fig. 71,

Let a = angular velocity of annulus,
b = angular velocity of cage,
¢ = angular velocity of planets,
4 = angular velocity of sun,
7 = radius of sun wheel,
R = radius of annulus.

Then, from the velocity diagram, Case III of Fig. 71,
At point of contact of planets with sun,

R+n ,_ ®R=7 _
5 b - 5 c=7.d. . (x91)
At point of contact of planets with annulus,
(R+r\ b—I-( i .c=R.a, . . (192)
ie. R.a——r.d=(R—1).c, . . (193)
and R.a+r.d=R+7.b0 . . (104)

These equations express the geometrical relationships
between the gear elements.
From the tooth load diagram, Case III, Fig. 71,

T, = torque on annulus = torque of engine on gear in this

case.
T, = torque on cage = torque of air-screw on gear in this
case.
T, = torque on sun = torque of crankcase on gear in this
case.

T, = torque on gear due to inertia reaction of planets
=7J, w*.c
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T.=0.R, . . . (193)
T, = (P+Q(R+r/z, . . . (196)
T, = 7, . . (197)
T,=@-QR-Alz=Jo.o*.c. . (108)

These torque relationships, in conjunction with the geo-
metrical relationships of Equations (191) to (194), enable the
tabulation method already described to be used for determining
the natural frequencies of systems employing epicyclic gearing,
as shown by the following example :—

ExAMPLE 44.—This example is based on the system shown at
III in Fig. 71.
Let J, = moment of inertia of crank masses = 6-5 lbs.-ins.

sec.?,

J, = moment of inertia of air-screw = 480 Ibs.-ins.
sec.?,

Jo =moment of inertia of annulus = 2-0 Ibs.-ins.
sec.?,

J» = moment of inertia of planet cage = 2-5 Ibs.-ins.
sec.?,

J, = moment of inertia of planets about their axles
== 0-10 Ibs.-ins. sec.?,

J4 = moment of inertia of sun = 0-5 Ibs.-ins. sec.?,

J; = moment of inertia of crankcase = 300 lbs. ~ms.
sec.?,

J, = moment of inertia of frame = 30,000 lbs.-ins.
sec.?,

= torsional rigidity of engine shaft = 2,600,000

1bs.-ins./radian,

Cy = torsional rigidity of air-screw shaft = 8,000,000
Ibs.-ins. /radian,

C, = torsional rigidity of connection between sun a:nd
crankcase = 100,000,000 lbs.-ins./radian,

C, = torsional rigidity of connection between crank-
case and frame,

7 = sun radius = 3 ins.,
R = annulus radius = 6 ins.
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Calculate the torsional rigidity C, of the flexible connections
between the crankcase and the frame for a coupled frequency
of 4275 vibs./min., i.e. w?=200,000. Then determine the
natural frequency of the other mode of coupled vibration,

Note—], is the total moment of inertia of the planets
about their axles, i.e. it is the moment of inertia of one planet
multiplied by the number of planets.

Since, in this case, the sun is fixed, the annulus is driven
by the engine, and the planet cage drives the air-screw, the

gear ratio p is
__ air-screw speed
r= engine speed ba.
Hence, from Equation (194), when d = o (sun fixed),
p =bla =R/(R+ ) = 6/g = 0-6666,
ie. the air-screw rotates in the same direction as the engine at
0:6666 times engine speed. This result agrees with the result
given by Equation (175).
TABLE 47.
Crankshaft| Annulus Bramch ; F = 4275 Vibs.[Min. ; w* = 200,000,

Mass. | J. J.at. ’ ) J.ab.0. Zj.w’.ﬂ‘l c Zj.m’.o/c"

Js | 65| 1,300,000 | 1-0000| 1,300,000 | 1,300,000 | 2,600,000 | 05000

Jo | 20| 400,000 05000 200,000 | 1,500,000 — —_

‘Whence T, = 1,500,000; &= 0'5000;
Q=T,/R, from Equation (195),
= 1,500,000/6 == 250,000.
TABLE 48.
Air~screw|Cage Branch ; F = 4275 ; w* = 200,000,

Mass. | J. J.on 0. J.ote | Z.et6 c |z

J, | 4800 | 96,000,000 o« 96,000,0000t |96,000,000%) 8,000,000 | X2-0000

In 25| 500,000 —II-0¢ [—5,500,000% 90,500,000 — —_
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Whence T, = 90,500,000a; b= — II-0a,
but T, = — (P + Q)(R +#)/z, from Equation (196),
= — (P + 250,000)(6 + 3)/2
= — 4:5P — 1,125,000,
ie. — 43P — 1,125,000 = §0,500,000a,
or P = — 250,000 — 20,IIL,IIIa. . . . (199)

Again, T,=J,.w%. ¢ =0T X 200,000 .¢ = 20,000.¢,
from Equation (1g8),

also T, = (P — Q)(R — r)/z, from Equation (198),

= (P — 250,000)(6 — 3)/2 = 15P — 375,000.
Hence 1-5P — 375,000 = 20,000¢,
or P = 250,000 + 13,333¢. . . . . (200)
From Equations (199) and (200),

20,II1,ITIx + 13,3336 = — 500,000. . (201)
From Equation (192), b(R——zi’l - 0(37—1) =R.q,
but a =05, from Table 47,
and b= — 1100, from Table 48,
ie. —11a(6+3) +¢(6 —3) =2 X6 X 05

— 1650 + 0°5¢ = I. . . (202)

From Equations (zo1) and (202),
o= — 00256; ¢=1ITI54I; P = 265,400,

also - T, = 20,000¢ = 23,080.

Substituting this value of «, Table 48 becomes

J, | 4800 96,000,000 | —0:0256 | ~2,460,230| —2,460,230 | 8,000,000 | —0:3075

i 25 500,000 | 02819 140,950 | —2,319,280 — —

Whence T, = — 2,319,280 ; b = 0-2819,
T,=P.r, from Equation (197),
ie. T, = 265,400 X 3 = 796,200.
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Also, from Equation (194),

R.a+r.d=R+1nb
ie. (6 x 0-5) + (3 X &) = (6 + 3) x 02819,
or d = ~ 0I543.

The above values of T, and 4 can now be used to construct
the frequency table for the crankcase/sun branch, as follows :—

TABLE 49.

Crankease|Sun Branch ; F = 4275 Vibs.[Min. w® = 200,000,

Mass. Ju J.oo% . J.wt. 0. J.ow. 6, C. J.w, 8/C.

I, |30,000[6,000,000,000| 0-0016| 9,583,630(9,583,630| 64,700,000| 01478
I 300| 60,000,000 | —0-1462 | —8,772,000, 811,630 100,000,000 0-0081
Ja o5 100,000 —0'1543 |— 15,430 796,200 —

Check ZT=(T,+T,+ T, +T,)
= (1,500,000 — 2,319,280 + 796,200 - 23,080)

== 0.

Table 49 shows that the torsional rigidity of the flexible
connections between the crankcase and the frame is 64,700,000
Ibs.-ins. per radian for a coupled frequency of 4275 vibs./min.
There are two nodes, one in the air-screw/cage branch, close
to the air-screw ; and the other in the crankcase/sun branch
in the flexible connections between the crankcase and the frame.

Due to the relatively small moment of inertia of the planets
about their axles there is not much error in neglecting this
quantity in the frequency tabulations, and when this is done
the arithmetical work is considerably simplified since P is then
equal to Q.

Table 50 shows the frequency tabulations for the lower
and higher coupled frequencies when the planetary inertia is
neglected. The torsional rigidity of the flexible connections
between the crankcase and the frame for a lower coupled
frequency of 4275 vibs./min. is 63,800,000 lbs.-ins. per radian,
which is in very close agreement with the value previously
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obtained by the lengthier method which includes planetary
inertia. The higher coupled mode of vibration is 4625 vibs./
min., from Table 50.

TABLE s5o.

CoupLED FREQUENCIES : AERO-ENGINE WITH 0-666 EPICYCLIC GEAR !
FIXED SUN.

Lower Mode of Coupled Vibration.
F = 4275 Vibs.Min.; w?®= 200,000,

Mass. | I Tt 0 J.ot6. | EJ.ut.6 c zj':’" N ‘
R
s '
Z
I, 65 1,300,000 | 10000 | 7,300,000 1300000 | 2,600,000 05000 | < § |
Ja 20 400,000 | 035000 200,000 1,500,000 - - E
a
|
Whenee T, = 1,500,000, and @ = 05000, | ‘
ie. P =TyR = 1,500,0006 = 250,000 © .
Jp | 4800 96,000,000 3 96,000,000 | 96,000,0002 | 8,000,000 | 1202
T 25 500,000 |—1r0a |-~ 5,500,0000 | go,500,0002 | -
1 i
g
Whence T = 90,500,000¢ = —~ P(R + 7), E
. — 250,000 X 9 a
ie = = — ooz8, a
90,500,000 ©
g
Jp | 4800 96,000,000 [~ 00248 |~ 2,387,000 |— 2,387,000 8,000,000 |— 02990 E
s 25 500,000 | Q2742 137,000 |— 2,250,000 bl - 5
+
Whenoe T, = — 2,250,000, and b= 02742,
Jg | 30,000 | 6,000,000,000 | 00018 | 10,949,740 | 10,049,740 | 63,800,000 01715 4
Jr 300| 60,000,000 |~ 0°2697 |~10,182,000 767,740 | 700,000,000 00077 | =
Ja| o5 500,000 [~ 03774 | — 17,740 750,000 - - & F
i
Where T, = Pir. = 250,000 X 3 = 750,000, zA
A (R+7).b—R.a _ gXx02742—6X 05 3
= ~ = - =~ o il

Check 2 BT = (Ty + Ty + Ty) = 1,500,000 — 2,250,000 + 750,000 == 0.
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TABLE 50 (continued).
Higher Mode of Coupled Vibvation.

F = 4625 Vibs.[Min.; «®= 235,000.

2
Mass. | ] Joet. o J.w2.6. | BJ.0t.0. ¢ EJ_C”;_" A
2
2
z
To | 65| nsamoco| wveooo| zsan0 | xsenoeo | o600000| ossio |25
Ta 200 470,000 | 04120 793,000 1,920,000 — - E 5
§ 2
Whence T, = 1,720,000, and a = 041z, g
ie. P=Ty/R = 1,720,000/6 = 287,000, i
J, | 4800 | 112,700,000 o« 112,700,00000 | 112,700,0000 | 8,000,000 1471
I | 2 583,000 [~I31 | — 7,700,000% | 105,000,008 |  — -
t
=
H
Whence T = 105,000,0000 = — P(R + ), 2
— 287,000 X g "
ie, =2 = — goz6. 8
105,000,000 g
S
H
Jp | 4800 | 112,700,000 |~ 0:0246 |~ 2,770,000 |~ 2,770,000 | 8,000,000 [—0'3460 | &
Ty 215 588,000 | 03214 189,000 |= 2,581,000 - _ i
<
+
Whence Ty = — 2,583,000, - and b = 0-3214.
J, | 30,000] 7,050,000,000 | ~0'0014 | 9,625,450 |— 0,625,450 | 64,000,000 |—~0-1500 +
Iy 300| 70,500,000 | 01486 10,470,000 844,550 100,000,000 | 00084 | z
Ja o5 117,500 o'x40z 16,450 861,000 —_ — ﬁ
i
g3
Where T, = P.r. = 287,000 X 3 = 862,000, E A
ZR. 13254 — 6 X O
d=(R+1)b' z=9xoszx43 xom;o-um UJ.

Chask s BT = (Tq+ Ty + To) = (1,720,000 — 2,385,000 + 861,000) = 0.

The uncoupled frequencies are 4460 vibs./min. for the
engine/air-screw system and 4450 vibs./min. for the crankcase/
mount system, i.e. the lower coupled frequency is about 4
per cent. lower than the lower uncoupled frequency, and the

VOL. I.—25
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higher coupled frequency is about 4 per cent. higher than the
higher uncoupled frequency. It is interesting to note that
although the two uncoupled frequencies are practically co-
incident the coupled frequencies differ from the respective
uncoupled frequencies by the comparatively small amount of
4 per cent. This is because the coupling due to the gearing
is comparatively small, i.e. the gear ratio itself is high, 0-666,
and with epicyclic gearing the air-screw rotates in the same
direction as the engine crankshaft, so that the torque reaction
on the gearcase is the difference between the input and output
torques. A much greater difference, as much as 15 per cent.
either way, between the coupled and uncoupled frequencies is
experienced when the gear ratio is low and when the output
shaft rotates in the opposite direction to the input shaft, so
that the torque reaction on the gearcase is the sum of the input
and output torques.

Approximate Method for Calculating the Coupled
Frequencies of a Geared EnginefAir-Screw Installa-
tion.—The following approximate method for calculating the
coupled frequencies of a geared engine/air-screw installation is
based on an analysis of the torsional critical speeds of geared
aeroplane engines by J. P. Den Hartog and J. P. Butterfield
in The Journal of the Aeronautical Sciences, October, 1937. It
will be found useful for a preliminary investigation of the
characteristics of an installation and will considerably reduce
the arithmetical work involved in applying the more accurate
tabulation method just described.

The following assumptions have been made in obtaining the
approximate solution :—

(i) The moments of inertia of the gear masses have been
neglected.
(i) The moment of inertia of the fuselage has been assumed
to be infinite.
(i) The inertia coupling between the pistons and cylinders
has been neglected.

Item (i) is the principal source of error in this approximate
method, since the moments of inertia of the gear masses are
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not usually negligibly small compared with the other oscillating
parts. Item (ii) does not cause much error, because the moment
of inertia of the fuselage is always very large compared with the
moments of inertia of the other parts of the system. Item (iii)
also does not cause much error, because the moment of inertia
of the reciprocating parts of the engine is usually small compared
with the moments of inertia of other parts of the system.
Referring to Fig. #1 :—

Let J,= moment of inertia of the crank masses,

J» = moment of inertia of the air-screw,

J, = moment of inertia of the crankcase,

C, = torsional rigidity of engine shaft,

C, = torsional rigidity of air-screw shaft,

C, = torsional rigidity of connection between the
reaction element of the gearing and the
crankcase,

C, = torsional rigidity of the connection between the
crankcase and the fuselage (or frame),

$ == gear ratio = air-screw speed/engine speed,

K = coupling factor, defined by Equation (206),

w, = phase velocity of enginefair-screw system, re-
garded as a separate system,

, = phase velocity of crankcase/mount system,
regarded as a separate system,

w = phase velocities of the coupled modes of
vibration,

F, = natural frequency of engine/air-screw system
= 055 . w, vibs./min,,

F, = natural frequency of crankcase/mount system
= 955 . wy vibs./min.,

F = natural frequencies of coupled system = 9-35 . w
vibs./min.

Then, (a) Natural Frequency of Torsional Vibration of the
Engine|Air-Screw System regarded as a Separate System.

/]
{T/C) + (@ — £(p*. Co”

(203)
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where J = ““ combined inertia ”* of enginefair-screw system
_ 2T
. T+ .
Since J, is usually very large compared with J, there is
not much error in neglecting the term J, in the denominator of
the above expression for J, in which case J = J,.

C = “ combined torsional rigidity ”* of engine/air-screw
system
_1.C.G
TG+ G

Note that p, the gear ratio, is positive if the air-screw
shaft rotates in the same direction as the engine shaft, i.e. in
the case of concentric spur gears or epicyclic gears. Alter-
natively p is negative if the air-screw shaft rotates in the
opposite direction to the engine shaft, i.e. in the case of plain
spur gears.

Also, if the coupling between the reaction element of the
gear and the crankcase is very rigid, ie. C, is very large, the
second term in the denominator of Equation (203) is negligible
and Equation (203) becomes

o Gyl Tyt 1)
et =C =5 T CFC)

This is the usual expression for a simple two-mass geared
system.

Equation (203) shows that appreciable changes in the un-
coupled frequency of the engine/air-screw system can be made
by changing the stiffness of the connection between the reaction
element of the gearing and the crankcase,

In practice this is accomplished by inserting a spring con-
nection between the sun wheel and the crankcase in the case of
an epicyclic gear with fixed sun, or between the annulus and
the crankcase in the case of an epicyclic gear with fixed annulus.
In the case of spur gears the same result would be obtained by
inserting a spring connection between the gear housing and the
crankcase.

(204)
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() Natural Frequency of Torsional Vibration of the Crank-
case|Mount System regarded as a Separate System.
oy =C/J, I ¢ )
It is preferable to arrange the mounts so that the crankcase
tends to oscillate about a longitudinal axis passing through the
centre of gravity of the combined engine and air-screw masses,
as shown in Fig. 72, since this avoids displacement of the centre
of mass and, consequently, the introduction of impulsive
forces on the supporting frame when the power plant oscillates
under the action of torque impulses. When this is done J; is
defined as follows :—

Jf=Ja+¥.a2,

where J, = moment of inertia of the stationary parts about
an axis passing through the centre of gravity
of the combined engine and air-screw masses,
parallel to the longitudinal axis of the engine
crankshaft. Note that J, does not include
the moment of inertia of the air-screw or the
rotating parts of the shaft system, but that it
does include the moment of inertia of the
reciprocating masses of the engine, assuming
that these are frozen ” at mid-stroke.

The value of J, can be determined experimentally by the
method shown in Fig. 37. In applying this method it is
advisable to use a trifilar suspension instead of the bi-filar
suspension shown in Fig. 37.

W = weight of the rotating parts, i.e. of all parts,
including the air-screw, which are not included
in J,

a = distance between the axis of rotation and the
parallel axis through the centre of gravity.

In the case of an eccentric gear where the axis of rotation
of the air-screw differs from the axis of rotation of the crank-
shaft the expression for J, becomes
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W
=T+
where W, = welght of rotatmg parts of crankshaft,

W, = weight of air-screw and rotating parts of air-
screw shaft.

.a? + . b? (see Diagram IT of Fig. 72),

1 Concentric Gear

Cenlre of Gravily

crdnl(we
Mounls

I Eccenlric_Gear

Cenlre of Gravity

Fic. 72.—Crankcase inertia of geared engine.

If the crankcase mounts cannot be located on the hori-
zontal plane containing the centre of gravity as shown at (A)
in Diagram I of Fig. 72, they can be inclined as shown at (B),
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so that the crankcase is still free to oscillate about the longi-
tudinal axis through the centre of gravity. Arrangement (B)
suffers from the disadvantage, however, that side thrusts are
imposed on the engine supporting frame.

(¢) Coupling Factor.
2
ReoJE—B
J B PZ ( )
and since it has already been shown that in most practical
cases J = J, there is not much error in writing Equation (206)

as follows :(—
2 Jlr —p)?
K= T, 7 . . . (207)

Note—(i) For a direct drive where = x, the coupling

factor is zero.

(ii) The coupling factor is large, i.e. strong coupling,
for low gear ratios (small values of $).

(iii) The coupling factor is large if the crankcase
inertia is small (small values of J,).

(iv) The coupling factor is larger for simple spur
gears (p negative), than for concentric gears
(p positive).

(@) Coupled Frequency Equation.
ot — @2 W1 4 (wfw,)? + K + 0l . w2 = 0. (208)

This equation indicates that there are two coupled fre-
quencies. It should be noted that if the crankcase inertia
J¢ is very small, or if the crankcase mounts are very stiff,
ie. C; very large, then w,® approaches infinity, and Equation
(208) reduces to

w
w? — w# =0, or ;.WI oo . (209)
ie. there is only one coupled frequency, and that is the fre-
quency of the engine/air-screw system regarded as a separate
system. The coupling factor K does not influence the result.

Alternatively, if the crankcase inertia, Jy, is very large, or
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if the crankcase mounts are very flexible, i.e. C, very small,
then w2 approaches zero, and Equation (208) reduces to

w? = (1 + K%, or ﬁ’— =VIi+4+ K. . (210)

In this case also there is only one coupled frequency, but
this is influenced by the coupling factor K. Since, however,
the moment of inertia of the crankcase J; is generally very
large compared with J in Equation (206), the coupling factor
is usually comparatively small. Hence, in this case also o
does not greatly differ from w,, i.e. the coupled frequency is
again practically the same as that of the engine/air-screw system,
regarded as a separate system.

The principal significance of the above results is that if
the crankcase/mount frequency is either very low or very
high, i.e. approaching either zero or infinity, there is only one
coupled frequency and this is practically the frequency of
the enginefair-screw system, regarded as a separate system.

If, on the other hand, the crankcase/mount frequency has
a finite value which, however, is either considerably higher or
considerably lower than the enginefair-screw frequency, it
will be found that there are two coupled frequencies, the lower
of which is lower than the lower uncoupled frequency and the
higher of which is higher than the higher uncoupled frequency.
It can also be shown that an alteration in the crankcase/mount
system, for example, by changing the torsional rigidity of the
mounts, will change the crankcase/mount frequency without
appreciably altering the enginefair-screw frequency. Con-
versely, an alteration in the characteristics of the engine/air-
screw system, for example, by changing the torsional rigidity
of the connection between the fixed member of an epicyclic
gear and the crankcase, will change the engine/air-screw fre-
quency without appreciably altering the crankcase/mount
frequency.

Lastly, it is of interest to determine the value of the coupled
frequencies when the uncoupled frequencies have the same
value, i.e. when w; = w,, because this is the condition for
maximum coupling effect in any given example.
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For this condition Equation (208) becomes
o' — (2 + K)ol w?+ ol =o, . . (exx)
or ot =050+ KY £ KVE+ K. . (a12)

In most practical cases K2 is small compared with K, so
that there is usually not much error in neglecting K2 in the
above expression,

ie. w?=owl(r £K), . . . . . (213)
whence w/w, = VI =+ K approximately, when w, =w;. (214)

The following table shows the value of w/w, for various
values of K, when w, = w; —

3 ofe, ofa,
(Approximate Value). (Real Value),

o 1:0000 1-0000

o0z 1+0100 and 0-9900 1°0105 and 0-990T
004 1-0198 and 09798 1-0202 and 0-9802
006 1-0296 and 0:9695 1:0304 and 0°9705
008 1-0392 and 0'9592 1-0408 and 0-9608
o010 1°0488 and 09487 1°0513 and 0:9513
020 10955 and 08944 11049 and 0-9050
030 1-1402 and 0'8367 1-1612 and 0-8612
0:40 1-1832 and 07746 12198 and 0-8198
050 1-2247 and 0'7071 1-2807 and 0-7808

*In practice the value of K rarely exceeds o-xo for aero-
engine/air-screw installations, due to the comparatively large
moment of inertia of the crankcase compared with that of the
engine crankshaft masses. The foregoing table shows that for
values of K up to o-10 the approximate expression given in
Equation (214) can be used for the case when w, = w,, without
much error.

It can be shown that, when the uncoupled frequency of
the engine/air-screw system is not greatly different from the

* In extreme cases, however, K can be as much as o-23 for radial engines,

and o-50 for high-speed in-line engines driving the air-screw through reduction
gears of low ratio.
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uncoupled frequency of the crankcase/mount system, any
change in the characteristics of either system will have an
appreciable effect on both coupled frequencies.

The foregoing considerations are of great practical im-
portance when methods of tuning geared installations are
being investigated. For example, there is not much advantage
in altering the characteristics of the enginefair-screw system
with the object of bringing about a more favourable disposition
of the various critical speeds, corresponding to one of the
coupled frequencies, if by so doing the disposition of the critical
speeds corresponding to the other coupled frequency becomes
less favourable. For this reason it is generally advantageous
to provide the greatest possible difference between the values
of the enginefair-screw frequency and the crankcase mount/
frequency. When this is done changes in the characteristics
of, say, the engine/air-screw system do not appreciably affect

- the crankcase/mount frequency.

Since it is difficult and in any case undesirable, from the
point of view of transmission of vibration, to provide suffi-
cient rigidity in the crankcase/mount system to ensure that
the crankcase/mount frequency is a very large multiple of the
enginefair-screw frequency, the better practical solution is to
provide sufficient flexibility in the crankcase mounts to ensure
the lowest possible crankcase/mount frequency which is com-
patible with mechanical requirements. This can be readily
accomplished by means of rubber-in-shear engine mountings,
which not only enable undesirable coupling effects to be
avoided, but serve to prevent transmission of vibration to the
surrounding structure. Care must be taken, however, to allow
for the coupling effect on the engine/air-screw frequency, since,
as shown by Equation (210), the coupling factor X does in-
fluence the value of the enginefair-screw frequency when a
flexible engine mount is employed.

The strongest coupling effects occur when the two un-
coupled frequencies are close together ; when the gear ratio is
small ; when the crankcase inertia is small; and when the
air-screw shaft rotates in the opposite direction to the engine
shaft.
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ExaMpLE 45.—Calculate the coupled frequencies of the in-
stallation of Example 43, using the approximate method
just described.

From Example 43 (see Diagram II of Fig. 71).

J.=65;J,=4800; J;= 3000 Ibs.-ins. sec.?,

C, = 2,600,000; C,=38,000,000; C;= 33,000,000 lbs.~

ins./radian,

P =049

(i) Uncoupled Frequency of EnginelAir-Screw System.

Since there is no flexible connection between the reaction
element of the gearing and the crankcase in this case, the
second term in the denominator of Equation (203) is zero.
Hence Equation (204) can be used to determine the uncoupled
frequency of the engine/air-screw system,
ie. w2=C[],
$2.C,.C, _ 049 X 2600000 X 8000000 °

where C = $2.C, +C, 049® X 8000000 -+ 2600000
= 1,104,700 lbs.-ins./radian,
2 402 .

and J=!L_-L_~L’__°49 X65X48°=6~153.

P2 T+ Je 049% X 480 + 65
Hence, w,? = 1,104,700/6-153 = 179,500.

The uncoupled frequency of the engine/air-screw system
is therefore 4040 vibs./min., which is about 3 per cent. higher
than the value obtained in Example 43. This discrepancy is
due to neglecting gear inertia in the present example.

(ii) Uncoupled Frequency of Crankcase/Mount System.

This is obtained from Equation (205), viz.,

w,? = Cy4/J; = 33,000,000/300 = II10,000,
ie. the uncoupled frequency of the crankcase/mount system is
F = 3160 vibs./min., which is the same as the value in Example

43, since 33,000,000 is the value of the torsional rigidity of the
crankcase mounts determined in Example 43.
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(ii) Coupling Factor.

From Equation (206), K?—3J2=2)"
Jr-p
T _ 6153(1 —0:49)* _
i.e. in this example K= 00 X 040* 0-0222.

(iv) Coupled Frequencies.
These are obtained from Equation (208), viz.,
ot — w2 I+ (0//w)! + K] + ot 0f =0,

Le. in this example

wt—179,5000* [1+ G ;(;(5)22) 2-|-o-ozzz:l+no,ooo X 179,500==0,
or w* — 203,4830w? + 19,745,000,000 = 0.

Hence, w? = 180,027 or 104,456,

and F = 955w = 4150 or 3080 vibs./min.

Thus the approximate method gives coupled frequencies
of 4150 and 3080 vibs./min. compared with 4075 and 3020
vibs./min. given by the tabulation method of Example 43.
The discrepancy is due to neglecting gear inertia in the present
example.

Special Geared Drives.—Fig. 73 shows some interesting
geared drives and contains one or two arrangements which are
not commonly employed.

In the arrangement shown at I in Fig. 43 the gearing is
placed at the forward end of the installation, with the object
of providing a longer length of propeller shafting, thus in-
creasing the flexibility of the propeller drive.

In marine installations with machinery installed aft this
device does provide an appreciable degree of increased flexi-
bility in the propeller shafting, and in cases where the increased
flexibility is necessary for satisfactory tuning of the system,
the increase in length of the propeller shafting is probably
a more economical method than the installation of a flexible
coupling between the propeller and the main gearwheel, bearing
in mind that in high-powered, slow-speed installations the
flexible coupling would be proportionately large and heavy.
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Arrangements IT and III show two methods of constructing
a double-reduction gearing assembly. In arrangement II
a flexible quill shaft is provided between the primary gearwheel

I FPort Engine Flexible Coupling

Gearing

= )
AfU LA
NN

Propeller

A
Starbd. Engine

Cg

J3 J4
Gear Rafio=~P

Fr16, 73.—Special gearing

and the secondary pinion, whereas, in arrangement III, the
gear assembly is practically rigid. Both arrangements have
been used successfully in practice. The advantages claimed
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for arrangement II are that the flexibility of the quill shaft
compensates to some extent for errors in gear cutting and
assembly, whilst in some quarters it is considered that this
arrangement gives a stiffer gearcase. The chief advantage of
III is that the elimination of the flexible quill shaft removes one
of the principal flexibilities in the system, and thus eliminates
one possible mode of vibration. From the torsional vibration
point of view, therefore, arrangement III is simpler than II,
since the number of principal modes of vibration with III is
one less than with II. With modern methods of gear tooth
generation, troubles due to gear inaccuracies should not be
experienced with arrangement III.

The arrangement shown at IV is quite unusual and has
not been used to any noticeable extent in practice. Power
is taken from two points in the crankshaft simultaneously,
and the underlying object of this scheme is to reduce the tor-
sional deflections which occur in the crankshaft and to give
higher natural frequencies of torsional vibration. Since any
deflection of the crankshaft must be accompanied by a pro-
portionate deflection of the layshaft, the torsional rigidity of
the layshaft must be added to that of each section of the crank-
shaft when calculating the natural frequencies of the whole
system. If the gear ratio differs from unity the equivalent
torsional rigidity of the layshaft should be used, as previously
explained.

Diagram V of Fig. 73 shows a simple system of the type
shown in Diagram IV, consisting of two masses, J, and J,,
on a mainshaft of torsiomal rigidity C,. The layshaft, of
torsional rigidity C,, is connected to each end of the main shaft
by gears of ratio P, where

P = speed of layshaft/speed of mainshaft.

The polar moments of inertia of the pinions on the layshaft
are Jyand Jg. ’

Then, referring all masses and elasticities to mainshaft
speed,

Equivalent inertia at left-hand end of mainshaft

Js=(J1+ Ja. P%, from Equation (153),
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Equivalent inertia at right-hand end of mainshaft :
Jo=0Us+Ja- Py,

Equivalent torsional rigidity of mainshaft :
Cy=(C; + C;.P¥, from Equation (154),

ie. the equivalent system consists of two masses, J; and Jj,
on a shaft of torsional rigidity Cs, and the natural frequency is
given by Equation (16).

Hence,
F =955 VColJs + Jo)/Js - Js).
or

F=1955V(C:i+Co. P [x/(Ji + Jo. P + 1/(Jo + Ja- PO
If Jy=1J,=1], Jsand J, are negligible ;
. C,=Cy=C; andP =1,
F = ¢35 V4. C/] vibs./min.

The natural frequency of a simple two-mass system con-
sisting of a mass J at each end of a shaft of torsional rigidity
C is, from Equation (x6),

F=935vz2.C/].

Hence the result of fitting the layshaft is, in this case, to
increase the frequency by 40 per cent.

If P is made large a large increase of frequency is obtained,
with a comparatively light layshaft. If, on the other hand,.
P is appreciably smaller than unity, the change of frequency
will not be very marked. '

The foregoing discussion assumes that the gears are very
accurately generated and are assembled without backlash.
The assumption of no backlash is permissible so long as the
mean torque transmitted exceeds the torque variation, but
under no-load conditions this assumption is no longer strictly
valid. The possibility of trouble with the gearing is probably
the chief difficulty in applying the scheme in practice.

Another novel form of geared drive proposed by Junkers
for wing mounted aero-engines also employs a layshaft located
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below the crankshaft running the full length of the engine.
In installations of this type the engine usually projects some
distance beyond the wing so that the crankcase is subjected to
twisting loads caused by transmission of torque reaction from
the air-screw to the point of attachment of the engine to the
wing. The consequent crankcase distortion is apt to be ob-
jectionable, especially in the case of geared engines with
magnesium alloy crankcases, a material with rather low elastic
moduli. In this Junkers construction this defect is overcome
’ by driving the lay-
shaft by gearing
located at the end
remote from the air-
screw, ie. the end
adjacent to the point
of attachment of the
crankcase to the
wing. In this way
the torque reaction
is taken by the wing
mounting. Inciden-
tally the long lay-
shaft between the
gearing and the air-
screw provides a sub-
stantially flexible airscrew drive which may or may not be
advantageous according to the characteristics of individual
installations.

Since satisfactory tuning of any given oscillating system
depends on the selection of suitable values for the various
inertias and elasticities it is desirable for the designer to have
at his disposal means for adjusting these quantities in any
desired direction. Couplings with a large range of adjustable
flexibility have already been described, whilst a method of
increasing the torsional rigidity of a section of shafting, in cases
where an increase in the dimensions of the shaft is not possible,
is shown in Diagrams IV and V of Fig. 73. In certain cases
it is required to provide a coupling which permits free move-

Pinion

F16. 74.~Torsionally rigid coupling.
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ments in an axial direction whilst retaining the maximum
degree of torsional rigidity of the connection.

Fig. 74 shows such a coupling, the design illustrated having
been successfully used in geared oil engine installations for
connecting the engine to its pinion. Messrs. Blohm and Voss
have built many ships with geared oil engine propulsion in
which couplings of this type are used between the main engines
and their pinions. Presumably in these installations the use
of a coupling having very small torsional flexibility enabled
the designers to place all the serious critical speed zones above
the operating range. An important point to be kept in mind
when the coupling between the engine and the gearing is rigid,
and a heavy flywheel is fitted to reduce speed fluctuations at
the gears, is that the flywheel inertia is added to the inertia
of the system. As explained in connection with Diagram III
of Fig. 73 this provides a practically rigid gear assembly and
reduces the number of degrees of freedom of the whole system
to a minimum. It is essential, however, to employ gears with
very accurately generated teeth and ensure that the alignment
of the gearing is correct, otherwise trouble originated by gear
cutting and mounting inaccuracies might be encountered.

The coupling shown in Fig. 74 consists of the flywheel
hub, which is rigidly bolted to the driving end of the crankshaft,
and a coupling flange formed integral with the pinion. The two
parts of the coupling are connected by four very generously
proportioned bolts located axially in the holes in the flywheel
hub. The located screws are designed so that the main driving
bolts can be withdrawn easily if it is desired to uncouple one
of the engines,

Generous bearing surfaces, i.e. large diameter bolts, are
necessary, not only to provide the required degree of torsional
rigidity, but also to eliminate wear and to prevent ‘ freezing
of the bolts against axial movements when the coupling is
transmitting torque. This tendency of the friction between
the contacting surfaces to prevent axial movement under load
is one of the criticisms applied to turbine claw couplings, but
Messrs. Blohm and Voss’s successful experience appears to

VOL. I.—26
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indicate that this trouble is overcome in the design shown in
Fig. 74.

It may be, however, that owing to the extreme accuracy
of modern gear cutting the axial movements imposed on the
bolts are very small. R

Engine Accessories.—The following accessories are usually
driven from the engine : camshafts, magnetos, dynamos, service
pumps, and superchargers. As a general rule the moments of
inertia of these accessories are so small, even when driven at
a higher speed than that of the engine, and the flexibility of
their drives is so large, that their influence can be disregarded
so far as torsional vibration of the main system is concerned.
This is especially true when the drives are taken from the
driving end of the crankshaft, because the node for funda-
mental torsional vibration of the main system is located near
this end. Incidentally, it is preferable to drive the important
accessories such as camshafts and superchargers from this end
of the crankshaft, because the amplitude of vibration is very
small at this point.

In this connection experience with accessory drives of
automobile and aero-engines indicates that trouble is likely to
occur when the vibratory amplitude at the point from which
the accessories are driven exceeds 4 0-3°,

Where the polar moment of inertia of an accessory is
appreciable compared with that of the principal oscillating
masses of the main system, or where the accessory drive is
comparatively rigid, it is advisable to include it in the calcula-
tions. This merely requires an extension of the frequency
tabulations to include the accessory, which is a simple matter
when the accessory is driven from the free end of the crank-
shaft, but is troublesome when it is driven from the driving
end of the crankshaft, because in the latter case the accessory
and its drive must be regarded as a branch from the main
system.

Fortunately, however, in aero-engine/air-screw systems the
large moment of inertia of the air-screw implies that there is a
node near the driving end of the crankshaft for both the one-
node and the two-node modes of torsional vibration (see Fig.
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22). Hence, in practice, the influence of any accessory driven
from the driving end of the crankshaft on the main system is
imperceptible.

In the case of accessories driven from the free end of the
crankshaft, the only alteration in procedure is to commence the
frequency tabulation for the crankshaft/air-screw system at
the accessory instead of at the free end of the crankshaft.
Care should be taken to allow for the gear ratio in the case of
gear-driven accessories.

If the accessory is chain driven and the chain is not too
long the drive should be regarded as rigid, but allowance should
be made for any difference of speed between the accessory and
the crankshaft in calculating the equivalent moment of inertia
of the accessory.

If the accessory is belt driven the torsional rigidity of the
belt drive can be estimated by the methods given in Chapter 8
for the belt drives of torsiographic apparatus. In general,
however, the torsional rigidity of even short rubber or rubber
and canvas belts is so small that the influence of any accessory
driven in this way is negligible.

Although the above discussion shows that in most practical
cases the influence of engine-driven accessories on the char-
acteristics of the main system is negligible, the possibility of
resonance in the auxiliary drive itself must not be overlooked.
The main and accessories systems are subject to the action of
a very large number of periodic forces of different frequencies,
which are dissipated harmlessly by imperceptible vibratory
movements of the system, so long as resonant conditions do not
arise. In the event of resonance occurring between the fre-
quency of one of these periodic forces, even though it be of
comparatively feeble magnitude, and a natural frequency of
the system, very large vibratory disturbances are likely to
oceur. .

The main and accessory systems are capable of executing
torsional vibration in a great many different modes, and
vibration of an accessory drive is liable to occur when resonance
is established between a high-frequency disturbing force and
one of the higher modes of natural vibration of the combined
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system. Insuch a case the accessory drive may well appear to
be the only part of the system affected, because the motion of
the main system may be insignificant, i.e. the accessory system
will appear to vibrate with a node at the point of attachment
to the main system. Where there is any doubt about the
stability of an accessory drive, therefore, the natural frequency
of the accessory system, regarded as fixed at the point of attach-
ment to the main system, should be calculated, and then the
installation should be examined for possible sources of high-
frequency excitation forces, for example, forces corresponding
to the frequency of engagement of gearwheel teeth or torque
variation in camshafts, which are likely to synchronise with
the natural frequency of the accessory drive. If a resonant
condition exists it is necessary to retune the accessory drive,
either by altering the flexibility of the drive or by altering the
mass. Alternatively, it might be possible to introduce addi-
tional damping, although this method is only desirable if the
system cannot be retuned effectively.

In the case of camshafts, for example, the most effective
method of avoiding excessive vibratory motion, due to the
transmission of vibration from the crankshaft, is to drive the
camshaft from the driving end of the crankshaft, i.e. from a
point near a crankshaft node. If, on the other hand, the
trouble is due to forced vibration of the camshaft, due to torque
variation in the camshaft itself, causing reversals of torque and
therefore hammering at the teeth of the driving gears, an effec-
tive remedy is to drive an accessory such as a dynamo from the
free end of the camshaft. The torque variation in the camshaft
is then superimposed on the mean torque required to drive the
accessory, and if this mean torque is sufficiently large torque
reversal will be eliminated.

If the trouble is due to resonant vibration in the camshaft
the camshaft system can be retuned in various ways, for
example, by drilling a hole half way along the shaft, com-
mencing at the free end. This removes material from the free
end of the shaft, which reduces the moment of inertia at that
point, whilst at the same time the torsional rigidity at the
driven end, i.e. at the virtual node of the camshaft system, is
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maintained, so that the net effect is to raise the frequency of
the camshaft system.

Alternatively the natural frequency of the camshaft system
can be lowered by attaching a flywheel mass to the free end of
the camshaft, for example, by driving an auxiliary, such as a
service pump, from the free end of the camshaft.

Backlash in the camshaft driving gears can also be used
as an adjustable variable for tuning the camshaft system, since
Equation (4384) in Chapter 10, Volume II, indicates that the
general effect of an increase of backlash is to lower the natural
frequency of the system, and vice-versa.

An interesting practical example of resonance in a cam-
shaft system is given by Mr. A. T. Gregory of the Ranger
Engineering Corporation, U.S.A., in a paper entitled “ Progress
in the Development of In-line Air-cooled Engines” (S.A.E.
Preprint 1939).

In the case discussed by Mr. Gregory the original camshaft
system of a 6-cylinder, 4-stroke cycle, in-line, aero-engine had
an effective polar moment of inertia of 0-0237 Ibs.-ins. secs.?,
and a non-linear stiffness characteristic composed of a linear
portion of torsional rigidity 17,100 Ibs.-ins. per radian with a
backlash in the driving gears and shaft splines of 2:8° (£ 1-4°).

Torsiograph tests revealed a resonant zone at 2100 cramk-
shaft r.p.m., having an amplitude of twist across the camshaft
of 4 4-5° with a frequency of 3 practically sinusoidal impulses
per crankshaft revolution or 6 per camshaft revolution, i.e. a
frequency of 6300 vibs. /min. excited by the fundamental torque
impulse frequency of the engine. Below 2100 r.p.m. the twist
amplitude varied between 3= 2+5° and =+ 3-5° down to an engine
speed of 1300 r.p.m.

The backlash was reduced to 2:2° (£ 1-1°) and this was
found to be effective in removing the resonant zome outside
the speed range up to 2300 r.p.m., but the twist amplitudes
remained between o+ 25° and =+ 3-5° for speeds above 1800
crankshaft r.p.m.

The backlash was then restored to its original value of
2+8° (& 1+4°) and the effective inertia of the camshaft system
was increased to 0-0518 lbs.-ins. sec.? by adding a flywheel
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weighing 2+6 Ibs. This change resulted in lowering the reson-
ant zone to 885 engine r.p.m. at which speed the twist ampli-
tude was o= 2-3°; whilst the amplitude was below = 1° at all
speeds above 1100 engine r.p.m.

This result can be considered very satisfactory bearing in
mind that experience has shown that twist amplitudes below
=+ 1° in the operating range have no appreciable influence on
engine smoothness and ensure satisfactory and safe valve gear
and camshaft drive operation.

It is desirable, however, to make sure that any changes
made in the camshaft system do not have an adverse influence
on the vibrational characteristics of the crankshaft system,
since, strictly speaking, the camshaft and crankshaft systems
cannot be regarded as separate systems.

Where the engine speed is controlled by a governor, especi-
ally if a very close degree of speed regulation is required, it is
desirable to drive the governor from a point near the crank-
shaft node where the shaft amplitude and therefore the cyclic
speed variation is a minimum (see Chapter 6). Equation
(421), Vol. II, shows that the cyclic speed variation is directly
proportional to the vibratory amplitude so that in extreme
cases it is conceivable that an engine with a very small degree
of cyclic speed variation at the nodal point in the shaft where
the vibratory amplitude is negligible may yet possess a very
large degree of speed variation at the free end of the crankshaft
where the vibratory amplitude is large. If the governor is
driven from the free end of the crankshaft of such an engine,
therefore, trouble will be experienced if the degree of cyclic
speed variation of the shaft is greater than the degree of speed
regulation which the governor is designed to maintain.

In the case of spark ignition engines variations in spark
timing may result from non-uniform rotation of the timing
cam caused by torsional vibration in the drive.

In Technical Note No. 651, National Advisory Committee
for Aeronautics, “Effect of Spark Timing on the Knock
Limitations of Engine Performance,” considerable reduction
of the non-knocking power range of an engine due to irregular
spark timing is revealed.
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Automobile Transmission Systems.—For the one-node
mode of vibration the torque variation is more severe in the
propeller shaft or rear axle, and is comparatively small in the
engine crankshaft. The normal elastic curve is similar in
shape to the one-node normal elastic curve of a marine in-
stallation shown in Fig. 18¢, ie. all cylinders vibrate with
approximately equal amplitudes so that there is usually only
one critical speed of practical importance in the running speed
range. The maximum vibration stress at this critical speed
occurs at the nodal point, ie. in the propeller shaft or rear
axle, and breakages due to one-node torsional vibration are
therefore most likely to occur in these parts.

Due to the low value of the one-node frequency, the one-
node critical speed occurs at a low number of engine revolutions
in direct drive. Hence the one-node natural frequency deter-
mines the slowest speed at which the engine will operate
smoothly in direct drive. The one-node frequency is lowered
by thinning the propeller shaft or by increasing the moment of
inertia of the flywheel.

In the case of two-node vibrations, the normal elastic curve
is similar in shape to the two-node normal elastic curve of a
marine installation shown in Fig. 18¢c, ie. all cylinders do not
vibrate with the same amplitude. Hence minor, as well as
major, critical speeds will occur within the running speed range.
The torque variation is more severe in the engine crankshaft,
and is comparatively slight in the propeller shaft and rear axle.
The maximum torsional vibration stress occurs at the crank-
shaft node, i.e. close to the flywheel, and this is the place where
crankshaft breakages due to two-node vibrations are likely to
occur. Even if actual breakdown does not take place, however,
harsh running at engine speeds corresponding to the positions of
all two-node criticals of disturbing amplitude will occur, unless
the shaft system is properly designed with the object of pro-
viding smooth-running conditions over the whole speed range.
. Asin the case of torsional vibrations of marine installations
the crux of the problem is the disposition and magnitude of the
two-node critical speeds. The ideal solution is to design the
transmission system so that all two-node criticals of disturbing
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amplitude are situated above the highest engine speed. Much
can be done in this direction by making the engine crankshaft
as short and as stiff as possible, and the engine masses as light
as possible. In the case of four-cylinder engines, for example,
the two-node frequency is so high in relation to the frequency
of the engine impulses due to the short crankshaft that two
node criticals of disturbing amplitude are rare. In the case of
straight-six and straight-eight engines, however, there may be
some difficulty in obtaining a sufficiently high value for the
two-node frequency merely by altering the dynamic and elastic
properties of the system. In such cases a torsional vibration
damper is fitted to the free end of the engine crankshaft (see
Chapter 10).

Owing to the much greater flexibility of the propeller shaft
and rear axle compared with that of the crankshaft, the one-
node natural frequency and the amplitude of the predominant
one-node torsional vibrations can be obtained without much
error by assuming that the system is a simple two-mass system
with the engine and flywheel masses at one end of the shafting
and the road wheels at the other end.

Also, since the crankshaft node in the case of the two-node
mode of vibration is close to the flywheel, the two-node natural
frequency and the amplitudes at two-node critical speeds can
be calculated without much error by assuming that the oscil-
lating system consists only of the engine and flywheel masses,
i.e. by neglecting all parts of the transmission system behind
the flywheel.

In engines fitted with a hydraulic coupling between the
crankshaft and the propeller shaft, e.g. the Daimler fluid fly-
wheel transmission, the coupling effectively isolates the trans-
mission shaft from engine torque variations by destroying the
dynamic co-operation of the two parts into which it divides
the whole oscillating system. It is necessary, however, to
examine each of the two parts into which the system is divided
for possible causes of resonant torsional vibration in each self-
contained part. Since the principal stimulating source, viz.
engine harmonic torque variations, is isolated from the trans-
mission shaft by the hydraulic coupling, and since there is
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usually no serious harmonic disturbing torque in the trans-
mission system itself, the latter should operate smoothly at all
speeds. The magnitude of the vibration amplitudes at critical
speeds corresponding to the one-node mode of vibration of the
engine-flywheel part of the system must be investigated, how-
ever. Since the node is situated close to the hydraulic coupling,
these calculations are very similar to the two-node calculations
for an installation not fitted with hydraulic transmission.

The only circumstance under which large vibratory ampli-
tudes may be transmitted from one part of a system to another
part through a hydraulic coupling is when the natural fre-
quencies of the two parts of the system are identical. This
condition is quite exceptional, however, and in any case is
easily avoided by an appropriate alteration of mass or elasticity.

The general tendency towards higher crankshaft revolutions
and improved engine mountings has undoubtedly emphasised
the necessity for a thorough investigation of the torsional
vibration characteristics of automobile transmission systems.
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CHAPTER 6.

DETERMINATION OF STRESSES DUE TO TORSIONAL
VIBRATION AT NON-RESONANT SPEEDS.

SoME degree of torque variation is required to produce and
sustain torsional vibrations. In the case of a shaft transmitting
power, provided the applied and resisting torques are perfectly-
uniform, and the attached masses have a constant moment of
inertia relative to the axis of rotation, the only effect of the
elasticity of the shaft is to cause the end from which power is
taken to lag behind the end at which power is applied.

Under these conditions there is nothing to excite vibration,
once the shaft has taken up the initial torsional deflection
corresponding to the torque transmitted, and as soon as any
initial transient vibrations caused by setting the system in
motion have been damped out, the motion becomes uniform.

It does not require a very high degree of torque variation,
however, either at the driving or at the driven end of the
shaft to set up and sustain torsional vibration, particularly at
speeds where the frequency of the periodic torque variations
coincides with the natural frequency of torsional vibration of
the system.

In the case of the internal combustion engine in particular,
where the cyclic torque variation is considerable, it is possible
for torsional vibrations of dangerous amplitude to occur at
resonant or “ critical ” speeds. Hence a proper relationship
between the elastic and the dynamic properties of the oscillat-
ing system and the type and speed of the prime mover
must be adopted to avoid these critical speeds, i.e. the shaft
system must be tuned to suit the peculiarities of the prime
mover employed, and care must be taken to avoid running
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the engine at “critical” speeds, where the amplitude of
vibration is sufficient to cause serious additional stress in the
shafting.

Forced Vibrations.—Outside the critical zone damping
has very little influence on the amplitude of vibration, and is
neglected in the following calculations. This gives vibration
stress values at speeds outside the critical zone slightly in
excess of the probable actual values, which is preferable to an
under-estimation.

Consider a simple two-mass system consisting, for example,
of a length of elastic shafting with the engine masses, including
the flywheel at one end and the propeller mass at the other end.

The inertia of the end masses instigates an angular dis-
placement about a mean position quite independent of the
uniform rotation of the shafting, whilst the torque due to the
engine mean turning effort does not affect the period of vibration
-but merely alters the centre of oscillation.

Let M = instantaneous torque,
J = moment of inertia of attached masses,
|8} = instantaneous angular displacement of masses.

Then m=L120 )

The propeller, moment of inertia J,, vibrates about the axis
of the shaft under the action of a periodic torque proportional
at any instant to the amplitude of the elastic twist (|6 |= 6,— 6,),
between the engine and the propeller, where 8, is the amplitude
at the engine, and 0, is the amplitude at the propeller.

The constant angular deflection due to the transmission of
the mean driving torque is here neglected, since it does not
influence torsional vibration.
~ The general equation connecting applied torque, angular
deflection, and shear stress in a shaft for deflections within the
elastic limit of the material is
M_ 2f, G.l6}
.74

L. =T

=5
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where M = applied torque, I, = polar moment of
inertia of shaft,
f, = shear stress, d = diameter of shaft,
|6 = angular deflection, L = length of shaft,
Le. MG 18 . (216)

The following expression for propeller torque is obtained by
substituting Equation (216) in Equation (215),

. d% .G ||
bff-2tl . e

a0, 1,.G.lo|
or w="5L - - -0

The same torque acts at the same instant on the engine
masses, but in the opposite sense, and, in addition, there is the
torque due to the driving forces acting on the engine crankpins.

The driving forces may be assumed to consist of a constant
tangential effort, acting at crank radius R, which represents the
mean tangential effort of the driving forces, and a series of
harmonically varying tangential efforts, |T,], [T, |Tsl, . . . [T},
all acting at crankpin radius. The general expression for the
instantaneous intensities of these periodic forces can be
written :

|IT| = |T,| .sinw.¢, . . . (219)

where |T,| = maximum intensity of the #th order component
of the tangential effort curve in lbs. (nof
ibs. per sq. in.),
w = phase velocity
~2.7m.N.n
T 60
N = revolutions per minute,
7 = number of complete oscillations in one revolu-
tion,
t = time.



DETERMINATION OF STRESSES 413

For the engine masses, Equation (217) becomes, therefore,
.. d%, 1,.G.|8 .

J_—dtz =5 T |i+lT,.|.R.smw.t, . (220)

. a9,

ie. pre

Subtract Equation (218) from Equation (221) :

JL‘ (Tal.R.sinw.f)= (0 P —6) | LG W[

= fml Rusinw. s 22 oy

T, Jig](zzz)

But |8| = (8, — 8,),. and for harmonically varying oscillations
the instantaneous amplitude is given by

0] = el -sin .2, . . . [a23)
or i = — @2, |Omax| . sinw . 2. . . (224)

Substituting Equations (223) and (224) in Equation (222),and
dividing both sides by the common factor (sin w . #), gives

T R_ LG . lfussl(J. + )
T, = T el T (229)
Hence, |0mu|=r[b.—£%ﬂ. . (226)
AR vi A

The amplitude of this vibration becomes theoretically
infinite if the denominator of Equation (226) becomes zero,

; L. Gl +J,)
2= 2= B de LI . .
i.e. when w? = w, £0..79 (227)
If N, = critical speed = 31r 2 revs. per min.,
: __955 L.G(J,+ 5 g
then N, 0,70 . . (228)
and F=natural frequency=#.N;=g¢ 55\/ (J '.; ) (229)

where C = torsional rigidity of shaft = I~TG
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The periodic torque in the shaft reaches a maximum at the
same time as the angular deflection,

ie. Mg = Lo G Ml _ g,
Hence, the maximum vibration stress is
o Muax _ C. |fmas|
fo= z =z - . (230)
where Z = polar moment of resistance of shaft

3
= M, for a solid shaft.
16

If the value of w,2in Equation (227) issubstitutedin Equation
(226), the latter expression reduces to
[Tl . R

Tiod = vy - e

[Bunas] =

Also, if the periodic force causes very slow vibrations, i.e.

if the engine is running very slowly, the limiting case, when

@ == 0, is approached. The corresponding limiting value of the

torsional vibration amplitude |6, which will be referred to as
the Equilibrium Amplitude, will be as follows :—

[T.|.R

Jo w®

180l =

or, substituting for w,? from equation (227),
[T .R.L.J, _ [T|.R.J,

RS STy A Rl ey AR
The equilibrium stress is obtained as follows :— .
'Equilibrium stress = f,, = C_~TW = E’AIZ—R{T%T] (233)
e »-

The ratio |0,,,]/|0,] will be referred to as the dynamic magni-
fier and is obtained by dividing Equation (231) by Equation
(232),
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rasl __ CJL + )
Tl T Jmi— )
W,
T (we— v

ie. Dynamic magnifier =

T

where N = applied frequency,
N, = natural frequency.

Fig. 75 gives the values of the dynamic magnifiers for
different frequency ratios, without damping. It should be
noticed that without damping the amplitude becomes theoreti-
cally infinite when the applied frequency is equal to the natural
frequency, and that the amplitude of the vibration is less than
the equilibrium amplitude when the frequency ratio exceeds
1414.

Table 5T contains the values of the dynamic magnifiers for
different frequency ratios.

Fig. 75 (p. 416) and Table 51 (p. 417) are based on the
assumption that the excitation torque, and therefore the values
of the corresponding harmonic components, are constant over
the whole of the speed range.

It will be shown later that this condition is not generally
fulfilled in practice, although certain types of transmission
systems have a constant excitation torque over a limited
speed range. In such cases the values given in Table 51 can
only be applied over this limited speed range. Outside this
range it is necessary to determine the altered values of the
harmonic components due to the changes in the value of the
excitation torque, and then to recalculate the values of the
equilibrium amplitudes or stresses before applying the dynamic
magnifiers in Table 51. This task may be somewhat simplified
if the magnitude of a harmonic component changes with speed
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in accordance with a definite law. An important special case
of this kind is when the magnitude of a harmonic component
is directly proportional to the square of the speed. The har-

5 [ KD_x/!nam/'c Magnifier=Inf, (Without Dampifg)
- N_ro
14 A
13 ;
} o |
17
T
T 0 .
h |
I g
.§ i Without Damping,
‘E 8 +
X |
Q
:7 i
2 8 e
£ Dynamic Magnifjer. i
2 | =&, With Damping-
5° Wy ith Damping,
e, ||
4 yat
, VAR
VAR
2 74 Dynamic Magnifier=1
1 1 N ra1a
e
-
02 04 06 08 10 12 14 16 18 20 22 24 26
Freguency Ratio = % —_—
(s
F1e. 75.—Dynamic i with. itation torque.

monic components of the tangential effort curve due to the
inertia of the reciprocating parts of an engine vary in magnitude
according to this law (see Table 54).

The values of the dynamic magnifiers when the magnitudes
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TABLE 31.
Dynamrc MAGNIFIERS (WiTHOUT DAMPING).
(Excitation Tovque Constant.)
N Dyne, 3
NN 1%25: NN e NN, m. N/N. n?:;xf;.
0100 101 0905 553 | 1030 | 1639 [ 1-210 216
0200 104 0910 582 1°035 1408 1220 2405
0300 110 0'gr5 614 | 1040 | 1220 | 1230 1°95
0400 119 0920 651 1045 10-87 1240 1-86
0500 1:34 0'925 6-93 1050 971 1250 178
0550 143 | 0930 740 | 1055 885 | 1300 145
0600 1°56 0935 795 1060 806 1°350 I-22
0650 173 0'940 859 1°065 746 1'400 104
0700 1-96 0°945 935 1°070 6-90 1°450 091
0°750 228 0950 1026 I-075 64X 1500 080
0760 2:37 0°955 11°36 1080 602 1-600 064
0770 246 0-960 12-76 1+085 565 1-700 053
0-780 256 0965 14°54 1'090 532 1-800 045
0790 2-66 0970 16-92 1'095 503 1-goo 038
0-800 278 0975 2024 I'I00 476 2°000 034
0810 2:91 0980 2525 I°xI10 431 2°100 029
0820 305 0985 3356 1120 394 2200 026
0830 322 o-ggo | 5025 | I'x30 361 | 2:300 023
0840 341 0°995 | 100 140 334 | 2400 o-21
0850 3-60 1-000 | Infty. 1'I50 310 2°500 o019
0860 3-85 1:005 100 1160 289 2+600 oIy
0-870 411 1oro | 5000 | II70 271 | 2700 016
0880 443 1015 3334 1-180 255 2-800 oI5
0890 4-81 1-020 2500 I°190 2740 2+900 014
0900 526 1°025 19'6T 1200 227 3000 013

of the harmonic components are directly proportional to the
square of the speed may be determined as follows :—

Let

[Tool

[T,

= maximum value of sth order harmonic
component of the tangential effort curve,
This will be referred to

when o = w,.

as the equilibrium torque,

= maximum value of #th order harmonic

VOL. 1.—27

component at speed w,
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then [Tp] == [T (w]ewy)®
Also, if |65 = equilibrium amplitude (due to application
of [T,),

|fmax| = maximum amplitude at speed w.
Then, by substituting |T,| = |T,,|(w/w,)? in Equation (231),
|T| . R
Jo- g’
|T,.,[(w/w,)2 -R
J A(w42 — )’
Le. dynamic magnifier = |6maxl/|0y) = MC .
- g P T T — (wfw)?
(NN,
s )
where N = applied frequency,
N, = natural frequency.
Fig. 76 shows the resonance curve for this type of excitation,
and Table 52.gives a list of dynamic magnifiers for different
frequency ratios when damping is neglected.

0] =

|6maz |

i

TABLE 52.
DyNamic MAGNIFIERS (WITHOUT DAMPING).
Excitation Torgue Divectly Proportional to (R.P.M.)%

NN Dync.‘ NN, l&ﬁ:ﬁ NN rﬁﬁ’{ N/N %’;ﬁ,

0100 0010 0850 2:604 0995 9925 1100 |. 5762
0-200 0042 0875 3267 1-000 Inf. 1'125 4765
0°300 0099 0900 4263 1:005 | 100'8 1°150 4°10L
0°400 0190 0910 4816 1010 5075 I'175 3627

0500 | 0333 | o920 | 5510 | 1020 | 2574 | 1200 | 3278
0°550 0434 0930 6-402 1030 17°42 1250 2778
0-600 0562 0940 7591 1040 1326 1-300 2°449
0650 0732 0950 9256 1:050 1076 1°400 2'042

0700 0961 0960 11-76 1-060 9091 I-500 1-800
o750 | 1286 | o970 [ 1592 | 1070 | 7901 | 2-000 | 1333
0-800 1-778 0-980 2425 1-080 7'010 27500 1°190
0-825 2-131 0990 4925 I-090 6:316 3°000 1125




DETERMINATION OF STRESSES 419

Fig. 76 shows that when the frequency ratio is 4/2 the
dynamic magnifier is 2, i.e. the vibration amplitude or stress is
twice the equilibrium amplitude or stress when the operating
speed is 1-414 times the critical speed.

5 ]
[

[
4 D mamic Magnifier 4
b1 i = Inf. (1 Mgff; out Damping )

T;s -
1z
o
o \E”
Zi0
g Without Dampin,
— 9 Ve
W
g 8
= 1Tn!
;f;’ 7 e S
. 6 -.Dc/naimc Mdgnz/ er - .
«-E 5 =S, with Domping. \ With - Damping
2, [
[/ N J
3 A\ ‘Dynamic Magnifier= 2
//’ requency Ratio =/
P ATl _ N\ zZ [Excifalion_ Vibration
7 1Tnel [\ Togue Tbrzzue
| / N —
[ LA T
==t

02 04 06 08 10 12 14 16 18 20 22 24 26
Frequency Ralio = b ——>

F16. 76.—Dynamic magnifiers with exuta‘uon torque directly
proportional to

Since, however, the ratio of applied torque to equilibrium
torque is also 2 for a frequency ratio of 1-414, it follows that
there is no actual magnification of the applied torque at this
frequency ratio. Another important characteristic of Fig. 76
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is that the forced vibration torque in the connecting shaft is
greater than the applied torque for all values of frequency
Tatio less than 1-414, whilst it is less than the applied torque
for frequency ratios greater than 1-414. This is the same as
for the constant applied torque resonance curve of Fig. 75.

It is also evident that the dynamic magnifier is zero when
the speed is zero and that it approaches unity as the speed
approaches infinity. The former condition is explained by the
fact that the excitation torque becomes zero at zero speed,
and the latter condition by the fact that the excitation torque
and the speed both approach infinite values simultaneously.

It is important to realise that with a constant excitation
torque the forced vibration amplitudes or stresses can be made
very small merely by increasing the operating speed and with-
out any alteration of critical speed, as shown in Fig. 75. When,
however, the excitation torque varies directly as the square
of the speed the forced vibration amplitudes or stresses cannot
be made smaller than the equilibrium amplitudes or stresses
by an increase of operating speed. For this latter condition
the equilibrium amplitude or stress is calculated from the same
equations as are used when the excitation torque is constant,
i.e. Equations (232), (233), (239), (240), (241), (243), (246), (247)
and (248), but the values of the harmonic components used in
these equations must be the values corresponding to the ex-
citation torque when the transmission system is running at the
critical speed. It is therefore evident that the forced vibration
amplitudes and stresses can only be reduced below the existing
equilibrium amplitudes and stresses by lowering the critical
speed, i.e. by reducing the natural frequency of the system.
‘When this is done the equilibrium amplitudes and stresses
must be recalculated, using the values of the harmonic com-
ponents corresponding to the excitation torque at the new
critical speed, and these new values will be less than the values
corresponding to the original critical speed.

Fig. 77 illustrates the foregoing point. The full lines show
the conditions with the critical speed at its original position
in the speed range, namely 100 r.p.m., whilst the dotted lines
show the condition when the critical speed is reduced to 667
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rpm. In the following discussion it will be assumed that
|T,el, etc., represent torques instead of tangential efforts.

4
+ '
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s T | [Ne
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Fic. 77.—Forced vibration amplitudes,

The excitation torque curve is shown on Diagram i, the
original equilibrium torque, |T,,|, having a value of 1000
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Ibs.-ins. in this example. Since the forced vibration amplitudes,
stresses, and torques at any speed are all proportional to one
another, it follows that

Dynamic magnifier = [fnaxl/[60] = filfso = [T1/| Tpels
where |T| is the torque induced in the connecting shaft by
the exciting torque |T,|.

Hence, from Equation (235),
(N/N,)2

T|/|Tpe] = NN the dynamic magnifier.

Assuming an original critical speed N, = 100 r.p.m., the
frequency ratio at 200 r.p.m. is N/N, = 2, and, from Table 52,
the dynamic magnifier at 200 r.p.m. is 1-333,

ie. |T] = 1333 X 1000 = 1333 Ibs.-ins.

The complete resonance curve for a critical speed of 100
r.p.am. is shown by the full lines in Diagram I of Fig. 7. Dia-
gram II shows how the magnitude of the forced vibration
torque at 200 r.p.m. could have been obtained from a curve of
the type shown in Fig. 5, using the dynamic magnifiers given
in Table 51. It is first necessarygto determine the excitation
torque at the operating speed, i.e. at 200 r.p.m. In this case
the forcing torque is proportional to N2 and has a value 1000
at the critical speed, hence,

R 200
|T,| = forcing torque at 200 r.p.m. = 1000 X (I—Ez)
= 4000 Ibs.-ins.

This is the value which must be taken for the equilibrium
torque when constructing the resonance curve shown by the
full lines in Diagram II of Fig. 77, i.e. it is assumed that this
forcing torque remains constant, whilst the frequency is varied.
Then, from Table 51, the dynamic magnifier for a frequency
ratio 200/100 = 2 is 0-3333.

Hence, |T| = 4000 X 03333 = 1333 lbs.-ins., as before.

Diagram I shows that no matter how much the operating
speed is increased the forced vibration torque cannot be reduced
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below the equilibrium torque, viz. 1ooo lbs.-ins., so long as
the critical speed remains at 100 r.p.m.

If it is desired to reduce the forced vibration torque at 200
r.p.m. to 500 Ibs.-ins., the required change in frequency can be
obtained as follows :—

Referring to Diagram II of Fig. 77, the dynamic magnifier,
when the forced vibration torque at 200 r.p.m. is 500 Ibs.-ins.,
is 500/4000 = 1/8. Now for a resonance curve of the type
shown in Diagram II,

X . I
Dynamic magnifier = TN

This gives a value 1/8 when the frequency ratio (N/N,) is 3.

Note.—Strictly speaking the dynamic magnifiers for all
speeds on the right-hand side of the resonant speed have
negative values, i.e. this flank of the resonance curve should
really be plotted below the base line of the diagram. It is,
however, more convenient to plot it as shown in the diagrams.

Hence, the required position of the critical speed is

N,” = N/3 = 200/3 = 667 r.p.m.

Referring now to Diagram I of Fig. 77.
The equilibrium torque at the new critical speed is

[T,/ = 1000(66-7/200)* = 444 bs.-ins.

Also, from Table 52, the dynamic magnifier for the ne®
frequency ratio, N/N," = 3,is 1-125.

Hence the new value of the forced vibration torque at 200
r.pam. is
[T'| = 444 X 1:125 = 500 Ibs.-ins., which is the desired value.

The new resonance curve is shown by the dotted lines, and
it should be noted that with this new position of the critical
speed it is not possible to reduce the forced vibration torque
below 444 Ibs.-ins., no matter how much the operating speed is
increased.

Fig. 78 shows an application where the magnitude of the
forcing torque is proportional to the square of the speed. The
apparatus illustrated is a fatigue testing machine used by the
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D.V.L. for investigating the strength of full-size crankshaft
elements. The illustrations are reproduced from a paper by
Professor Karl Liirenbaum entitled ““ Belastung und Trag-
fahigkeit von Flugmotoren Kurbelwellen,” Gesammelte Vortrige

ub, Broken i Service]

Testing

Machine
Raligue Testing Machine for Full Scale Rahgue Tesls on Aero-
Crank Elementls Engine -Crank shafTs.

Fic, 78.—Fatigue testing machine (D,V.L.).

de Hauptversammlung, 1937, der Lilienthal Gesellschaft fiir
Lufifahriforschung.

One end of the crank element under test is fixed to the
bracket shown at the right-hand side of the illustration and a
beam with movable weights is secured to the other end of the
crank element. The arrangement therefore is equivalent to
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the simple torsional pendulum shown in the diagrammatic
arrangement in Fig. 78, the elasticity of the crank representing
the spring member C, and the loaded beam representing the
inertia element J.

The weights can be moved along the beam for the purpose
of altering the moment of inertia of the system and by this
means the vibrating system can be adjusted to the desired
test frequency. The system is excited by an unbalanced
rotating mass, driven by a variable speed electric motor which
applies a once per revolution torque variation to the specimen.

The exciting torque is therefore given by the following
expression :— '

[T,/ =F.R=m.0%.¢.R,
where R = radius of application of the unbalanced force F,
m = unbalanced mass of exciter,
= angular velocity of exciter mass,
¢ = distance of c.g. of unbalanced mass from its
axis of rotation.
Also, if o, = angular velocity of exciter corresponding to
the resonant frequency of the system,
|T,,| = the equilibrium torque,
then [T, |=m.al.e.R.

And the torque applied to the shaft at any other speed o
outside the resonant zone is obtained by multiplying |T,,|
by the dynamic magnifiers in Table 52. The shape of the
resonance curve is that shown in Fig. 76.

The amplitude at any speed w is obtained as follows :—

Equilibrium amplitude = 8, = [T, |/C =m.02.¢. R/C,
but w?=C[],
where C = torsional rigidity of shaft,
J = polar moment of inertia of attached flywheel
mass.
Hence, By=m.e. R[],

2
(NN ;> at non-resonant speeds.

and 0m..x/ 9,, = m

il
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The torque and amplitude in the resonant zone cannot,
of course, be determined by the above expression since they
depend largely upon the amount of damping in the system.

A typical service fracture is shown in Fig. 78 compared with
a fracture produced on the testing machine. It is evident that
in both cases characteristic torsional vibrational fractures have

been obtained.
Summary of Formula for Two-Mass Systems.

(@) Expression for Critical Speed :—
/
N,= 925 Y %”—), (from Eqn. 229)
where N, = sth order critical speed, revs. per min.,

* n = number of complete oscillations per rev.,

J. = moment of inertia of engine masses,

J» = moment of inertia of propeller,

C = torsional rigidity of shafting

G.I,

G = modulus of rigidity = 12,000,000 Ibs./sq. in., or
772,000 tons/sq. ft. for carbon and alloy steel
shafts, . :

I, = polar moment of inertia of cross-section of shaft

7. a4

= —,

32
4 = diameter of shaft,
L = length of shaft,

4
C=§@E°—'”1, if @ and L are in inches: C m

Ibs.-ins./radian
Ldb.
=75—59]?—, if 4 and L are in feet; C m

tons-ft. /radian.
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Hence, for steel shafts,
10350 . 4* /(J. -+ J,)
N = —'}’I« m r.pm., . . (236)

when 4 and L are in inches, and J,
and J, in Ibs.-ins. sec.? units,
_2620.4% [(J,+ J,)
= ml’.P.m., . . (237)
when 4 and L are in feet, and J,
and J, in tons-ft.-sec.? units.
(0) Expression for Equilibvium Amplitude (i.e. amplitude
when N = o) =—
ITa . R. T,
oy o . . (232
c0. + 7, (237
where [0,] = equilibrium amplitude in radians,*

|T,| = nth order harmonic component of tangential
effort curve for whole cylinder group in lbs.,

80| =

R = crankradius = stroke/2 for single-piston engines ;
and (total combined stroke)/4 for opposed-
piston engines.

For steel shafts,
_ T .R.L/ J, .
16, = TT75000 . & #(L T L,) radians, . (238
when R, L, and 4 are in inches, |T,| in Ibs.,
and J, and J, in Ibs.-ins. sec.? units,
_IT..R.L .
Z3500 . A\, + L,) radlans,‘ . (239
when R, L, and 4 are in feet, |T,| in tons,
and J, and J, in tons-ft. sec.? units.

Note—|0,| is the total deflection of ome end of the shaft
relative to the other end, when N = o.

* Note.—In Equation (232) |8,| is the equilibrium amplitude of twist
between J, and J,. In multi-mass system the term equilibrium amplitude
usually refers to the equilibrium amplitude at the free end of the shaft.
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(¢) Ewpression for Equilibrium Stress :—

‘R
= (233)
where Z = polar moment of resistance of shaft
7. d®
16
51T . Ry T .
Hence, fo = ———d-x—(m) Ibs.fsq.in., . (240)

when 4 and R are in inches, |T,| in Ibs., and
J.and J, in Ibs.-ins. sec.? units,

- &%HGT{({_J;) lbs./sq. in., . (241)

when 4 and R are in feet, |T,| in tons, and J,
and J, in tons-it. sec.? units.

(@) Expression for Maxi! Stress at N Revolutions per Minute
(Damping Neglected) :—

fs = fe X (dynamic magnifier)

=fu X N Ibs. per sq. in. (from Eqn. 234)
SRS LY

The magnitudes of the dynamic magnifiers for different
values of the ratio N/N, are given in Table 51.

The foregoing expressions may be used in cases where the
oscillating system can be reduced to a simple equivalent two-
mass system, e.g. for the one-node mode of vibration of marine
installations where the engine masses are separated from the
propeller by a long length of intermediate shafting, the tor-
sional rigidity of which is small compared with that of the
engine crankshaft.

In such cases the stress values obtained by assuming an
equivalent two-mass system are not greatly different from the
values obtained by more elaborate methods.

In cases where the torsional rigidity of the engine crank-
shaft is not large compared with that of the intermediate
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shafting, or where there are a number of masses connected by
sections of shafting of approximately equal torsional l'lgldlty,
the foregoing simple treatment cannot be employed.

The two-node mode of vibration of marine installations, and
the one-node mode of vibration of close-coupled electrical
generating sets, are examples of installations where a more
elaborate treatment is necessary to obtain a satisfactory
solution.

Equilibrium Amplitude—Multi-Mass Systems.—It has
already been mentioned that in the case of a shaft transmitting
power, provided the applied and resisting torques are perfectly
uniform, the only effect of the elasticity of the shafting is to
cause the end from which power is being taken to lag behind
the end at which power is applied.

If, however, the applied and resisting torques are suddenly
removed, the shaft is put into a state of free vibration, and the
curve of angular displacement can be analysed into a series of
normal elastic curves, each corresponding to one of the normal
modes of free vibration of which the system is capable.

The amplitude of any one of these modes of vibration under
the above conditions will be referred to as the Equilibrium
Amplitude, since it is the amplitude which is attained without
any magnification due to resonance with an external pulsating
couple.

”ll)‘he stress corresponding to the equilibrium amplitude will
be referred to as the Equilibrium Stress.

Note—The equilibrium amplitude and stress in a multi-
mass system varies throughout the system. Unless stated
otherwise, however, the terms equilibrium amplitude and
equilibrium stress will be used to denote the equilibrium ampli-
tude at the free end of the shaft and the maximum value of
the equilibrium stress respectively.

The equilibrium amplitude of any normal mode can be
obtained by equating the work done by the external couple
when the shaft is deflected from its mean position to one extreme
of its angular displacement (i.¢. through the angle corresponding
to the equilibrium amplitude), to the maximum potential energy
of the vibration.
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Consider a simple system having a mass of moment of
inertia J at one end, fixed at the other end, and subjected to
the action of an external couple M at some intermediate point.

Let 6 — amplitude at the point where the mass is attached,
6, = amplitude at the point where the couple is
applied,
w, = phase velocity

_Z.W.F

radians per sec.,
F = frequency of vibration in oscillations /min.

Then work done by external couple in moving shaft through an
amplitude 6, is

E,=%.M.0,.
The maximum torque due to the inertia of the attached massis
M,=7J.w2.9,
i.e. maximum potential energy, E; = %. J.w?2. 6%
For equilibrinm E,=E,,
or }.M.0,=3%.] v 0%
whence 62 = %{———wa} . . . (242)

Let a = ordinate on normal elastic curve at point where
the actual amplitude is 6,

a, = ordinate on normal elastic curve at point where
the actual amplitude is 6;.

Then ’ ﬁzf; or o___‘_‘;o_l,
a a a
. 6.a.6, M.0 '
ie. a1 = J-wc;’ (from Eqn. 242)
M.a
or 0= ——2————1— . . . (243)
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Now, let 6, = the amplitude at any selected datum point
where the amplitude on the normal elastic

curve is 4.
Then, since Oofay = b/a,
_M.a q
b=yp g - - - @4

where 6, is the equilibrium amplitude at that point in
the system where the amplitude on the normal elastic curve
is @, It is customary to assume unit amplitude at the free
end of the shaft when setting down the normal elastic curve,
and when this is dome the expression for the equilibrium
amplitude is obtained by putting @, = 1 in Equation (244),
. . M.g
ie. 6, = v . . (245)
Note that in the case of a simple torsional pendulum where
the mass is at the free end of the shaft, if the exciting couple
is also applied at the free end of the shaft, thene = 4, = g, =1,
Equation (245) reduces to
M
b=wr3
l\él, since w,? = C/[J, for a simple torsional pendulum,
C = the torsional rigidity of the shaft.

In an actual installation having several attached masses, and
subjected at various points to the action of several applied
couples, Equation (245) becomes

8o = m———%‘z—gﬁ‘ radians, . . (246)
where 6, = equilibrium amplitude at free end of crankshaft,
T, = maximum value of #th order harmonic component
of tangential effort curve for one cylinder, in
lbs. per sq. in. of cylinder avea,
A = area of cylinder in sq. ins.,
R = crank radius
= (total combined stroke)/4, for opposed-piston
engines,
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Sa = vector sum of ordinates at each cylinder from
normal elastic curve, assuming unit amplitude
at free end of crankshaft,

w, = phase velocity, in radians per sec.
_2.w.F
T 6o
F = natural frequency of vibration, in oscillations per
minute,

3(J . 4% = effective moment of inertia of system referred to
free end of crankshaft, i.e. the arithmetic sum
of the products of the moments of inertia of
the respective masses and the squares of the
ordinates at eéach mass from the normal elastic
curve, assuming unit amplitude at the free end
of the crankshaft,

D = diameter of cylinder in inches.

If Ris in feet and J is in tons-ft. sec.?, Equation (246) reduces to

183.D2.R.T,. 3
—‘LW)— degrees. (247)

Note on Equation (246) i~

If Equation (246) is applied to a simple two-mass system consisting of
a single cylinder engine mass J, at one end of a shaft of torsional rigidity C,
and a propeller mass J, at the other end, the following result is obtained :—

Let ﬂ,n = equxhbrmm amphtud.e a‘c engme,

T = uth order i nt of ial effort curve of engine.
‘Then [8y] = (8.0 ~ 050) = equmbnum amplitude of twist between J, and J,,
but 8,0 = a,.,(x + J—),

I»
also T, A.R.Za=|T,].R.0,
Ie
d Laf) = =
an 25.a =3[+ 1]

Hence, Equation (246) becomes
_ AT R

:0
=i
1Tal R _ Ta| . R. Ty
wi. e CJe+ 70"
which agrees with Equation (232).

ie. 160
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If Risininches and J in Ibs.-ins. sec.?, Equation (246) reduces to

4100.D%2.R.T,.3a
2(J.a?)

Equilibrium Stress—The equilibrium stress is obtained from
the equilibrium amplitude, in degrees, by multiplying the latter
by the stress for one degree deflection at the free end of the
crankshaft given in column K of the frequency table (see
Tables 1, 2, 3, and 4).

Application to Multi-Cylinder Engines—In applying the
foregoing analysis to an actual installation, the principle of
linear. superposition plays an important part. This principle
may be stated as follows :—

In any linear elastic system the motion produced by two or
more sets of periodically varying forces, acting simultaneously,
is equal to the sum of the motions which would be produced by
the separate forces acting alone, due regard being given to the
phase relations between the respective components.

Thus the motion produced by the varying torque of a single
cylinder is the sum of the motions which would be produced by
the separate components of the torque curve if these were
assumed to be acting alone ; and the motion produced by a
group of cylinders is the sum of the motions produced by the
separate cylinders.

In dealing with multi-cylinder installations it is necessary
therefore to: separate the. tangential effort curve into its har-
monic components and to give each of these separate considera-
tion. Inany given system certain components will predommate
whilst others will be negligible.

In thecase of one-node vibrations, i.e. vibrations of the first
degree, of marine installations, for example, the node is so
disposed relative to the engine crankshaft that all cylinders
vibrate with nearly equal amplitudes. The only critical speeds
of serious importance are the major criticals, i.e. those critical
speeds at which the number of oscillations per revolution is
equal to or is an integral multiple of the number of cylinders
in the case of 2 S.C., S.A. engines where the working cycle
occupies one revolution of the engine. In the case of 4 S.C,,

vorL. .—28

Oy = degrees. . (248)
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S.A. engines where the working cycle occupies two revolutions,
the major criticals are those critical speeds at which the
number of oscillations per revolution is equal to one-half the
number of cylinders or is an integral multiple of one-half the
number of cylinders. The minor criticals cancel.

For two-node vibrations, i.e. vibrations of the second degree,
one of the nodes usually falls within the crankshaft, and where
a heavy flywheel is fitted it is generally located close to the
fiywheel. In that case, the cylinders remote from the flywheel
are more effectivein producing vibration than thosesituated close
to that point, so that only partial cancellation of the minor
criticals takes place. Hence, serious second degree vibrations
can occur at both major and minor criticals, depending on the
elasticity of the system, the positions of the principal masses,
the type of prime mover, and the firing order.

By constructing vector diagrams showing the phase relations
between the impu]se'ss imparted by the several cylinders, the
resultant impulse imparted by the entire group of cylinders
for any particular critical is obtained. This matter is fully
explained later.

Harmonic Components of Tangential Effort Curve.—
The tangential effort curve of an internal combustion engine
repeats after every complete working cycle. For a four-stroke
cycle, single-acting engine the interval of repetition is two
revolutions, and for a two-stroke cycle, single-acting engine it
is one revolution. This curve may therefore be represented by
a Fourier series consisting of a constant term and a series of
harmonically varying terms having 1, 2, 3, 4, etc., repetitions
per cycle.

The constant term is merely the mean tangential effort, and
can be determined as follows :—

Let P, = mean indicated pressure in Ibs./sq. in.,
L = total stroke in feet,
A = area of cylinder in sq. ins.,
N = revolutions per minute,
# = number of working cycles per minute
== N/z for 4-S.C., S.A. engines
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= N for 4-5.C., D.A. and 2-S.C., S.A. engines
=2 .'N for 2-8.C., D.A. engines,
.T,, = mean tangential effort in Ibs./sq. in.,
R = crank radius in feet
= L/4 for opposed-piston engines,
I.H.P. = indicated horse power.
P,.L.Aw 2.#.R.N.T,.A
33000 33000

e To= s r RN

Hence, for four-stroke cycle, single-acting engines, where
n = Nz,

Then I.H.P.=

P,
Tn= 2.7
For four-stroke cycle, double-acting, and two-stroke cycle,
single-acting engines, where » = N and L = 2R,

T, = l;rﬂ for single-piston engines, where L = 2. R,

=2 '7P"‘ for opposed-piston engines, where L = 4. R.

For two-stroke cycle, double-acting engines, where # = 2. N,

Tm=2'P”

The mean turning moment is given by the following ex-
pression i—
Mean turning moment = T, . A . R lbs.ft.

It is convenient to describe the several harmonics of the
tangential effort curve in terms of the number of complete
impulses per revolution of the prime mover, and to refer to
these as the order numbers of the harmonics.

Thus for a four-stroke cycle, single-acting engine, where the
complete working cycle occupies two revolutions, there will be
harmonic components of-the 4, 1, 13, 2, 24, etc., orders ; whilst
for a two-stroke cycle, single-acting engine, where the working
cycle occupies one revolution, there are no half orders.

For example, the third order component of the tangential
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effort curve repeats itself three times in each revolution
irrespective of the type of prime mover, when the above
notation is used.

/n”
500t Indicator Diagram.
400+ \F MIP=130/bs/n"

300
300r  T.EDiagram for 200
One Cylinder. 1007
200 4
f 100 Mean T:E=207/bs./3"
! L
g0 A
< o . . o
Crank 180 Angles: 360" —» 540 720
3 l |-
g ~—
LS
EQ

/!/\‘II\/AJF 1 Order,
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<t < \_4‘2 rder
| P ] _|_<- - ,
T =" \ry \1 25-Order
| P | L |« 53— Order,
S s S R R
Fi1c. 79.—H: of tial effort diagram for one-cylinder

- 4-5.C., S.A. petrol engine.

These component curves do not represent work, since there
is an equal number of positive and negative areas for each
working cycle; but when the ordinates are added to the
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constant term, which represents the mean tangential effort, a
true copy of the tangential effort curve is obtained.

Fig. 79 shows the tangential effort curve and the first six
harmonic components for a 4-S.C., S.A. petrol engine.

It is sufficient for the frequency of application of any one
of the harmonic components of the tangential effort curve to
coincide with one of the natural frequencies of torsional oscilla-
tion of the system for resonance to occur. It has already been
mentioned that the various modes of free vibration are referred
to by degree numbers. Hence, a third order, second degree
vibration can also be described as the third harmonic of the
two-node natural frequency of the system. A vibration of this
type would arise in the presence of a third order harmonic
component of the tangential effort curve, and resonance would
occur when the product of the order number and the number of
revolutions per minute became equal to the two-node natural
trequency of torsional vibration, i.e. when the engine revolu-
tions were exactly one-third of the two-node natural frequency.

Harmonic Analysis of Tangential Effort Curve.—The
Fourier series for the tangential effort curve may be written
thus :—

T=T,+ Z(A,sin%n.60 + B,cosn.6)
=T, + ZT,sin (n.0 + a,),

where T,, = constant mean tangential effort,
T, = maximum value of the nth order resultant har-
monic component,
# == order number, i.e. the number of complete im-
pulses per revolution of the prime mover,
= crank angle,
o, = phase angle.
Also, it can be shown that.
To=VAZI+ B2
— Bﬂ
Tan o, = e
Fig. 8o gives a graphical interpretation of the above ex-
pressions where Diagram I shows the sine and cosine terms
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and their resultant for the half-order harmonic component
of the tangential effort curve of a four-stroke cycle single-
acting engine. The data is taken from Table 53, namely :—

Sine term . A, = 291 Ibs. per sq. in. of piston area,
Cosine term - L, =301, 2 " "
Resultant . T, = VA + B2 = 464,

Phase angle . «, = tan™! B /A, = 51°-7',

Order number % = 0°5.

The resultant is the algebraic sum of the sine and cosine
terms, and variations of the amplitudes of the sine and cosine
terms and of the resultant with time (or crank angle) are shown
by plotting the vertical projections of the three rotating
vectors on a base of crank angles. The sum of the sine and
cosine vectors is obtained in the usual way by completing the
parallelogram and drawing the diagonal shown dotted in the
vector diagrams in Fig. 8o. Since it is customary to take
top dead centre (i.e. the position of the crank when the com-
bustion stroke commences) as the origin of time for each work-
ing cycle, the vector representing the sine term must be set
in phase or in counter-phase with the crank according to
whether A, is positive or negative. It will be assumed that
upward projections are positive and that the vectors rotate
in a counter-clockwise direction. These conventions imply
that if A, is positive the sine vector is set off to the right,
whilst if A, is negative the sine vector is set off to the left.
The wvector representing the cosine term must be set off at
9o degrees to the sine vector, and in accordance with the
foregoing conventions the cosine vector is set off vertically
upwards when B, is positive and vertically downwards when
B, isnegative. In this way the correct phasing of the resultant
vector is assured.

Since by definition the order number » is the number of
complete vibration cycles which are completed in one revolu-
tion of the crankshaft, the rotating vectors must make #
complete revolutions for each revolution of the crankshaft.
Hence for each 360 degrees of crankshaft rotation the vectors
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must rotate 360.# degrees, ie. 360 degrees on the vector
diagram represent 360/n crankshaft degrees.

In Diagram I of Fig. 8o, therefore, where # = 0-5, each
complete revolution of the vectors represent 360/0-5 = 720
crankshaft degrees, and there is half a vibration cycle in each
revolution of the crankshaft.

It should be noted that the resultant vector leads the crank
by a,/n degrees, where in Diagram I

agfn = (51°-7)f05 = (r02°-14)).
It is also of interest to note that
A,=T,cos a,, and B, =T,sin «,.

Diagram II of Fig. 8o shows the graphical construction
for the 3rd order harmonic component of a four-stroke cycle,
single-acting engine. In this case also the data is taken from
Table 53. Since B, is negative the cosine vector is set off
vertically downwards. The vectors rotate through 360 .# =
360 X 3 = 1080° for each revolution of the cramkshaft, i.e.
there are three vibration cycles per crankshaft revolution and
the resultant vector leads the crank by a,/# = (331°-56)/3
= 110°-39".

Diagram III of Fig. 80 shows the graphical construction
for the 4th order harmonic component of a two-stroke cycle
engine. Since B, is negative the cosine vector is set off
vertically downwards. The vectors rotate through 360 .# =
360 X 4 == 1440° for each revolution of the crankshaft, i.e.
there are four vibration cycles per crankshaft revolution and
thg resultant vector leads the crank by «,/n or (307°-28')/4 =.
76°-52". .

The values of the coefficients A, and B, are determined by
making an harmonic analysis of the tangential effort curve,
either by means of a mechanical harmonic analyser, or by cal-
culation. The values of T,, and of the phase angle «, may then
be determined from the corresponding values of A, and B,.
(See Appendix, Vol. II, for method of carrying out an harmonic
analysis.)
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The effect of inertia on torque may be taken into account
either by correcting the tangential effort curve for inertia
effects before making the analysis, or by correcting the har-
monic coefficients obtained from an analysis of the gas pressure
curve alone.

The following series of tables shows the latter method
applied to the tangential effort curve of a four-stroke cycle,
single-acting petrol engine operating with a mean indicated
pressure of 130 Ibs. sq. in. (see Fig. 79).

TABLE 53.
HarMonic CoMPONENTS OF TANGENTIAL EFFORT CURVE.

(i) Gas Pressure.

Hﬁ;ﬂc Sine ‘flem. Cosins:'em. Resmrnt. Phase Angle.
n Lbs./Sq. In. Lbs./Sq. Tn. Lbs./Sq. Tn. one
4 297 361 464 517"

T 44°5 156 473 19°-19”
i3 418 —2:36 o419 35647
2 300 —7'50 309 345°-58"
2% 2065 - =930 227 | 33556
3 151 ~805 . 331°%-56
3% 109 . —8-80 140 321°- 6/
4 6-9 —9-00 1143 307°-28"
4% C4T —~825 922~ 296°~27"
5 255 —760 8-02 288°-33"
5% 155 —715 7'29 28214’
6 120 ~3'75 395 287°~43"

Mean tang. effort T, = —" = 130 20+7 1bs. [sq. in.
2.7 2.7

Note.—The magnitude of the phase angle is determined as
follows :—
(i) If A, is positive, and B, is positive, a, is in the first
quadrant, i.e. between 0° and go°.
(i) If A, is negative, and B, is positive, a, is in the second
quadrant, i.e. between go°® and 180°.
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(iii) If A, is negative, and B, is negative, o, is in the third
quadrant, i.e. between 180° and 270°.

(iv) If A, is positive, and B, is negative, «, is in the fourth
quadrant, i.e. between 270° and 360°.

TABLE 54.%
HARMONIC COMPONENTS OF TANGENTIAL EFFORT CURVE.
(i) Correciion for Imertia of Reciprocating Parts.

‘Harmonic Order. Hy. Lbs.lga.. Ins.
I sin 4 006351 8770
2 sin 26 —0:50012 —69-000
3 sin 36 —0'19193 —26'500
4 sin 40 —0°01613 —2-250
5 sin 56 000258 0356
6 sin 60 000039 aorg

Note.—There are 1o cosine terms, and no half orders.

T, = 00000284 x W x R X N2 x H, lbs./sq. in. of
piston area,

* Table 57 gives the values of H, for different values of the ratio :
n = (length of connecting rod/crank radius).

The values of H, in Tables 54 and 57 are obtained from the following
expressions — .

Har-
monic Expression for H,.
fer.
. 1 1 15
r sin 8 + 471 + 16m3 + 51208
" I I I
2 |sin 28 |-~ —— ——
2 32mt 3208
5 3 9 3
3 |sin3f b " " o
4 |sin 48 L S -
4n* 8nd 16n8
: 3 75
sin 58 = rCin
5 5 + 320® 51215
; 3 3
6 68 e =2
sin + 32né + 32m°
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where T, = nth order inertia tangential effort,
W = weight of reciprocating parts in Ibs. per sq. in. of
piston area (assumed to be 0-2 in this example),
R = crank radius in inches (assumed to be 1-875 ins.
in this example),
N = revolutions per minute (assumed to be 3600 in
this example),
H, = multiplier (the tabulated values are for a Conn.
Rod/Crank ratio of 4).
TABLE 55.%
HaryoN1c COMPONENTS OF TANGENTIAL ErrorT CURVE.
(iii) C for Dead: of Recip ing and Revolving Parts.
Reciprocating Parts. Revolving Parts. Total.
Hndrln;cuic Ta-
er. o o P o, | Lbs/SaIn.
1 sin @ 1'00000| ©0-2000| I-00000 057 077
2 sin 26 o12710| 00254 | Nome None 0:0254
4 sin 48 |—o0-00103 | — 00002 » ” —0'0002
6 sin 60 0:00010 0°0000 " " 0°0000

* Table 57 gives the values of H, for different (connecting rod/crank)
ratios. .

The values of H,, in Tables 55 and 57 are obtained from the following
expressions :—

Hg’&?:‘“ Expression for H,,.
b sin 8 1000
. 1 15
2 sin 24 +—+W+25_-€m‘+
in 40 I 3
4 sin 4 B T G
. 1
6 sin 66 + e +
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Note.—There are no cosine terms, and no odd orders except
the first.
T, =W x H, lbs. per sq. in. of piston area,
where W = wt. of reciprocating or unbalanced revolving
parts in Ibs. per sq. in. of piston area (assumed
to be 0-2 and 0-57 Ibs./sq. in. in this example),
H, = multiplier (the tabulated values are for a Conn.
Rod/Crank ratio of 4).

In Table 55 the values of T, are for a vertical engine. In
cases such as an engine with inclined banks of cylinders, or
with radially disposed cylinders, where the line of stroke is
inclined to the vertical at an angle ¢, as shown in Table 57, the
expression for T, becomes .

For the Reciprocating Parts,

T,=(W_.H,).cos¢.
Thus T, = W.H, for a vertical engine where ¢ = o
= 0 for a horizontal engine where ¢ = go° or 270°
= — W . H,, for an inverted engine where ¢ = 180°.

For the Revolving Paris.

In the case of the revolving parts the expression for the
tangential effort due to the deadweight is

T = W(cos ¢ .sin 8 + sin $ . cos 6).

The correction for the deadweight of the revolving parts
may therefore affect both the sine and cosine components of
the gas pressure. The following table gives the corrections
for some commonly used values of ¢ :—

As. By
.
Sine Compt. Gos Compt.
0° (vertical engine) . . B B 1:0000 o
°
. 07071 07071
90° (horizontal engine) . . . o 10000
180° (inverted engine) . . . . —1-0000 o
225° . . . . —0-7071 —0-7071
270° (horizontal engine) . . . o —1'0000
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Corrections for the deadweight of the running gear only
affect the Ist order components and as a general rule are small
and can be neglected, especially in the case of high-speed engines.

TABLE 56.%

Haruonic CoMPONENTS OF TANGENTIAL EFFORT CURVE.

(iv) Correction for Commecting Rod Couple.

i Ta
Hoaoe Hn. Lbs./S4. In.
2 sin 20 —0-03124 —4+64
4 sin 46 o-0ofor 0-I5I5
6 sin 60 ~—0'00002 00030

Note.—There are no cosine terms, and no odd orders.
T = 00000284 X W(z.b — K)N*. H,
"= R s

where W = total weight of connecting rod in Ibs./sq. in. of

pistonarea (assumed tobe 0-36 in this example),

a = distance of centre of gravity of rod from small
end (assumed to be x-8 ins. in this example),

b = distance of centre of gravity of rod from big

end (assumed to be 62 ins. in this example),

* The values of H, in Tables 56 and 57 are obtained from the following

expressions :—

where

ot Expression for H,,.
sin 26 : + +
2 g 2n2 3208
: I I
4 sin 46 T T T
6 sin 660 - ..3_c -
320
length of connecting rod

crank radius
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K = radius of gyration of rod about centre of gravity
(assumed to be 3-01 ins. in this example),
R = crank radius (assumed to be 1-875 ins. in this
example),
H, = multiplier (the tabulated values are for a Conn.
Rod/Crank ratio of 4).

The above expression for T, indicates that the correction
couple for the rod would be zero if (¢ .5 = K?), in which case
the rod would be dynamically equivalent to a mass #, con-
centrated at the crosshead or gudgeon pin and a mass m, con-
centrated at the crankpin, such that

(my + ms) = the total mass of the rod,
My .G =My b.

This condition would be very nearly realised if the actual
rod consisted of two large ends connected by a very thin bar.
If, on the other hand, the rod was equivalent to a uniform bar
of length L the value of (« .5 — K?) would be L?/6.

In practice the value of (2.5 — K?) is usually very small
and in some cases might even be negative, for example, in
cases where the big-end keep is very heavy. In small high-
speed engines the value of (#.d — K2?) usually lies between
L2/20 and L#/30, although it is difficult to give any truly re-
presentative value due to the large variations in the design of
these components.

The exact value is easily determined experimentally in
any given example. Thus the values of @ and b can be obtained
by weighing the rod as explained in Chapter 3. The value of
K2, ie. the radius of gyration squared, can be obtained by
swinging the rod as a compound pendulum (see Fig. 36, and
Equation 70), i.e. expressing Equation (70) in inch units,

K2 = [(977 . T2. R) — R¥] ins.?,
where, in this case,

T = periodic time in seconds = 60/N,

N == number of complete oscillations per minute,

R = distance from point of oscillation to centre of gravity

of rod (see Fig. 36).
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The value of K? can be checked by swinging the rod first
from the small end and then from the big end. The two values
should agree.

In most practical cases the correction for the connecting
rod couple is very small and is neglected. It would always
be possible to reduce it to zero by designing the rod so that

TABLE 57.
Harmonic COMPONENTS OF TANGENTIAL EFFORT CURVE.
( ipliers for Inertia, D ight, and C ing Rod Couple Corrections.)
Harmonic e (Length of Connecting Rod)
Order, Crank Radius .

=2 3 ) 4 # 5 st 6
£32
En.
] 1 |sin6 |-+oo8s7 | +oo72g | +00635 | +00562 | +00506 | 00458 | +00420
LR 2 | sinz0 | —os004 | ~os002 | —ors00: ~ 05001 | ~0+5000 | —o5000
<3 3 |singd | —oabrr | —ozerr | —org20 —o371 | ~01263
g% 4 |sin4f | —oog04 | —o0213 | —oor6r ~00102 | ~00084 | —00070
g 5 sin 50 | +0-0064 | +0-003g | +0-0026 +0-0013 | 4070010 | 00007
e 6 sin 66 | 400013 | +00007 | +00004 400002 | 400001 | 400001
£ E
52 1 |sn6 | 410000 | +10000 | +1:0000 | +1:0000 | +1:0000 | +x:0000 | + 10000
EE“‘ 2 sin 26 | +0-1674 | +0-1459 | +0:1271 | +0'1125 | +0'T010 | ++0r0917 | 4-0-0839
Eg.; 4 sin 40 | —00024 | ~0:0016 | —0-00%0 | —0:0007 | ~0'0005 | ~00004 | —0-0003
Q‘SS 6 5in 60 | +0'0001 | +0:0000 | +0:0000 | +00000 | +0'0000 | 400000 | + 00000
a =z
&ug 2 5in 20 | ~00555 | ~0'0408 | —00312 | —0-0247 | —0°0200 | —0r0165 | —0w0139
5B g 4 sin 48 | 400033 | +0:0017 | +00010 | +0:0006 | +0-0004 | +0'0003 | +0-0002
§3§ 6 | sin68 | —0000r | —0:000r | —00000 | —00000 | ~0+0000 | ~0r0000 | —0w0000

<

Notes.—(1) There are no cosine components.
(2) For engines with line of stroke inclined at an {
angle ¢ the values of the corrections for dead- |
weight of the reciprocating parts must be H
multiplied by (cos ¢). The other corrections l&
are unaltered. ’,.I ./
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(@.5— K% = o0, but in most cases this would require the
addition of material beyond the crankpin or the crosshead,
which might introduce other difficulties, especially in aero-
engine design where weight is important.

TABLE s8.

HarMoNIc COMPONENTS OF TANGENTIAL EFFORT CURVE CORRECTED
FOR INERTIA.

Sine Terms.

Har- %os{ne Res::t- AP'hnxse
monio | o Nett Sine | Terms. | ants. ngles.
Order. B | Tousta et Cocg?lbﬁ‘ad o | Ba | T .
% |=291 — — — 29'1 361 | 464 | 51°-7
I 445 877 o7y — 5404 | 156 | 562 | 16°—¢’
1t [ 418 — — — 41:8  [—2-36| 41°0 |356°-47"
2 3000 |—69°00 | 0025 | —464 | —43°615 |—7'50|44°0 |189°~49"
2% | 2065 — — 2065 |—9'30| 22'7 |335°-46
3 1510 [—26°50 | — —_ —1140 |—~805| 1395 | 215°-16"
3% | 109 — —_ — 109 |—880| 14°00 | 321°-6"
4 69 |~ 225 | — 015 480 |—9°00 | 10-20 | 298°-0"
4% | 41 — — —_ 410 |—825| 922 |206°-27"
5 2755 0356 — — 2:906 [—7-60| 816 | 290°-58"
5% | 55| — — — 155 (—7'15| 729 | 282°-14'
6 1-20 0:091| — | —0-003 1216 |~3'75| 3:04 | 287°-56"

Table 59 gives a summary of the maximum values of the
resultant harmonic components of the tangential effort curve
with and without correction for inertia. It should be noted
that inertia has comparatively small influence on all orders
above the 4th, its main effect being confined to the 1st, 2nd,
and 3rd orders.

Table 59 is based on a mean indicated pressure of 130 lbs.
per sq. in.

The values of the harmonic components for other types of
engine may be determined approximately from the values for
a 4-stroke cycle, single-acting engine, as follows :—

(i) Four-Stroke Cycle, Double-Acting Engine.
Orders 1, 3, 5,7, etc. = o, very nearly.
Orders %, 13, 23, 33, etc. = 4/2 X values for 4-S.C., S.A. engine.
Orders 2, 4,6,8,etc. = 2 X values for 4-5.C., S.A. engine.
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TABLE s0.

ResurTanT Harmonic ComPoNENTS OF TANGENTIAL EFFoRT CURVE FOR
ONE-CYLINDER, 4-S.C., S.A. PETROL ENGINE.

M.I.P. = 130 Lbs./Sg. Ins.

Values of Tn (Lbs./Sq. In.).
Harmonic Order,
Without Inertia, With Inertia.

b +46'4 464
1 473 562
1% 419 419
2 309 440
2% 227 227
3 17T 13'95
3% 14°00 14°00
4 1130 10°20
4% 922 922
5 8-02 816
st 729 729
6 394 3'94

(i) Two-Stroke Cycle, Single-Acting Engine.—There are no
half-order components, and the values of the remain-
ing orders are twice the corresponding values for a
4-5.C., S.A. engine for single-piston engines; and
four times the corresponding values for a 4-5.C., S.A.
engine for opposed-piston engines.

(iif) Two-Stroke Cycle, Double-Acting Engine.—There are no
half-order components, and the values of the odd
order components are very nearly zero. The values
of the even order components are four times the
corresponding values for a 4-S.C., S.A. engine.

The foregoing rules must be regarded as approximations
only. In the case of double-acting engines, for example, the
presence of the piston rod and the difference in the character-
istics of the indicator diagrams from the top and bottom ends
introduces orders which should not be present theoretically.

If a turning effort diagram is available, the values of the
harmonic components may be determined by harmonic analysis

VOL. L.—29
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TABLE 6o.

RESULTANT HARMONIC CoMPONENTS OF TANGENTIAL EFrorT CURVE FOR
ONE CyLINDER (aT FurL Loap).

In Lbs.[Sq. In. of Piston Area.

Internal Combustion Engines,
Triple Expansion Steam
Engines.
4-Stroke. 2-Stroke Cyele,
Harmonic -
Order. Single-Acting.
Single- | Double- Double- | HLP. M.P. L.P,
Acting. | Adting. | Opposed- Acting. | Cyliader. | Cylinder. | Cylinder.
Piston. | Piston.
o k4o [E55 | = ] — | — | — | — | —
I 40 6 +80 |£160 | *I2 15 x5 15
1% 40 55 - - - - - -
2 35 70 70 140 I40 75 25 75
2% 30 40 - — - - - —
3 2, 10 50 100 20 12 4 13
3% 20 25 — —_ — — - —
4 15 30 30 60 60 9 3 10
43 o 15 —_ —_ — - - —
5 8 7 16 32 14 4 3| o4
5% 6 ol — | = =1 =1="1=
6 45 9 9 18 18 3 10 03
63 35 52 — - - - - -
7 30 20 6 12 4 5 05| o015
73 25| 37| — - - - - —
8 20 40 4 8 8 1'0 03 010
8% 15 22| — - —
9 10 10 2 4 2 —_ —
9% o8 12| — —_ _ — —
10 o7 14 14 2+8 2:8 —_ —_— —
10} 06 09| — _ — —_ — —
1T o5 05 0| 20 ol — —
n-',_ o 06| — — — — —_ —
12 03 06 06 12 2 —_ -_— _—

as already described. Table 60 has been compiled from pub-
lished data relating to the various types of engines, and the
values contained in it may be used in cases where a special har-
monic analysis has not been made.
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The harmonic components for the steam engines are based
on the following mean indicated pressures :(—

H.P. = 100 lbs. per sq. in.,
M.P. = 33 lbs. per sq. in.,
L.P. = 11 lbs. per sq. in.

The values for other mean pressures are approximately pro-
portional to the mean indicated pressure, and are based on the
average area of the top and the bottom sides of the piston.

An important difference between a multi-cylinder steam
engine of the multiple expansion type and an internal com-
bustion engine is that the phase angles, a,, are not the same for
all cylinders in the case of the steam engine.

This implies that whereas the phase angle may be neg-
lected in the case of an internal combustion engine, it must be
considered in the case of a steam engine.

This point is discussed later.

Table 61 gives the values of the sine and cosine com-
ponents of the tangential effort curve for one cylinder of a
4-S.C., S.A. engine for gas pressure alone and for orders 1, 2,
3, and 4. These values are required in cases where it is
necessary to correct the sine component for inertia.

TABLE 61.

SiNE AND CosiNE COMPONENTS OF TANGENTIAL EFFORT CURVE FOR ONE-
CYLINDER, FOUR-STROKE CvCLE, SINGLE-ACTING OIL ENGINES,

(SLow anp Mepium SpeED TYPES.)

_:ui Mean Indicated Pressure in Lbs. per Sq. In.

S

~§ o 30 6o 100 130

E Sine. | Cosine. | Sine. | Cosine. | Sine. | Cosine. | Sice, | Cosine. | Sime. | Cosine.
I | 1105 o 185 45 | 25°5 90 | 350 140 | 42°0 175
2 | 180 o 230 | —15 280 —35 (335 —65 (370 —95
3 |15 o |200| —1'5 (220 —35 |235| —65[235| —9'5
4 |130| o |140| —15|145| —30 |145| —55 135 — 70

The approximate values for other types of engine may be determined as
shown on page 448.
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Fig, 81.—Harmonic coefficents, 4-stroke cycle, single-acting petral engine (orders § to 6),
(Plotted from RA.E, Report ED.0. 136,)
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Fig. 81 gives the values of the harmonic components of the
tangential effort curve of a 4-5.C., S.A. petrol engine for orders
1 to 6, and covers a range of mean indicated pressures up to
260 1bs. per sq. in., so that it includes modern high-duty engines.
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Fic. 82.—Harmonic coefficients, 4-stroke cycle, single-acting compression
ignition engine. (Plotted from R.A.E. Report E.D.O. 136.)

The sine and cosine components are given separately,
because in high-speed engines inertia effects have considerable
influence on the 1st, 2nd, and 3rd order terms. Fig. 82 is a
similar diagram for high-speed compression ignition oil engines.
Fig. 83 contains diagrams giving the values of the resultant
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harmonic components for a 4-S.C., S.A. pefrol engine and a
high-speed compression ignition engine for orders 6% to 11},
The sine and cosine components are not given separately for
these higher orders because inertia corrections are not required.
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Fie. 83.—Resul -stroke cycle, single-acting com-

s i ;i 4
pression ignition engine (order 6} to 113). (Plotted from R.A.E. Report
E.D.O. 136.)

These diagrams are based on data contained in Air Ministry
Report E.D.O. 136, by permission of the Controller of H.M.
Stationery Office.

In the case of spark ignition (petrol) engines an extensive
investigation carried out in the M.I.T. Automotive Engine
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Laboratory under different operating conditions of throttle
variation, compression ratio, spark advance, and mixture ratio
showed that the ratio (component harmonic torque/mean
torque) changed very little with engine conditions, and for the

+-JTROKE. | JINGLE-ACTING PETROL ENGINE =
199 _inch Pisfon end 1 inch_Grank Throw.

<

g Sl
§5 6% P
N ; /
g4 / % /
g AV
e i
s v
& / o,d 05 1115
R ////

P AP

= LT

|

0 0 40 60 6 W0 0 KO 160 B0 200 20
Mean Indicaled Fressure  LbsfSg. .

. Fie. 83.—Resultant h 4-stroke, single-acting petrol
engine (orders 6% to 114). (Plotted from R.A.E. Report E.D.O. 136.)

3rd and higher harmonic orders was well represented by the
expression
63.C

TuTa="0 0
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where T, = maximum value of the resultant #th order har-
monic component of tangential effort curve
in Ibs. per sq. in. (The inertia correction is
negligible for orders higher than the 3rd),
T,, = mean indicated tangential effort in Ibs. per sq. in.,
C = compression ratio,
# = harmonic order number.
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Fic. 83a.~Resul h ts of t ial effort diagram for
one-cylinder, 4-8.C., S.A. oil engine—slow and medium speed ty%&

(See ““Harmonic Analysis of Engine Torque Due to Gas
Pressure,” by E. S. Taylor and E. W. Morris, Journal of the



DETERMINATION OF STRESSES 457

Aeronautical Sciences, Vol. 3, February, 1936; also S.4.E.
Journal, March, 1936, p. 82.)
Since in a 4-S.C., S.A. engine, T,, = P,/(2 . w), the above
expression can be written
T,=P,.Clls. 7, . . (249)
where P,, = mean indicated pressure in lbs per sq. in.

Note that Equation (249) applies to the 3rd and higher
harmonic orders only, i.e. # = 3, 35, 4, 45, etc.

The maximum values of the resultant harmonic components,
neglecting inertia, for large slow-speed 4-S.C., S.A. heavy oil
engines are given in Fig. 834 (Fig. 109 in Vol. II, and reproduced
here for convenience of reference). The values for other types
of engine may be determined approximately from the values for
a 4-S.C., S.A. engine by applying the rules given earlier in this
chapter.

Harmonic Components of Tangential Effort Curve
with Articulated Connecting Rods.—In engines having
more than one piston operating on each crankpin, for example,
radial engines, or in-line engines with two or more banks of
cylinders, such as V and fan-type engines, one piston is
connected to the crankpin by a normal connecting rod system,
and this is usually called the master connecting rod, whilst
the other piston (or pistons) is connected to the same crankpin
by one of the arrangements shown in Fig. 84.

(@) When there is only one auxiliary cylinder operating on
the same crankpin as the master cylinder the common
crankpin is made of sufficient length to accommeodate
the big-end bearings of the two connecting rods side
by side. In this case the crank/connecting rod
mechanism is the same for both cylinders, and the
methods just described can be applied to each of
the two cylinders. The total torque summation for
the two cylinders must be made according to the
rules described later, to take into account the phase
displacement caused by the inclination of the line of
stroke of one piston relative to the other—arrange-
ment (4) in Fig. 84.
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() When there is only one auxiliary cylinder operating
on the same crankpin as the master cylinder the big-
end of one connecting rod operates directly on the
common crankpin, whilst the big-end of the second
commecting rod operates on bearing surfaces formed
on the outside of the big-end of the first connecting
rod. The master connecting rod is forked to per-
mit relative angular motion of the two connecting
rods. In this case also the crank/connecting rod
mechanism is the same for both cylinders, and the
methods just described can be applied to each of

()
forked. Arliculofed
F1G. 84.—Connecting rod systems.

the two cylinders. The total torque summation
for the two cylinders must be made according to
the rules described later, to take into account the
phase displacement caused by the inclination of the
line of stroke of one piston relative to the other, and
in computing inertia effects care must be taken to
allow for any differences of form and weight between
the forked master connecting rod and the plain
auxiliary connecting rod—arrangement (4) in Fig. 84.
(¢) When there is one or more auxiliary cylinders operating

on the same crankpin the auxiliary connecting rods

are articulated on the big-end of the master connecting
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rod. The motions of the auxiliary pistons are gener-
ally regarded as being controlled by the motion of
the master connecting rod, and the methods just
described can only be applied to the master con-
necting rod system—arrangement (c) in Fig. 84.

The modern tendency is to dispense with articulated
connecting rods when there are only two pistons operating
on a common crankpin and to use the arrangements described
in (@) or (b). The arrangement described in (b) is usually
favoured in aero-engine practice owing to the difficulty of
providing adequate big-end bearings with the side-by-side
arrangement. In automobile practice, where the duty required
of the power plant is not so onerous, the side-by-side arrange-
ment tends to be favoured because the connecting rods are
then all of the same design and the expense of manufacturing
forked rods is avoided.

Articulated systems are used in fan, X, and radial type
aero engines where there are several auxiliary cylinders oper-
ating on the same crankpin.

Accurate analysis of the torque characteristics of an articu-
lated system is exceedingly complex, and no simple treatment
is possible. ’

An analysis in which the effect of articulation is neglected
is undoubtedly useful as a preliminary approach to the problem,
but it tends to hide certain peculiarities of an articulated
system which, unfortunately, present-day experience of tor-
sional vibration phenomena in engines of this type has shown
to be by no means negligible. This matter will be referred
to later, and in the meantime the following method of deter-
mining the harmonic components of the tangential effort
curve of an engine with articulated connecting rods will be
found as simple as the complexities of the problem permit.

In the following method the magnitudes of the harmonic
components for the combined tangential effort curve for the
master cylinder and all articulated cylinders operating on
the same crankpin are obtained. Thus each harmonic com-
ponent is the total component for all cylinders operating on
the common crankpin, and this eliminates all difficulties due
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to phase relationships between the master and auxiliary
cylinders. In the case of in-line engines this implies that
once the total value of any given harmonic component is
known for one crankpin the resultant value for the whole
engine can be obtained by the methods employed for un-
articulated engines.

The essential step in this method of analysis is to determine
the piston displacements as a function of crank angle.

Fie. 85.—Articulated connecting rod system.

Fig. 85 shows an articulated connecting rod system. The
expressions for the displacement of the articulated piston are

S=R.cos (8——-9)—1—R1 cos (S—x/:+o¢ +L1 cos 8, (250)
¥ = (Spax — S), . . . (251)
where .
smac—-(R sin §)/L, . (5)
sin = [R.sin (5— 6) + Ry.sin (5 - i + @)Ly, (253)
S = distance between crankshaft axis and centre of
articulated piston gudgeon pin,
Spax = maximum value of S,
y = displacement of articulated piston from.top dead
centre,
R = crank radius,
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R, = length of artic arm,

L = length of master connecting rod,

L, = length of articulated connecting rod,

# = crank angle, measured from top dead centre of
master cylinder (firing centre),

8 = angular spacing of cylinders, measured from
master cylinder in direction of rotation of
crankpin,

o« == angularity of master connecting rod,

B = angularity of articulated connecting rod,

. = angular spacing of artic pin, measured from
master connecting rod.

No definite rules can be given for the proportions of an
articulated mechanism. In the case of engines having several
articulated cylinders, such as radial aero engines, the articulated
pistons differ among themselves. For example, if Ry, L,, 8,
and ¢ are identical for all cylinders it will be found that there
is an appreciable difference between the strokes, and therefore
between the compression ratios of the various cylinders.

Several methods are employed for correcting this difference
to a greater or lesser extent. In some cases the angle ¢ be-
tween the artic pin and the master connecting rod is varied ;
in other cases thelength R, of the artic arm or the length L,
of the articulated connecting rod is varied ; or again, the varia-
tion of stroke is neglected and the compression ratio is corrected
by suitable variations of clearance space. Combinations of the
above methods are also found in practice. As a general rule,
however, the angular spacing of the cylinders is equal.

One important special case does occur, however, and that
is when the angle between the artic pin and the master con-
necting rod is made equal to the angular spacing of the cylinders.
This case is shown applied to a five-cylinder radial engine at
the left-hand side of Fig. 85, although it is more frequently
found in V and fan-type engines.

When this condition is fulfilled, i.e. when ¢ = 8, Equations
(250) and (253) become

S=R.cos(6§ ~0) +Ry.cosx+ Ly.cosB, (254)

sin = [R.sin (§ — 6) + R;. sin «/L,. . (255)
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The articulated piston displacements can be calculated with
any desired degree of accuracy by means of Equations (250) to
(255) and the values obtained all refer to top dead centre of the
master piston as datum.

If the engine has already been built an alternative method
is to measure the displacements directly, bearing in mind that
if the 4th order harmonic components are required from the
subsequent harmonic analysis the piston displacements must
be accurate to at least four figures. If the 6th order harmonic
components are required the displacements must be accurate
to at least five figures. It is doubtful, however, whether much
reliance can be placed on calculated values of orders higher
than the 4th, because the working clearances and elastic de-
formations of the engine under load may be as much as
0-01 ins.

Tangential Effort Diagram for Gas Pressure.—The indicator
diagram which is used for the master cylinder can also be used
for the articulated cylinders. The gas pressure corresponding
to a given angular displacement of the crankpin is obtained from
the indicator diagram in the usual way by marking off a length
along the base line of the diagram equal to the displacement of
the articulated piston along its stroke for a given crankpin
displacement. Care must be taken to see that the correct
firing sequence of the articulated cylinders in relation to the
master cylinder is used when transferring piston displacements
to the indicator diagram. Since the master cylinder is used
as datum, the master cylinder fires when 6 = 0, and the complete
cycle occupies 720° for four-stroke engines and 360° for two-
stroke engines. .

From the geometry of an articulated mechanism the fol-
lowing relationship exists between the gas pressure and the
corresponding tangential effort at the crankpin (see “ Handbook
of Aeronautics,” Volume IT) :—

Ry .sin(3—y+pB+ a).cosd
L.cosa

—~sin(B 48— e)} (256)

T/P = sec ﬁ{
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where P = gas pressure on articulated piston in Ibs. per sq. in.
at crank angle 6,
T = corresponding tangential effort on crankpin in
Ibs. per sq. in. at crank angle 4.

In the special case, when s = 8, Equation (256) becomes

R,.sin (« . CO8 .
T/P = sec ﬂ{»i—L(Ti's@i—‘—’—e _sin (83 _a)} (257)

The foregoing equations enable the displacement and tan-
gential effort of the articulated piston to be calculated for
different angular positions of the crankpin starting from the
common datum, f = o, when the master piston is on firing
centre.

These values should be calculated for at least every 15° of
crankpin rotation, so that at least twenty-four ordinates per
revolution are available for the subsequent harmonic analysis.

If there are several articulated pistons operating on the same
crankpin a separate set of calculations is required for each,
since the motions of the articulated pistons differ among
themselves.

The work is best carried out by tabulation, the values of
the piston displacements, gas pressures, and tangential efforts
being entered in adjacent columns opposite the corresponding
crankpin positions. Values for all the articulated pistons
should appear in the table.

Harmonic Components of Tangential Effort Diagram for Gas
Pressure—The values of T for all the articulated pistons should
be summed algebraically for each crankpin position and the
resultant values representing the total tangential effort exerted
by all the articulated pistons on the common crankpin should
be plotted on a base of crank angles. In the case of four-
stroke cycle engines where the complete working cycle occupies
two crankpin revolutions the base will occupy #20°, whilst for
two-stroke cycle engines where the working cycle occupies
only one revolution of the crankpin the base will occupy 360°.
According to the notation adopted in this book the harmonic
order numbers represent the number of complete impulses in
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each revolution of the crankpin. Hence in the case of four-
stroke cycle engines the 1st, 2nd, 3rd, 4th, etc., harmonic com-
ponents obtained by analysis of the tangential effort on a 720°
base are the 4, 1, I-5, 2, etc., orders. In the case of two-stroke
cycle engines the harmonic components obtained by analysis
of the 360° base diagram are also the order numbers and there
are no half-orders.
The resultant tangential effort diagram for the articulated
pistons should be harmonically analysed to obtain the values
of the sine and cosine components as follows :—
T =T, +ZA,sinn.0+B, cosn.b), . (258)
where T’ is the resultant tangential effort exerted on the
cornmon crankpin by all the articulated pistons when the crank
angle is 6. .
The values of the sine and cosine components for the master
cylinder can be obtained from diagrams of the type shown in
Figs. 81 and 82, so that if these are added, algebraically, to the
values given by Equation (258) the resultant harmonic com-
ponents due to gas pressure on both master and articulated
pistons are obtained,
ie. Q.= [(A,+A,)sinnf+(B,+B,)cosn.0], (259)
where (), = the nth order harmonic component of the com-
bined tangential effort of master and all
articulated pistons, in Ibs. per sq. in. of the
piston area of one cylinder,

A, and B,, = the nth order sine and cosine components for the
master cylinder (from diagrams such as Figs.
81 and 82),

A,'and B, = the nth order sine and cosine components for the
combined tangential effort of all the articulated
pistons, obtained as just described,

# = the order number, i.e. the number of complete
impulses per revolution of the crankpin. In
the case of four-stroke cycle engines there are
half as well as whole orders.

Tangential Effort Due to Inertia of Reciprocating Parts of the
Articulated Cylinders—Since engines with articulated pistons
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are invariably of the high-speed type the corrections for dead-
weight can be neglected. The correction for connecting rod
couple is also small and is usually neglected for both master
and articulated connecting rods. It is difficult to obtain for
an articulated rod, although an analytical expression is given
by Dr. Root in his book “ Dynamics of Engine and Shaft.””
The remaining correction is that due to the inertia of the re-
ciprocating parts, and this cannot be neglected.
When the crank angle is 6, let

F = inertia force due to the reciprocating parts of the
articulated cylinder, in Ibs. per sq. in. of piston area,
T = the tangential effort due to this inertia force, in lbs.
per sq. in. of piston area,
y = the displacement of the articulated piston, in inches,
v = the velocity of the articulated piston, in ins./sec.,
# = the acceleration of the articulated piston, in
ins./sec./sec.,
W = the weight of the reciprocating parts of the articulated
cylinder, in Ibs. per sq. in. of piston area,
R = crank radius in inches,
N = revolutions per minute,
« = angular velocity of the crankpin in radians per second,
assumed constant
= = . N/30.

Then, since at any instant the rate of doing work on the piston
must be the same as the rate of doing work on the crankpin,

F.v=T.R.w(Note: T.R = instantaneous torque),

T=F-?
or w R
but F = W . u/g, where g = 386 ins./sec./sec.,
ie T— W.v.u
o w.R.¢
Now v =w.dy/dd; and u = »*. d%/df>
W. wdyy (dy
Hence, ") (@)
0:0000284 . W . N2 @) (d:_)_»)
’ R “\db/ " \db®

VOL. 1.—30
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» 2
= o 009028];{, W.N Za)
where T, = the nth order harmonic component of the
inertia tangential effort for one articulated
cylinder, in Ibs. per sq. in. of piston area,
Z,, = the value of (z) (g?;) for the nth order.

The values of Z, are obtained as follows :—

The piston displacement curve is drawn on a crank angle
base for each articulated cylinder, using Equations (250) to
(235), and assuming that § = o when the master piston is at
firing centre, ie. all values for the articulated cylinders are
referred to firing centre of the master cylinder as datum, since
this simplifies the summation of the values for individual
cylinders when obtaining the resultant harmonic component
for all the pistons operating on the one crankpin.

Since the piston motion completes its cycle in one revolu-
tion of the crankpin, the piston displacement diagram is plotted
on a base of 360°. The harmonic components obtained by
analysis of this piston displacement curve are thus the order
numbers also, i.e. there are no half order components of the
tangential effort curve of a four-stroke cycle engine.

Each piston djsplacement curve is separately a.nalysed to
obtain the sine and cosine components of the first six orders.
Orders higher than the 6th are negligible, and as already
mentioned the practical reliability of the values for orders
higher than the 4th is extremely doubtful, due to the dis-
tortions which occur in the mechanism under load.

Let the Fourier series for the displacement of an articulated
Ppiston be

=

or

= (@y+a, sin 6+a,sin 20-+-a,sin 36 -+ . . . + g sin 80
+b1c088--bycos 204+-b5cos30 + . . . +bgcos8h).
Then g—%’: (@, cos6 4 2. a,co820 + 3. ayco830 +
.+ 8. a5 cos 86
—b,sinf — 2. b,sin 20 —3 bssm30-—
— 8. by sin 86),
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ay . .
and G (—a;sinf —4.a,sin20 — 9. a,sin30 —
— 64 . ag sin 86
—bycosf—4. bgcoszﬂ——g bzcos3€—-
— 64 . by sin 86),

whence T — 0000028}‘% W. N (Z;é) (Z?;

o 2
_ ooooozBﬁ.W.N (€' sin 6 + Cy sin 28
+Cy'sin3f+. ..+ Cy sin8f
-+ D,  cos 8 + D' cos 26
+ Dy’ cos30+. .. -+ Dy’ cos 86),

where the values of C,’ and D, are obtained by multiply-
ing out and simplifying the two series for piston velocity
and acceleration. The values of these coefficients are given
in Table 62.

When there are several auxiliary pistons articulated to
the same crankpin the above analysis must be carried out for
each articulated cylinder separately.

The resultant sine and cosine components of any given
order for all the articulated pistons operating on a common
crankpin are obtained by summing algebraically the sine and
cosine components for the separate cylinders.

In the case of the master cylinder there are no cosine com-
ponents and the value of the sine component for any given
order can be obtained from the data given in Table 57. Since
the same datum has been used for both master and articulated
cylinders the sine and cosine components of the inertia
tangential effort for all cylinders operating on the same crank-
pin can be obtained by adding algebraically the sine com-
ponents for the master cylinder to the corresponding sine com-
ponents for the resultant effect of all the articulated cylinders.

Finally, the values of the harmonic components of the total
tangential effort exerted on the crankpin by the master and
all articulated cylinders are obtained by adding, algebraically,
the inertia corrections to the gas pressure harmonics previously
calculated.
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TABLE 62.

Haryonic CoMPONENTS OF TANGENTIAL EFrORT CURVE OF AN
ARTICULATED CYLINDER.

(G ion for Inevtia of Recip ing Paris.)
! ’ Sine Coefficients. ]
- t
15t order @y .+ 3.83.83+6.85.a3+ 102,85+ . . .

40y by+ 3.0y 05+ 6.bg bt 10 by b+ L)

2nd order C,’=(af/z—b,‘lz-;—;g‘al‘a,«)-S.a,.a‘-f—15.11,.45
- 24.@. 85+ . . .+ 3.by . by 8.by. by + 15.05.0;
+24.bg b+ )

svd order Cy' = (3.@;.a9—3. b, byt6. ay . @yFI5 - Ay Gy2T . @y . Ay
42,4+ . F6.0,.8, 150,854+ 27 550
+42.b‘.b,+‘. )

4thovder CJ = (6.ay.8;-+ 4.8,2 —6.by.by —4.b,"+10.2y.0a;
+24.8y. 05442 .85. 8, +64.a4. 05+ . . .+ T10.b .55
+24 by.bg+42.by. by 4 640405+ . ).

5th ovder =(10.0;.8,+ 15.89.a3 — 10. b . b¢—15 by. by
+Is Gy 8+ 35.05.8; +60.85.83+90. 4y g+ . . .
+ 155y b5+ 3502 by + 60. by b+ 90 ba bo - L ).

6tk order  Cq = (15.8y.85+ 24.@5. 04+ 13'5.a5* — 15.0y.bg
~—24.by.by—135.b52 +21.8,.a; +48.a3.0a5
+8I.a4.8p+ 120.8,. 850+ . . -+ 20030,
4B by by 8. by by 120 by bigt . . ).

‘ Cosine Coefficients.

1storder Dy = (ay.by+ 3.45. b,+6 3.0y + 10. a4 b5+ .
~by.0yg—3.by.a3—~6.bg.8, ~10.by. a5+ . .

2nd ovder Dy = (a;.by + 3.8y .by+ 8.025.04+ 15.05.b5+ 24. a., by
SRRt By.g —8.by. 0y — 15.by. G5~ 240, g

.8y by+3.8y.by + 6.8, by + 15.a5.b5

sy b+ 42.a4.0, 4+ —6.by.a,~15.b,y.a5

bs aa—42 by.aq—

4th arder Dy = (6.ay.bg+ 8.a5.b5+ 6.ay. b,+xo ay by + 24 . ag . byl
+42. a; b1+64 ay.bg -+ —10.by.a5—24.b;.a

~42.b3.8,—64.0,. a5 ~ ).

5tk order Dy = (10.4ay.b,+ 10.0;. a4+15 ay. by +15.a5.5,
+315.a,. be+35 @y by + 60.a5.05+ 90.aq. by + . . .
—15.0,.85—35.b3.4; —60.b3.83 —90. by a9 —. . ).

6th order Dy = (15.G5.b5+ 15.a5 .51+ 24.a5.0+ 24 .a,4.5y
+27.a3.b5F21.a,.5,4+48. a,. by+81.a;.by4120. ay. byl
..~ 20 by, 8,48 .0y, 8381 .by. 09 — 120. . Oy,

— )

37d order
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Thus, if Q, = the value of the total sth order harmonic
component of the tangential effort exerted
by the master cylinder and all articulated
cylinders, including the corrections for inertia
of the reciprocating parts, in Ibs. per sq. in.
of the piston area of one cylinder,

A, and B, = the nth order sine and cosine gas pressure
components for the master cylinder (ob-
tained from diagrams such as Figs. 81 and 82),

A,'and B, = the nth order sine and cosine gas pressure
components for all the articulated cylinders
(obtained in the manner just described),

C, = the nth order sine inertia component for the
master cylinder (obtained from the co-
efficients in Table 57. There are no cosine
components for the master cylinder),

C',and D, = the nth order sine and cosine inertia components
for all articulated cylinders (obtained in
the manner just described) :

then Q,=[A,+ A, +C,+C,)).sinn.0

+ (Bu+ Ba' 4 Dy) . cos #. 6)]
=T,.sin (n.0+ a,),

where T,=V(A,+A, +C,+C,)?+ (B, + B, + D,

- (B.+BS/+Dy)
amd e, = AT G+ G

T, is the maximum value of the resultant uth order har-
monic component of the tangential effort of all cylinders,
master and articulated, operating on the common crankpin,
including all inertia corrections. In a multi-crank engine it
is the value for each crank.

o, is the resultant phase angle for all the cylinders operating
on the common crankpin, i.e. a,/ is the angle by which the
resultant vector, of amplitude T, leads the crankpin (see
Fig. 80).

Table 624 gives the magnitudes of the harmonic components
of the resultant torque curves for the master and all articulated
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cylinders of representative 7~ and g-cylinder radial aero engines,
including the inertia corrections.

These values are expressed as a percentage of the mean
torque of the engine at rated power and speed, and are useful
as a guide in cases where specific information is not available.

TABLE 62a.

ResuLzant HarMONIC COMPONENTS OF TORQUE CURVES OF SEVEN- AND
NINE-CYLINDER SiNGLE-Row RaDIAL AERO ENGINES.

Resultant Component as a Percentage of the Mean Engine
Torque.
Order Number.
Seven Cylinders. Nine Cylinders,
% %
o5 00 X
10 330 190
I-5 20 00
20 110 g0
2-5 29 12
30 12 04
35 840 18
40 o0 oo
45 66 440
50 09 o0
55 20 34
60 I3 o0
65 00 I2
70 140 04
75 - o0
80 — 06
85 — o0
90 had 130

Resultant Harmonic Torque Energy for the Entire
Group of Cylinders of a Multi-Cylinder Engine—Phase
and Vector Diagrams.—It has just been shown that the tan-
gential effort diagram for a single-cylinder engine may be split
up into a constant mean force which does not produce vibration,
and a series of harmonically varying forces, the maximum values
of which for different types of engine are given in Table 6o.
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The work done by the harmonic torque of the #th order by
the mth cylinder is proportional to
Wp==.8,.T,.A.R, . . . (260)

where &,, is the ordinate on the normal elastic curve corre-
sponding to the mth cylinder (see “ Torsional Vibration,” by
W. A. Tuplin, Chapman & Hall, London).

The work done by the entire group of cylinders is therefore

proportional to
W,==.T,.A.R. 3a,. . . (261)

Since there is a definite phase relationship between the
torques of the various cylinders, Za,, is the vector or geometric
sum of the deflections on the normal elastic curve.

Its value is determined by means of the phase and vector
diagrams shown in Figs. 86 and 87.

Phase Diagrams.—The phase diagrams in Fig. 86 are for
a 6-cylinder, 4-stroke cycle, single-acting engine, with crank
arrangement 1-6, 3-4, 2-3, and firing order 1-3-5-6-4-2.

It is assumed that 360° in the phase diagrams repre-
sents one vibration, so that for a 4-stroke cycle, single-acting
engine, where the working cycle occupies two revolutions,
360° in the phase diagrams represents two revolutions of
the crankshaft, i.e. 360° in the shaft diagram is represented
by 180° in the phase diagrams. Now, harmonic order § cor-
responds to one complete vibration per working cycle, or per
two revolutions, so that for this order the cylinders come
into action in the phase diagrams at intervals equal to half
the firing interval apart and in the same order as the firing
order, i.e. with cranks at 120° and firing intervals of 120°,
the cylinders come into action in the phase diagram for order
4 at intervals of 60°, and in the same order as the firing order,
viz. 1-3-5-6-4-2, in Fig. 86.

For order 1 each cylinder must pass over double the phase
angle to be at top dead centre that it did for order 4, so that
the phase diagram for order I is obtained by doubling all the
angles in the phase diagram for order %.

Similarly, the phase diagrams for orders 14, 2, 24, etc., are
obtained by multiplying the angles for order } by 3, 4, 5, etc.
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FIG. 86.—Phase and vector diagrams—4-S.C., S.A. 6-cylinder oil engine.
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Fic. 87—Phase and vector diagrams—4-S.C., S.A. 6-cylinder marine oil
engine.
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For the example shown in Fig. 86 it will be found that the
phase diagrams repeat after the 3rd order, ie. the phase
diagram for order % also represents orders 3%, 6%, o4, etc., and
orders 234, 5%, 8%, 114, etc., and so on.

It should be noticed that in a 6-cylinder, 4-S.C., S.A.
engine, the phase relationship for orders 3, 6, 9, 12, etc., is
zero, i.e. for these orders all cylinders act simultaneously.

These orders are known as major orders, and all others as
minor orders. As stated above, the phase diagrams repeat
after the major orders are reached, i.e. after the 3rd order for
a 6-cylinder, 4-S.C., S.A. engine, and after the 4th order for an
8-cylinder, 4-S.C., S.A. engine, since in the case of 4-stroke
cycle, single-acting engines the major orders are integral
multiples of half the number of cylinders for all normal crank-
shaft arrangements.

For z-stroke cycle, single-acting engines, where the work-
ing cycle occupies one revolution, 360° in the phase diagrams
represents one revolution of the crankshaft, ie. there are
no half orders. With equally-spaced cranks, the first order
phase diagram is therefore an exact reproduction of the crank
sequence diagram, and as in the case of 4-5.C., S.A. engines,
the phase diagrams for the 2nd, 3rd, 4th, etc., orders are obtained
from the phase diagram for order 1 by multiplying all angles
by 2, 3, 4, etc.

In this case the major orders are integral multiples of the
number of cylinders, i.e. 4, 8, 12, etc., for a 4-cylinder engine ;
6, 12, 18, etc., for a 6-cylinder engine, etc., and the phase
diagrams repeat after the major orders are reached.

In general, the phase diagrams for any crankshaft arrange-
ment and firing order, and for any engine, may be obtained by
applying the following rule : Assume that No. I crank is of
zero angle and that the angles of all other cranks are measured
from No. 1 crank.

Then the phase diagram for any particular order is obtained
by multiplying the angles through which the shaft must turn
from the firing of No. 1 cylinder to the firing of each of the other
cylinders, by the order number of the particular component
under consideration.
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In the arrangement shown in Fig. 86, for example, the phase
angles for the various orders are as follows :—
TABLE 63.
PuasE ANGLES—4-S.C., S.A. 6-CYLINDER ENGINE.

(Firing Order : 1-3-5-6-4~2.)

Phase Angles.
Cylind Firi
"No. | Asels

3-Order. | 1-Order. | 13-Order. | 2-Order. | z3-Order. | 3-Order.
T o° o° o°® o° o° 0° o?
2 600 300 600 goo 1200 1500 1800
3 120 60 120 180 240 300 360
4 480 240 480 720 960 1200 1440
5 240 120 240 360 480 600 720
6 360 180 360 540 720 900 1080

This rule can also be deduced from Fig. 8o where it is shown
that the resultant vector rotates at # times the speed of the
crankshaft. Thus 1° of crankshaft rotation is equivalent to
n degrees of vector rotation, where # is the number of complete
vibration cycles in each crankshaft revolution.

If there are # cylinders firing at equal intervals the firing
interval is 720/m degrees of crankshaft rotation for 4-stroke
engines and 360/m degrees of crankshaft rotation for z-stroke
engines.

The corresponding angles between consecutive vectors in
the phase diagrams are 720 .n/m for 4-stroke engines and
360 . n/m for 2-stroke engines, where » has the values o-3, 1-0,
15, etc., for 4-strokes and 1, 2, 3, etc., for 2-strokes. The
vectors are all in phase and can be added algebraically when
n/m = 05 for 4-stroke engines and when #n/m = 1-0 for 2-stroke
engines. For all other values of n/m the vectors must be added
geometrically.

Since the resultant harmonic components in Table 60 are
for the combined effect of the top and bottom ends in the case
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of double-acting engines, the rules already given for single-
acting engines may be applied.

The same remark applies to opposed-piston engines, since
the resultant harmonic components for this type of engine
given in Table 6o are for the combined effect of the upper and
lower pistons referred to a crank radius equal to total combined
stroke divided by 4.

Vector Diagrams.—The vector diagrams for a 6-cylinder,
4-S.C., S.A. engine are shown in Fig. 86. They are constructed
from the phase diagrams as follows :—

The vectors for the various cylinders are drawn parallel to
the corresponding cranks in the phase diagram for the particular
order being investigated. The lengths of the vectors are the
lengths of the corresponding ordinates on the normal elastic
curve. The values of the vector sums Sz for the different
orders are stated on the vector diagrams in Fig. 86, and these
are the values which are used in the expression already given
for the equilibrium amplitude.

In setting down the vector diagrams, care must be taken to
use the normal elastic curve corresponding to the mode of
vibration being investigated. For example, the diagrams in
Fig. 87 are for a 6-cylinder, 4-S.C., S.A. marine engine, where
both one- and two-node vibrations have to be considered. The
vector diagrams for the one-node mode of vibration are there-
fore obtained from the phase diagrams, using the deflections
given by the normal elastic curve corresponding to the one-
node mode of vibration. For the two-node vector diagrams,
the normal elastic curve corresponding to the two-node mode
of vibration must be used.

‘Where the node falls within the cylinder group, the vectors
corresponding to cylinders on one side of the node must be
set down in the opposite sense to the vectors for the cylinders
on the other side of the node.

It is evident from the method of obtaining the vector
diagrams that an alteration in the firing order, or an alteration
in the shape of the normal elastic curve will modify the relative
magnitudes of the vector sums. In the case of 2-stroke
cycle engines an alteration of firing order implies an alteration
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of crank sequence, but in the case of 4-stroke cycle engines
there are usually a number of different firing orders for each
crank sequence.

Since for multi-cylinder, internal combustion engines the
nth order harmonic component of the tangential effort curve
has the same value for all cylinders, and since the torque energy
for any one cylinder is proportional to the maximum angular
displacement at that cylinder, it follows that the relative
magnitudes of the torque energy available at the several
cylinders are proportional to the relative amplitudes of the
ordinates on the normal elastic curve at the points correspond-
ing to the positions of the respective cylinders.

For example, if the cranks of all cylinders were in phase,
ie. if they all reached firing centre together, and if they all
fired simultaneously, the resultant harmonic torque energy for
the whole group of cylinders would simply be proportional to
the summation of the ordinates on the normal elastic curve
corresponding to the positions occupied by the various cylinders.
Further, if the ordinates on the normal elastic curve were all of
equal amplitude, the resultant harmonic torque energy for the
entire group of cylinders would be equal to the torque energy
for one cylinder multiplied by the number of cylinders.

In an actual example, however, the cranks are not in phase,
but are usually arranged to give equal firing intervals over the
complete working cycle, i.e. for a 2-S.C., S.A. engine the cranks
are spaced 360/m degrees apart, and for a 4-S.C., S.A. engine
720/m degrees apart, where m is the number of cylinders. In
this case, if the ordinates on the normal elastic curve were all
of equal amplitude, the rule for higher order inertia forces
would apply, viz. the unbalanced torque energy orders would
be integral multiples of the number of cylinders for 2-S.C., S.A.
engines, and of half the number of cylinders for 4-S.C., S.A.
engines ; whilst the magnitude of any particular unbalanced
order would be the magnitude for one cylinder multiplied by
the number of cylinders. All other orders would cancel.

In practice, however, the ordinates on the normal elastic
curve are not equal for all cylinders, although this condition is
very nearly approached in the case of one-node vibrations of
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marine installations with a long length of intermediate shafting
between the cylinder group and the propeller (see one-node
normal elastic curve in Fig. 87), i.e. in cases where the node is
a considerable distance from the cylinder group. This explains
why only major orders are usually of any practical importance
in the case of one-node vibrations of marine installations. In
the majority of cases, however, the ordinates on the normal
elastic curve are appreciably different for the various cylinders,
and due allowance must be made for this in obtaining the
resultant torque energy for any particular order.

Since the greatest vibration stress in the case of two-node
vibrations occurs at the crankshaft node, it is very important
to determine the magnitudes of vibration stresses due to minor,
as well as major, harmonics. The possibility of obtaining a
favourable readjustment of the relative magnitudes of the
various harmonics by altering the firing order, or the disposi-
tion of the masses, should have full consideration. In certain
cases, the so-called minor harmonics can be sufficiently powerful
to cause severe damage to the crankshaft.

The position of the crankshaft node is of considerable im-
portance in determining the relative magnitudes of the vector
sums. For example, if the system is so arranged that the node
lies at the centre of the cylinder group, the ordinates of the
normal elastic curve will be equally disposed on either side of
the node. This will result in practically complete cancellation
of the major harmonics, as shown in Fig. 87.

The foregoing rules are based on the following assump-
tions :—

(i) That the operating conditions are identical in all the
cylinders of a multi-cylinder engine, i.e. that the
maximum values of the sth order harmonic com-
ponents of the tangential effort curve are the same
for all cylinders. This demands that erratic com-
bustion due, for example, to uneven fuel injection
in the case of compression ignition engines, or uneven
ignition timing or mixture distribution in the case of
petrol engines, does not arise. These faults do occur
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in practice, but, as a general rule, they are disclosed
by a characteristic roughness of engine operation.

(i) That the resultant sth order vector for any given
cylinder of a multi-cylinder engine is in phase with
the crank of that cylinder, ie. that the »th order
harmonic component attains its maximum value T,,
when the crankpin has moved one-quarter of a vibra-
tion cycle from the top dead centre, or firing, position.
This assumption means that the phase angle «, in
Fig. 8o is neglected and is permissible in cases where
the characteristics of the tangential effort diagrams are
identical for all cylinders, so that the same harmonic
analysis can be used throughout.

These assumptions are very nearly true for multi-cylinder
internal combustion engines where the dimensions of all the
cylinders are the same and where an attempt is made to ensure
the same operating conditions in all cylinders.

Fig. 88 indicates a method of constructing a curve showing
the variation of the total amplitude of .the half-order harmonic
component for the entire group of cylinders over one crank-
shaft revolution, for a 6-cylinder in-line, 4-stroke cycle petrol
engine. In this diagram the phase angle is taken into account
and the data is from Diagram I of Fig. 8o.

From Diagram I of Fig. 80 the maximum amplitude of
the resultant »th order component for each cylinderis T,, = 46-4
Ibs. per sq. in., and the phase angle is a, = 51°~7'. The
firing order and normal elastic curve are assumed to be the
same as in Fig. 86, so that the half-order phase diagram is the
same as that in Fig. 86 and the cylinders come into action in
the phase diagram at equal intervals of 60° and in the same
order as the firing order, namely, 1-3-35-6-4-2. In accord-
ance with usual practice the top dead centre position of No. 1
crankpin will be taken as the reference point, and the half-
order phase diagram in Fig. 88 is represented by the outer
circle with the cylinder numbers enclosed in circles and in the
correct firing sequence with the vectors rotating counter-
clockwise. Since the phase angle «, is the angle by which
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the resultant vector for each cylinder leads the crank, the
resultant vectors for each cylinder must be set down 51°-7’ in
advance of the respective crankpins in the phase and vector
diagram in Fig. 88. The lengths of the vectors are made pro-
portional to the lengths of the ordinates on the normal elastic
curve at each cylinder, assuming unit amplitude at No. 1
cylinder. The variation of amplitude of the half-order com-
ponent for each cylinder, for one revolution of the crankshaft,
can then be plotted on a base representing two revolutions of
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Fic. 88.—Total amplitude of the half-order harmonic component for a

6-cylinder, 4-stroke cycle engine.
No. 1 crankpin (ome working cycle) by assuming that each
vector rotates at » times crankshaft speed, ie. at one-half
the speed of the crankshaft, and then transferring the vertical
projections of each vector to the ordinates at the appropriate
crank angles. This process is clearly shown in Fig. 88, where
the dotted curves indicate the variation of the half-order har-
monic amplitude for each of the six cylinders. The total ampli-
tude of the half-order component for the six cylinders can be
obtained by adding the curves for the individual cylinders
algebraically.
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An alternative method of determining the total amplitude
for the six cylinders is to draw the vector summation diagram
shown at the left-hand bottom corner of Fig. 88. This sum-
mation diagram is drawn in the manner already described, and
the length of the closing vector, shown dotted, is scaled to give
the value of the maximum amplitude of the total half-order
harmonic component for the six cylinders. The inclination
of this closing vector to the horizontal is the phase angle 8,
of the total vector. B, is the angle by which the total vector
leads No. 1 crankpin, so that if the closing vector in the vector
summation diagram in Fig. 88 is transferred to the phase and
vector diagram, the variation of amplitude of the total nth
order harmonic over two revolutions of No. 1 crankpin can be
plotted by assuming that this vector rotates at one-half the
speed of the crankshaft and then transferring its vertical pro-
jections to the ordinates at the appropriate crank angles. The
total #th order amplitudes obtained in this way will be found
to agree with those obtained by summing the individual curves.

The vector summation diagram in Fig. 88 is seen to be iden-
tical in form with the vector diagram shown in Fig. 86, and in
each case the value of 2z is 1-09. The only difference is that
in Fig. 86 the phase angle has been neglected, whilst in Fig. 88
the total vector is shown in correct phase relationship to
No. 1 crankpin. Since this phase relationship is not required
for evaluating vibration amplitudes and stresses, and since the
same value of Za is obtained irrespective of the orientation of
the vector diagram relative to the crankpin the phase angle will
be neglected in all calculations relating to this type of engine.

In multiple-expansion, multi-cylinder steam engines, how-
ever, the dimensions of the cylinders and the operating condi-
tions differ among the cylinders. It is therefore necessary in
this case to take the phase angle into account. The method
just described for a 6-cylinder, 4-stroke petrol engine (Fig. 88)
can be used, bearing in mind the following modifications in the
procedure :—

(i) The resultant vector for each crank should be obtained
by harmonically analysing the tangential effort
diagram for the combined effect of the top and bottom

VOL. IL—3I
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sides of the cylinder. This applies in all cases where
the engine is double-acting, i.e. to all normal types
of steam engine.

(ii) The length of the resultant vector for the mth crankpin
should be proportional to the length of the ordinate
on the normal elastic curve a,, multiplied by the
maximum value of the sth order harmonic com-
ponent T, of the tangential effort curve for the
mth cylinder expressed in lbs. and not in lbs. per
sq. in, of piston area. ‘

This is necessary because cylinder dimensions and
operating pressures vary among the cylinders. In
all normal steam engines the strokes of the different
cylinders are equal, but in the very unlikely event
of a difference in stroke among the cylinders this
would have to be taken into account when plotting
the tangential effort diagrams.

(iif) The resultant vector for each cylinder must lead the
crank by the appropriate phase angle, determined by
a harmonic analysis of the separate tangential effort
diagrams for each cylinder.

(iv) Since the working cycle is completed in one revolution
of the crankshaft the curve showing the variation
of the amplitude of the harmonic components need
only extend over 360° of crankpin rotation, as in
the case of 2-stroke cycle internal combustion engines.

The maximum amplitude of the total harmonic com-
ponent for the entire cylinder group is obtained by drawing
a vector summation diagram as shown in Fig. 88, the length
of the closing vector being the value of T, .a,, where, in
this case, T, .4, is the maximum value of the total sth
order harmonic component of the combined tangential effort
for all cylinders in Ibs.

The work done by the entire group of cylinders is then

ZW, ==.R2T,,, . a, lbs-ins. per cycle.

Note—If a, =1 for No. 1 crank, then ZW,, is the work
done per cycle per unit deflection at No. 1 crank.
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As a rule the torsional vibration problem in steam engine
installations is not so severe as in internal combustion engine
installations. Examples of failures of steam engine trans-
mission systems are comparatively rare, because the engines
are of the double-acting type and have relatively short and
rigid crankshafts, whilst the magnitudes of the disturbing
harmonic components are relatively small.

Two examples will suffice, however, to show that even in
the case of steam engine installations it is very desirable to
investigate the torsional vibration problem. In the first
example a medium speed compound steam engine was employed
to drive a large fan for mine ventilation. The fan was close-
coupled to the engine and shortly after installation the bolts
in the coupling between the engine and the fan were broken.
These breakages continued in spite of oversize replacements,
and eventually the trouble was overcome by increasing the
size of the driving shaft.

In the second example the failure of the tail-end shaft of
a triple expansion marine steam engine was traced to reson-
ance between the 3rd order harmonic component of the
tangential effort of the engine and the one-node mode of vibra-
tion of the transmission system at the normal operating speed.
The amplitude of vibration at the resonant speed was such
that a movement of 4- 2 ins. occurred at each crankpin three
times per revolution, and the crankshaft appeared to rotate
with three distinct jerks in each revolution. The trouble was
entirely removed by replacing the original propeller shafting
by shafting of larger diameter.

Where the characteristics of the transmission system are
such that only the one-node mode of vibration requires in-
vestigation, and where there is a long flexible transmission
shaft, so that the node is remote from the engine crankshaft,
e.g. in marine propelling installations where the engine is
amidships, the whole cylinder group vibrates with very nearly
the same amplitude, i.e. the ordinates on the normal elastic
curve are very nearly the same for all cylinders, as shown in
Fig. 15. .

In such cases an appreciably simpler method of evaluating
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the work done by the entire cylinder group, when the prime
mover is 2 multiple-expansion steam engine, is to plot a dia-
gram showing the combined tangential effort for the entire
cylinder group. If this diagram is harmonically analysed the
total harmonic components for the entire cylinder group are
obtained directly.
The work done by the entire cylinder group is then
W =27.T.R Ibs.ins. per cycle per unit amplitude
at engine,
where T = the maximum value of the #th order harmonic
component of the combined tangential
effort curve for the entire group of cylinders,
in Ibs.,
R = common crank radius, in inches.

Internal Combustion Engines with Two or More
Pistons Operating on Each Crankpin.

Radial Engines.—Fig. 89 shows a 5-cylinder radial engine,
For any given position of the common crankpin the torque
due to any given cylinder will not be altered if the whole
piston/connecting rod/crank assembly of that cylinder is
rotated about the crankshaft axis until the line of stroke of
the piston is vertical. The complete engine, in other words,
can be regarded as composed of a number of superimposed
single-crank engines so that from the point of view of shaft
torque an equivalent in-line engine is obtained by rotating
each cylinder mechanism until its line of stroke is vertical,
This is a convenient method of studying shaft torque in engines
of the Vee, fan, or radial type, and the equivalent in-line engine
for the s5-cylinder radial is shown at the right-hand side in
Fig. 8.

If equal cylinder spacing is assumed in the radial arrange-

ment then the equivalent in-line engine 1s a normal 5-crank

for in-line engines. In the case of 4-stroke cycle engines the
firing order must be 1-3-5-2-4 to provide equal firing intervals.
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Since the cylinders are all in the same transverse vertical
plane the vibration amplitude is identical for all cylinders, so
that the only unbalanced harmonic components of the shaft
torque are the 2-3, 5, 7°5, I0, etc., orders, i.e. the major orders.
In general, therefore, the unbalanced torque energy orders
for 4-stroke cycle radial engines with unarticulated connecting
rods are all integral multiples of one-half the number of
cylinders, and the magnitude of any particular unbalanced

KRR

~ i
= — 2
4 3 \LQ/[L@Q Equivalent
Radial_Engine: “In-Line " Engine.

5
1 \ 1 ! 1 b2
KRR
2 3 7R 2 o
Orters 5= S0l 1=6=11-  Us-6K-1f-  2-7-iz-  ZK-7-ink-
58 —13- SU-gh-13k 4-9—14-  4H-9f-lh-  S—10-15-

Phase_Diagrams-{ Firing_Qrder = I=3=5-2~4)

FiG. 89.—Phase diagrams~-radial engine.

order is the magnitude for one cylinder multiplied by the
number of cylinders. It should be noted that this rule applies
only if there is an odd number of cylinders, so that the firing
intervals are equal.

In 2-stroke cycle radial engines there may be either an
odd or an even number, of cylinders, and in both cases the only
unbalanced torque energy orders are integral multiples of the
number of cylinders, whilst the magnitude of any particular
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unbalanced order is the magnitude for one cylinder multiplied
by the number of cylinders.

Thus in a 5-cylinder radial the lowest critical speed is the
2-5th order for a 4-stroke engine and the 5th order for a 2-stroke
engine and there is a clear range between these criticals and the
sth and 1oth orders respectively. As a rule the fundamental
critical speed of radial engines is well below the operating speed
range, so that the torsional vibration problem is not usually
so difficult as in in-line engines, bearing in mind that only
major criticals bave to be dealt with and that if the fundamental
major critical is well down the speed range all higher orders
are even further removed from the operating range. This is
especially the case in large geared radial engines where the
natural frequency is low. In small direct-driving radials,
where the natural frequency is higher, difficulty is sometimes
experienced in placing the fundamental critical speed sufficiently
far below the operating range, and in some cases it is necessary
to work with this critical above the running range.

The above discussion neglects the effect of articulation.
This subject has already been dealt with at some length, and
a method of evaluating the resultant harmonic components
for an engine with articulated connecting rods has been de-
scribed. In evaluating the harmonic components of the
tangential effort due to the inertia of the reciprocating parts
of a radial engine with equally spaced cylinders it will be
found that the cosine terms of the articulated cylinders on one
side of the master connecting rod cancel the cosine terms of
the articulated cylinders on the other side of the master rod,
ie. in the 5-cylinder radial shown in Fig. 89, if the master
cylinder is No. 1 then the cosine terms of cylinders 2 and 3
cancel the cosine terms of cylinders 4 and 5. The sine terms
of the articulated cylinders are additive, but it is only necessary
to evaluate these terms for the cylinders on one side of
the master rod. Thus, in Fig. 8¢, if the sums of the sine
terms for cylinders 2 and 3 are obtained, then the magnitudes
of the inertia tangential effort components for the whole engine
are double these values.

The principal effect of articulation is to introduce at once



DETERMINATION OF STRESSES 487

a revolution surge into the torque diagram. This articulation
surge is clearly shown in Fig. go, which is the torque curve for
a g-cylinder, single-row radial engine.
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It is necessary, therefore, to take into account the possi-
pility of a 1st order critical speed as well as the major criticals
already mentioned, although up to the present little trouble
has been experienced with 1st order criticals, because the fre-
quency of the system has been sufficiently high to place it
well above the maximum operating speed. The modern trend,
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however, towards larger engines and lower gear ratios tends to
lower the natural frequency of the system and so bring this
1st order critical into the operating speed range, especially in
the case of 2-row radial engines with the rows staggered and
with the two crankpins set at 180°. With such an arrangement
the two master cylinders fire at 360° intervals, so that the 1st
order harmonic due to articulation of one row adds to the
corresponding harmonic of the second row.

Once the harmonic components of the tangential effort curve
for all the cylinders of one row of a multi-row radial engine have
been determined the harmonic components for the engine as a
whole can be obtained by the methods already given for in-line
engines, i.e. each crankpin of the multi-row radial can be
regarded as one crankpin of an in-line engine and phase and
vector diagrams can be drawn as for an in-line engine.

A r10-cylinder, z-row radial engine is shown in Fig. go.
In this arrangement there are two rows of five cylinders
operating on two crankpins spaced at 180°. For even-firing
the cylinders in the two rows are staggered and the firing
sequence is the same in each row, ie. alternative cylinders
in one row fire consecutively. The firing sequence is there-
fore F;-Ry-F3-R~F5-Ri~Fs-Rg-F-R;, where F designates
cylinders in the front row and R those in the rear row. From
considerations of secondary balance of the reciprocating masses
the master cylinder in the rear row is placed at 180° to the
master cylinder in the front row, i.e. the master cylinders are
F, and R, in Fig. go. As already explained, since the cylinders
of each row are all in the same transverse vertical plane the
vibration amplitude is identical for all cylinders, so that a
2-row radial can be regarded as a 2-crank engine in which the
values of the harmonic components, acting on each crankpin,
are the total values obtained by summing the individual com-
ponents for all the cylinders of one row, i.e. Ty and ZTg,.

Furthermore, since the method which has been described
for obtaining the total values of the harmonic components for
a whole row of cylinders takes the line of stroke of the master
cylinder as datum, the eranks of the equivalent in-line engine
must also be in phase with the lines of stroke of the master
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cylinders in each row. Thus, if F, and R, are the master
cylinders in the arrangement shown in Fig. 9o, the equivalent
in-line arrangement is obtained by swinging crank R through
180° so that the line of stroke of master cylinder R, is brought
into coincidence with the line of stroke of master cylinder Fy.
This crank arrangement is shown at the right-hand side of
Fig. go. For even-firing intervals the master cylinder in row
R fires 360° after the master cylinder in row F, and the corre-
sponding angle in the half-order phase diagram is therefore
180°. The remaining phase diagrams are obtained from the
half-order diagram in the usual way, and these show that all
half-orders are balanced but that orders 1-3-5, etc., and 2-4-6
are completely unbalanced. It has already been shown,
however, that if articulation is neglected the only unbalanced
orders for each row of five cylinders are the 2'5, 5, 7-5, o, etc.,
orders, whilst the principal effect of articulation is to introduce
a first order surge in the tangential effort diagram. Hence for
the complete two-row engine the only unbalanced orders are
the 5, 10, 15, etc., orders and the 1st order, due to articulation,
which is twice as large as the 1st order for one row of five
cylinders,

The evenness of firing will not be appreciably disturbed if
some other cylinder in the rear row is chosen as the master
cylinder.

For example, if cylinder R, (or Ry) is chosen as the master
cylinder in the rear row, then the firing interval between the
master cylinder F, in the front row and the master cylinder
R; in the rear row is 504° or 144°, and the corresponding
angle in the half-order phase diagram is 252° or 72°. The
remaining phase diagrams are obtained from the half-order
diagram in the usual way and these show that with this arrange-
ment of master cylinders all orders are unbalanced, except
orders 24, 7}, 123, etc., when Ry fires 504° after Fy.

Since, however, the only unbalanced orders for each row
of cylinders when articulation is neglected are the 2-35, 5,
75, 10, etc., orders, whilst the principal effect of articulation
is to introduce a Ist order surge, the only unbalanced orders
are the 5, 10, 15, etc., orders and the 1st order surge as in the
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previous arrangement. The magnitudes of the 5, 10, 13, etc.,
orders are the same as in the previous arrangement of master
cylinders. The magnitude of the first order is, however,
reduced to less than one-third of its former value, i.e. to about
60 per cent. of the value for a single row of cylinders. In cases
where the Ist order is within or near the running range of the
engine, therefore, this alternative arrangement of the master
cylinders might be a means of avoiding excessive vibration.
It must be noted, however, that with this alternative arrange-
ment of the master cylinders the secondary inertia force will
not be completely balanced.

The alternative arrangement with R, firing 144° after F,
can be investigated in the same way. It will be found, how-
ever, that although the magnitude of the 1st order is again
reduced to 60 per cent. of its value for a single row of cylinders
the 2§, 74, 123, etc., orders, as well as the 5, 10, 15, etc., orders
are completely unbalanced. This alternative is therefore
inferior.

Double-row radial engines may also be arranged with the
cylinders in axial alignment instead of being staggered. For
even-firing impulses the two cranks must then be in phase
instead of being spaced at 180°, and this arrangement of cranks
gives unbalanced secondary inertia forces. An investigation
of the unbalanced torque orders shows that the same general
conclusions apply here as in the case just discussed. Thus, if
the master rods operate in the two coaxial cylinders, say
cylinders F, and R, the total 1st order harmonic torque is
twice the value for one row of cylinders. Furthermore, the
unbalanced secondary inertia force is twice the value for one
row of cylinders. If, on the other hand, cylinder F, is chosen
as the master cylinder in the front row, whilst cylinder R,
(or Ry) is chosen as the master cylinder in the rear row, then
the 1st order harmonic component is reduced to one-third,
ie. to 60 per cent. of the value for a single row of cylinders,
whilst the secondary inertia force is partially balanced.

Assuming that the vibratory amplitude is the same at all
the rows of a multi-row radial aero-engine, then the following
expression gives the angles of rotation of the crankshaft from
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firing centre of the master cylinder in one row to firing centre
of the master cylinder in another row which will cause can-
cellation of any chosen harmonic of the engine torque :—

(i) For 2-stroke cycle engines where the working cycle occupies
2 .« radians (360°).

-t ST+ 5TR )
2.

_—17[1%1 + (n —1)] ... (2610)

(i) For 4-stroke cycle engines where the working cycle occupies
4 . 7 vadians (720°).

2.m 2!7[I 2.7 I
s=rn Hs ) Hlree oo
2.7[I
= [N + (2. m— 1)], .. (2610)
where, & = angle of rotation of crankshaft from firing
centre of the master cylinder of one row
to firing centre of the master cylinder of
another row for cancellation of the #th order
harmonic,
# = harmonic order number to be cancelled,
N = number of rows of cylinders.

The above expressions merely state the phase relationships
which must exist between the firing points of the several
master cylinders so that the resultant #th order torque sum-
mation for the engine as a whole is zero. They are readily
deduced from wave diagrams. ’

There are, in general, several values of 8, the number of
alternatives depending on the particular value of %, any one
of which will bring about cancellation of the chosen harmonic.

Having determined the values of §, the arrangement of the
engine cranks and cylinders must be examined to see if the
master cylinders can be selected so that one of the required
values of 8 is obtained.
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For example, in the ro-cylinder, two-row, 4-stroke cycle
radial engine shown in Fig. o, equation (261b) reduces to

.7 5.7 7.7

n n ' own

3w

27"’(2 . % —}), (since N = 2J.

Thus, for cancellation of the 1st order harmonic (n = I),
§=mor3.m

Now in a conventional engine of this type the angle between
the cranks is = radians (180°) from considerations of engine
balance. Hence with this type of crankshaft the master
cylinders must be in axial alignment for a firing interval of
7 or 3.m, Le. for cancellation of the 1st order harmonic.

In conventional engines, however, the cylinder rows are
staggered from considerations of engine cooling, so that the
above condition cannot be fulfilled.

A considerable reduction of the amplitude of the resultant
1st order component is nevertheless obtained by choosing
cylinders which are nearly in axial alignment as the master
cylinders, ie. cylinders F; and either R; or R, in Fig. 90.
‘When this is done the magnitude of the 1st order component is
about one-third of its value when F, and R, in Fig. o are the
master cylinders, as previously exp]amed

An alternative arrangement is to move the crankpms into
axial alignment, ie. angle between cranks zero. The master
cylinders must be spaced = radians (180°) apart to give a firing
interval of 7 or 3., and thus cause cancellation of the 1st
order harmonic, ie. F; and R, in Fig. 9o become the master
cylinders. This is the conventional arrangement of cylinders
but the crank arrangement is unconventional.

For cancellation of the znd order harmonic (n = 2),

8=mf2,3.7[2,5.7[2,0r7.m[2
Hence in a conventional two-row radial engine with cranks

at 180° the master cylinders must be go° or 270° apart for can-
cellation of the 2nd order harmonic.
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This condition cannot be obtained by an engine of the type
shown in Fig. 9o, i.e. a two-row radial with 5-cylinders in each
row, but an appreciable reduction of the resultant 2nd order
harmonic is obtained by choosing cylinders which are nearly
9o°, or 270° apart as master cylinders. For example, if F,
and either R, or Ry are chosen as master cylinders in Fig. go,
the magnitude of the 2nd order harmonic is reduced to about
one-third of its value with the conventional arrangement .where
F, and R, are the master cylinders.

Cancellation of the 2nd order component is also obtained
if the crankpins are moved into axial alignment, i.e. angle
between cranks zero, and the master cylinders are spaced go®
apart, but in this case both cylinder spacing and crank arrange-
ment are unconventional.

A third alternative is to place the cranks at 9o°, in which
case the master cylinders must be in axial alignment which is
another unconventional arrangement.

Equation (261b) reveals a point of special interest in con-
nection with the half-order components of 4-stroke cycle
engines of conventional design. If the values of § for the half-
order components are calculated, ie. putting » =}, 1}, 2},
éte., in Equation (2610), it will be found that one of the
values of 8is 2.  in all cases. This indicates that if the firing
interval between the master cylinders is 2., then all half-
order components are cancelled, a condition which is fulfilled
with conventional arrangements of two-row radials where the
crankpins are spaced 180° apart, the cylinder rows are staggered
and the master cylinders are 180° apart with a firing interval
of 360°.

The above discussion of 2-row radials assumes that the
shape of the normal elastic curve is such that the amplitudes of
vibration are substantially the same at each row of cylinders.
If the ordinates of this curve at the cylinders differ appreciably
this should be taken into account in drawing the vector dia-
grams, just as in the case of an in-line engine.

Muiti-Cylinder In-Line Internal Combustion Engines.
—It has already been mentioned that alterations of firing
order or changes in the shape of the normal elastic curve modify
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the relative amplitudes of the disturbances at different resonant
speeds. A speed range free from serious resonant zones is,
of course, essential for safe operation, whilst disturbances which
cannot be regarded as really dangerous are best avoided if their
elimination does not handicap the design in other directions.

There are several important factors to be considered in
addition to torsional vibration when a power transmission
system is designed.

The engine should be free from serious unbalance due to
the inertia forces originated by the motions of the reciprocating
and rotating parts.

The sequence of firing should be such that no undue load
is imposed on any bearing, and the arrangement of crankshaft
should not cause a concentration of inertia loading on any
one journal. The latter condition cannot always be fulfilled.
For example, in a 4-stroke cycle, 6-cylinder in-line engine
with the crankshaft arranged as shown in Fig. 86, so that even
firing intervals are obtained and so that there is collective
primary and secondary balance of inertia forces, the journal
between Nos. 3 and 4 cylinders carries the major part of the
combined inertia load of these two cylinders.

In such cases the bearing load can be relieved by attaching
balance weights to the crankwebs and this has the further
advantage of relieving the crankcase inertia loading. It must
be borne in mind, however, that the addition of these balance
weights increases the polar moment of inertia of the mass
system and so causes an appreciable reduction of natural fre-
quency unless this can be offset by an appropriate increase in
the stiffness of the crank elements, e.g. by increasing the size
of the journals or of the crankwebs.

In the case of aero engines, where any addition to the total
weight of the engine must be amply justified, the amount of
countezwexghtmg added to the crankwebs should be the
minimum necessary to give reasonable bearing loads, although
it should be noted that a properly counterweighted aero-engine
crankshaft might actually save on total engine weight by un-
loading the crankcase to the extent of permitting a lighter
crankcase to be used.
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An alternative method of reducing the inertia loading on
the bearings and crankcase which can be used in medium-
speed and high-speed engines fitted with steel or cast-iron
connecting rod big-end housings is to replace the steel or iron
big-end keeps by keeps made from forged aluminium alloy.

Where total weight is important this has the advantage of
giving a reduction in overall weight and a reduction in the
inertia loading on the big-end bearings, main bearings, and
crankcase.

As a general rule the addition of counterweights to an in-line
engine crankshaft, even if the engine is inherently balanced,
has important advantages from the point of view of bearmg
loads and the reduction of stresses and distortions in the crank-
case, and is to be recommended in all cases where it does not
render the torsional vibration problem more difficult.

Another important factor to be kept in mind is that of
crankshaft manufacture, because if the configuration of the
crankshaft is such that good grainflow cannot be obtained in
the neighbourhood of the junctions of the journals, pins, and
webs, trouble may be encountered due to fatigue cracking at
those points. Finally, the importance of an efficient induction
system giving good mixture distribution must be kept in mind
when choosing the arrangement of the crankshaft and the
firing order for multi-cylinder, 4-stroke cycle petrol engines.

The theoretical number of different crank arrangements
increases rapidly with the number of cylinders. In the
following discussion the change of firing order which occurs
automatically when the direction of rotation of the engine is
reversed is not counted as a separate arrangement, because
so far as torsional vibration and engine balance are concerned
the two conditions of operation are identical. Thus from the
torsional vibration point of view the 4-cylinder firing order
1-3-4-2 is the same as the reverse order 1-2-4-3, and the
8-cylinder firing order 1-8-2-5-6-3-4-7 is the same as the corre-
sponding reverse order I-7-4-3-6-5-2-8.

(Note.—It should not be inferred from this that the torsional
vibration characteristics of a marine engine are the same when
going astern as they are for ahead running. This is true only
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if the cylinder pressures are the same for both conditions of
operation. In practice the power available for astern operation
is sometimes considerably smaller than full power for ahead
operation, and this naturally gives a reduced speed range when
running astern.)

It can be shown that the theoretical number of different
crank arrangements for a z-stroke cycle, in-line engine with m
cylinders and  equally spaced cranks is

ml
where ml=mm —1)m —2)(...)....(1)

Since, however, from the standpoint of torsional vibration
and engine balance clockwise and counter-clockwise rotations
are interchangeable, the effective number of different crank
arrangements is

—1)!
M=(1‘_2_L=0.5(m m—2)( ) (1),
i.e. for a 5-cylinder engine of this type,
M =4 X 3 X 2f2 = 12, effective number of different crank
arrangements.
These twelve arrangements are as follows, and in each case

the corresponding reverse order is shown at the right-hand
side :— :

Clockwise. Counter-clockwise.
1-2-3-4-5 I-5~4-3-2
1-2-3-5-4 I-4~5-3-2

14352
1-3-4-5-2
I-4=3-2-5
5-2~4-3 -3-4-2-5

The total effective numbers of different crank arrangements
for z-stroke cycle engines with equally spaced cranks and
various numbers of cylinders are as follows :—
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Numbey of Effective Number of
Cylinders. Crank Arvrangemenis.

3 T

4 3

5 12

6 60

7 360

8 2,520

9 20,160

10 181,440

In 2-stroke cycle engines the firing order is the same as the
crank sequence and a change of firing order can only be made
by changing the crankshaft. Since the working cycle occupies
one crankshaft revolution there are no half-order harmonics,
and the 1st order phase diagram is a replica of the crank sequence
diagram. The remaining phase diagrams are easily obtained
from the 1st order diagram, as already explained.

In 4-stroke cycle engines having an odd number of cylinders
the crankpins are equally spaced round the crank circle and
even firing impulses are obtained by firing every other cylinder
as its crankpin passes firing centres, Since the working cycle
of a 4-stroke cycle engine occupies 720° this gives an even
number of firing impulses when the crankpins are evenly
spaced round the crank circle. Thus, in a 5-cylinder engine
with crank sequence I-5-2-3-4 there would be five impulses in
720°, i.e. 2-5 impulses per crankshaft revolution and the firing
order would be I-2-4-5-3. The only alternative firing order
with this crank sequence is I-5-2-3-4, but in this case the
cylinders would fire consecutively, so that there would be a
whole revolution of the crankshaft without any firing at all.-
This alternative firing order is therefore of no practical value.

The effective number of different firing orders in the case
of 4-stroke cycle engines having an odd number of cylinders is
therefore the same as the effective number of different crank
arrangements as already discussed in connection Wlth 2-stroke
cycle engines.

In 4-stroke cycle in-line engines having an even number
of cylinders the crankpins are arranged in pairs at equal angular
intervals round the crank circle, and one half of the crankshaft

VOL. 1.—32
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is the mirror image of the other half. This arrangement pro-
vides complete primary and secondary balance of inertia forces
and couples as well as even firing intervals.

It can be shown that the theoretical number of these balanced
crankshaft arrangements is as follows :—

M= (0—'5@0—':3—)} = 0-5(0:5m — 1){osm —2)(. . ) . ... (1),

where m = total number of cylinders.
In an 8-cylinder in-line, 4-stroke cycle engine, for example,
the number of balanced crankshaft arrangements is

M=o0353%X2X1I)=3.
These are (1, 8) — (2,7) — (3, 6) — (4, 5),
(r,8) — (2,7) — (4, 5) — (3, 6),
(€8 —(6—(27— 453,
the crankpins being spaced in pairs at equal intervals of go°
round the crankpin circle.
It can also be shown that the theoretical number of different
firing orders for each balanced crankshaft arrangement is

M= 2(%'- ) .
Thus for an 8-cylinder, 4-stroke cycle, in-line engine with
a balanced crankshaft the theoretical number of firing orders for
each arrangement of balanced cranks is
M =23=8,
and since there are three different balanced crankshaft arrange-
ments the total theoretical number of different firing orders
for an 8-cylinder engine of this type is (8 X 3) = 24.
The eight different firing orders corresponding to the third
balanced crankshaft arrangement listed above are

I~3~2~4~8~6~7-5

5
1-3~7-4-8~6-2-5
1-3-7-5-8-6-24
1-6-2-4-8-3-7-5
1~6-2-5-8-3-7-4
I~6-7—4~8-3-2—5
1-6-7-5-8-3-2~4
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i.e. one cylinder of each pair fires as the pair of crankpins pass
firing centres. Hence there are eight evenly spaced firing
impulses in 720° or four impulses at go° in each revolution of
the crankshaft.

(Note.—As already explained there is a reverse firing order,
ie. 1-5-7-6-8-4-2-3, etc., corresponding to each of the orders
listed above. These reverse orders are not considered as
separate orders, however, because the balancing and torsional
vibration characteristics are the same for either direction of
rotation.)

The theoretical numbers of balanced crankshaft arrange-
ments and of firing orders for engines having various numbers of
cylinders are as follows :—

No. of Firing
No.oiCyls, | comaie| " Orders P | Tofa Ny of
ements. | Arrangement, '
6 1 4 4
8 3 8 24
10 12 16 192
12 60 32 1920

The foregoing analysis shows that the number of different
firing orders multiplies enormously as the number of cylinders
increases, In practice, however, many of these crankshaft
arrangements are unusable for one or other of the reasons
already mentioned. Nevertheless, there remains plenty of
scope for exploring alternative arrangements with the object
of finding the best all-round compromise between torsional
vibration characteristics, engine balance, and other important
design considerations.

It is impossible to go very deeply into the question of crank-
shaft arrangements here, so attention will be confined to a
description of arrangements which are usually found in practice.
These arrangements are given in Table 64 and may be found
useful as a guide in starting a new design.

It has already been mentioned that a change of firing order
of a 2-stroke cycle engine necessitates changing the crankshaft.
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TABLE 64.

CRANKSHAFT ARRANGEMENTS FOR IN-LINE ENGINES.
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TABLE 64 (continued).

TWO-JTROKE CYCLE, SINGLE-ACTING, IN-LINE ENGINES.

[
o A e mﬁr Ofnanz'm”g m%m ek v s
5| 4 :690§E?+ ’—:;2;: 48‘7;&[;2;%%@ NI | Nil I-:; i"l'al
6 | & [3EafsPe) T Jaene e o (s |t
ol s ?@; ?2'; ":::f’:; 50 I}‘Elizgﬁi-o] NL | i Jots (458
P j@:@: j@?ﬁ AN nlset[;ﬁfﬁ:—_é N | i N |30
8] e ;$§ /:$;’ et lens E:\[d ,':‘;;;_DJ IVERVRIVALE:AE
0|6 :$§/:;; "‘;ifﬁj’ L e DAL
ul7 ;:1':2 ji@; ”::'Z;;’ 14 DEI:I:ZTI‘{OZ[:%M Nil | Nil {025 %92
2 | 7 (SRR Ly 2 || |2
3¢ :;é@} i } /""Z‘;’j'i;q 81624 &ﬁgﬂz_ﬂ Nil | Nil | 013 —’L(;# )
% |8 /z' :3 z:@:;ia "3': Z‘::'T 5 24&[7;:’5_2;%-& NI | NI o5 | NIl
5| s @; ?‘@} ""i':;’;i'f"s s 2455_@%&@ Nil | NIl |08 | NI
6|9 | % ;’%g' 3;40' NEW Zzﬂgl:g:ﬁ;&a Nil [ NIl {019 9%5
7|9 i@; f:::; T sn e Fegad M | M (0|42
5|0 ;@éﬁ /5%3 R 020 508 PEEE ) | i | i 20

In 4-stroke cycle engines with balanced type crankshafts
and an even number of cylinders there are several alterna-
tive firing orders for each crankshaft arrangement. Hence in
this type of engine it is useful to remember that the effect
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TABLE 64 (continued).

TWO-JTROKE CYCLE, JBLE-ACTING, IN-LINE ENGINES
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of a new firing order can be tried out after the engine is built
merely by changing the camshaft, the crankshaft remaining

unaltered.

Column 6 of Table 64 gives the totally unbalanced harmonic
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orders for each case, assuming that the node is either at the
end of the crankshaft or else that it is remote from the crank-
shaft, i.e. assuming that the shape of the normal elastic curve
is as shown for the one-node mode of vibration at () and (4)
in Fig. 18, respectively. By totally unbalanced orders is
meant those orders for which the vectors are added arith-
metically.

When the node is either at the end of the crankshaft or is
remote from the crankshaft the totally unbalanced orders are
the so-called major orders, i.e. orders m/2, 2m/2, 3m/z, etc.,
for 4-stroke cycle engines and orders m, 2m, 3m, etc., for
z-stroke cycle engines, where m is the number of cylinders,
although it should be noted that this rule only applies if the
firing intervals are equally spaced throughout the working cycle.

It should also be noted that if the node is so remote from
the crankshaft that the amplitude of vibration is substantially
the same at all cylinders, then these major orders are the only
unbalanced orders since all minor orders cancel.

Column 7 of Table 64 gives the totally unbalanced harmonic
orders for each case, assuming that the node is at the centre
of the crankshaft, i.e. the shape of the normal elastic curve
is as shown for the two-node mode of vibration at (4) in Fig. 18.
In this case the so-called major orders cancel, due to the sym-
metrical shape of the normal elastic curve, and in a great
many cases there are no totally unbalanced harmonic orders.

The expedient of so arranging the transmission system that
the node is situated at the centre of the crankshaft is therefore
a very useful method of minimising torsiomal vibration in
cases where it can be applied.

This expedient has been used with complete success for
eliminating all major criticals corresponding to the two-node
mode of vibration of marine oil engine installations, the node
being brought to the centre of the crankshaft either by reducing
the size of the flywheel at the driving end of the crankshaft
{or eliminating it altogether) and fitting a suitable flywheel
at the free end of the crankshaft, or by eliminating the flywheel
altogether and obtaining the required flywheel effect by fitting
counterweights to the crankwebs.
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The last four columns of Table 64 contain factors which
enable the unbalanced forces and couples to be calculated
for each case, as follows :—

Let W = weight of unbalanced rotating parts of one cylinder,
in Ibs.,
W’ = weight of unbalanced reciprocating parts of one
cylinder, in Ibs.,
R = crank radius, in inches,
N = revolutions, per minute,
L = pitch centres of cylinders, in inches (assumed
constant),
g = ratio : length of connecting rod/crank radius,
F, = maximum unbalanced primary force for whole
engine, in Ibs.,
F, = maximum unbalanced secondary force for whole
engme, in lbs.,
C, = maximum unbalanced pnmary couple for whole
engine, in lbs.-ins.,
C, = maximum unbalanced secondary couple for whole
engine, in Ibs.-ins.

Then, assuming equal cylinder pitches,

F, = 00000284 . (W + W) . R.N2. K,, . (262)
F, = 00000284 . W .R.N?*. K, . . (263)
Cp = 00000284 . (W + W) .R.N2.L.K,/, (264)
C, = 00000284 . W' 'R. N2, L. K,. . (265)

The maximum values of the primary forces and couples
can be reduced by attaching balance weights to the crankwebs,
and this has the further advantage of relieving the loading
on the bearings and on the crankcase. In cases where counter-
weights are added to all crankwebs the balance weight moment
about the centre of the crankshaft should not exceed

(W,.R) = W + Wt + 1g] .R, . (266)

where W, = weight of balance weight per cylinder assumed
concentrated at crankpin radius directly op-
posite the crankpin.
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With balance weights of this magnitude the primary un-
balance along the line of stroke is the same as the primary
unbalance along a line at right angles to the line of stroke,
and the maximum unbalanced primary force and couple for
the whole engine become

F,=o00000142. R . N2 . K,. W(r —1/g9). . (267)
C,=o00000142. R.N2. L. K, . W'(x — 1fg). (268)

If the balance weights are made larger than given by
Equation (266) there will be overbalance along a line at right
angles to the line of stroke.

It should be borne in mind, however, that the addition of
balance weights to an oscillating system lowers the natural
frequency of torsional vibration, and this might be undesir-
able if it causes an important critical speed to be brought into
the running speed range. Also, the introduction of large
additional weight for balancing purposes would not be per-
missible in aero engines unless offset by gains in other direc-
tions, such as, for example, the ability to operate the engine
at higher speeds, or to reduce the weight of other parts of the
engine. In any given example the size of the balance weights
can be minimised by using only two balancing masses, one
attached to each of the endmost crankwebs in correct phase
relationship to the crankpins.

Secondary forces and couples cannot be balanced by
balance weights attached to the crankwebs.

The following points should be kept in mind when com-
paring the balancing characteristics of engines.

A good criterion of engine balance is to determine the
amplitude which the unbalanced force or couple would produce
if the engine were free in space, i.e. not restrained by more or
less elastic supports.

Let F = maximum amplitude of the unbalanced force, in lbs.,

M = total weight of engine, in lbs.,

w = n . Q, where z is the number of force cycles per revolu-
tion of the crankshaft, and @ is the angular
velocity of the crankshaft,

8 = the maximum amplitude of vibration of the engine,
assuming that it is free in space.
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Then, since force = mass X acceleration,
F=M.0?.8/g, or 8=F.g/(M.w?,
where g == 386 ins.[sec.?

The corresponding expression for an unbalanced couple of
maximum amplitude C is

J.w. 0 C.g

or §= To¥
where J = moment of inertia of engine about an axis through
the centre of gravity perpendicular to the plane
in which the couple acts, in lbs.-ins.2,
6 = maximum amplitude of angular vibration.

C=

For a primary force # = I, since there is only one force
cycle per revolution of the crankshaft.

Hence, w=0, and §=F.g/(M.Q%.

For a secondary force n = 2, since there are two force
cycles per revolution of the crankshaft.

Hence, w=2.0, and d="F.g/(4.M.0%.

Thus the amplitude of the vibratory disturbance due to
a secondary force or couple is one-quarter that due to a primary
force or couple of the same magnitude.

It should also be noted that since the force due to unbalance
is itself directly proportional to the square of the speed, the
vibration amplitudes calculated by the foregoing method are
independent of the r.p.m. of the engine.

This method therefore affords a convenient means for
comparing the balancing characteristics of engines without
reference to speed.

For example, primary force =F =W .0*.R/g,

where W = weight of unbalanced parts, assuming them to be
concentrated at crank radius R,
then 8§=W.R/M.
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For a secondary force, F=W’'.0%.R/(g.9),

where W' = weight of the reciprocating parts,
¢ = ratio (connecting rod length/crank radius),
then 8=W'.R/4.q.M).

ExampLE.—Compare the balance of the following engines :—

(i) A 4-cylinder 4-stroke cycle petrol engine—

Weight of engine, M = 300 Ibs.,
Weight of recip. parts, W’ = 12 lbs..(4 sets),
Crank radius, R =3 ins,,
Conn. rod/crank, g =35 "
(i) A medium speed 4-cylinder, 4-stroke cycle oil engine—
Weight of engine, M = 40,000 Ibs.,
Weight of recip. parts, W' = 1,800 Ibs. (4 sets),
Crank radius, R= 8 ins.,
Conn. rod/crank, g= 5.

In both cases the engines have conventional 4-stroke
cycle crankshafts so that secondary forces are completely
unbalanced.

Then, for (i) & =12 X 3/(4 X 3'5 X 300) == 0-0085 in.,
for (ii) 8 = 1800 X 8/(4 X 5 X 40,000) = 0018 in.

Thus the second engine would vibrate through more than
twice the amplitude of the first if permitted to move freely
in space, and these movements would occur irrespective of the
r.p.m. of the engines.

The amplitude of any vibratory disturbance caused by the
action of unbalanced forces or couples depends on whether or
not their frequency of application is near the natural frequency
of any part of the surroundings. The modern tendency is to
mount the engine on flexible supports, for example, on steel
or rubber springs, which are adjusted so that the lowest fre-
quency of application of any unbalanced force or couple is at
least 4/2 times the natural frequency of vibration of the engine
on its mounting.
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The force transmitted to the surroundings when the engine
is mounted on spring supports may be determined as follows :—

Let F,, = the maximum value of the nth order harmonic
component of the applied force when the fre-
quency ratio is unity. This will be called the
equilibrium force,

F = the transmitted force,
F, = the maximum value of the xth order harmonic
component of the applied force at the operating
speed.

Then, since the magnitude of the applied force is directly
proportional to the square of the speed,

B, = Fa(N/N)%

where N, = the nth order critical speed,
N = the operating speed,
- (N/N,)* }
and Fe= F,,E{I N

The values of the bracketed expression for different frequency
ratios are given in Table 52.

F is the force induced in the springs by the applied force
when the operating speed is N and the natural frequency of
the engine on its spring mountings is N,. Since the springs
are the only connection between the engine and its surround-
ings the above expression also gives the value of the transmitted
force. Damping in the spring mountings is neglected.

It is of interest to calculate the relative values of the
transmitted force for primary and secondary applied forces
of the same magnitude, assuming that the frequency of applica-
tion of the primary force is 1-414 times the natural frequency
of the engine on its mountings. For this condition, as already
explained, there is no dynamical magnification of the primary
force when it is transmitted to the surroundings.

Let N = the operating speed, for both primary and secondary
forces,
N, = the critical speed for primary forces = N/I-414.
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Hence, frequency ratio for primary forces = 1414, and
the corresponding dynamic magnifier from Table 52 is 2, i.e.
the transmitted force is twice the primary equilibrium force.
Since, however, the ratio of applied force to equilibrium force
is also 2 for a frequency ratio of 1-414, it follows that the trans-
mitted force is equal to the applied force, i.e. there is no
dynamical magnification.

In the case of the secondary force, since there are two force
cycles per revolution of the crankshaft the critical speed is

N,” = N,/2 = N/2:828.

Hence the frequency ratio for secondary forces is 2-828
and the corresponding dynamic magnifier, by interpolation
from Table 52, is 1-143. In this case, however, the ratio of
applied force to equilibrium force is

F,,/[F,= (N,//N)? = (1/2-828)% = 1/8.

Hence the effective value of the dynamic magnifier is
(1°143/8) or 0-143, i.e. the magnitude of the transmitted force
due to secondary unbalance is one-seventh that due to primary
unbalance when the primary frequency ratio is 1-414.

The ratio (secondary transinitted force/primary transmitted
force) diminishes as the primary frequency ratio increases and
approaches a limit of one-quarter when the frequency ratio
becomes very large.

The above calculations can be considerably simplified
when the operating speed is constant, by substituting the
expression for equilibrium force in the expression for trans-
mitted force. When this is done the value of the transmitted
force is

F=F [_——I-—}
"l — (N/N,)?

The values of the bracketed expression for different fre-
quency ratios are given in Table 51.

Thus, for a primary force, when N, = N/1-414, the above
expression reduces to F =TF,, Le. the transmitted force is
equal to the applied force, as already shown.

For a secondary force applied at the same operating speed,
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N, == N/2-828, and the above expression reduces to F = F /7.
Thus, as before, when the magnitude of an applied secondary
force is the same as the magnitude of an applied primary
force, the transmitted secondary force is only one-seventh of
the transmitted primary force for a primary frequency ratio
of 1-414.

Experience with engines mounted on rubber-in-shear has
shown the following results :—

Frequency Ratio. | Per Cent. Insulation. Remarks,

N/N, = 40 93 per cent. excellent
30 88 very good
25 81 good
20 67 fair
15 20 poor
14 none —

The satisfactory operation of high-speed, 4-stroke cycle
petrol engines in motor-cars is an illustration of the effective-
ness of a low-frequency engine mounting system in preventing
the transmission of high-frequency forces. This type of
engine has a large unbalanced secondary force, but is mounted
on a flexible support.

It should be noted, however, that when the engine is so
rigidly attached to its foundation that the natural frequency
of the engine on its mounting is greater than the frequency of
application of the primary force, the transmitted primary
will always be greater than the applied primary, assuming
that there is no damping. If there is a secondary force of
the same magnitude as the applied primary force, the magni-
tude of the transmitted secondary may be either greater or
smaller than that of the transmitted primary, depending on
the particular relationship between the operating speed and
the secondary critical speed. If the engine/mount frequency
is greater than the frequency of application of the secondary
forces both primary and secondary transmitted forces will be
dynamically magnified. For this reason the type of crankshaft
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used in 4-cylinder motor-car engines, No. 1 in Table 64, is
not popular for engines which have more or less rigid founda-
tions, and is generally replaced by a crankshaft with crankpins
spaced at equal angles of go° round the crankpin circle, No. 2
in Table 64, notwithstanding the fact that the firing impulses
are then uneven.

It is of interest to compare the relative magnitudes of a
force and a couple each having the same frequency of applica-
tion and each producing the same degree of vibration in the
structure. This can be done by equating the work done on
the structure by the force and couple respectively.

For a given amplitude of vibration the work done by a
force is proportional to the amplitude and is greatest when
the force is applied at an anti-node. The work done, and
therefore the vibratory disturbance, is theoretically zero when
the force is applied at a node. For a couple the work done is
a maximum when the couple is applied at a node and is pro-
portional to the slope of the deflection curve at the node.
The work done, and therefore the vibratory disturbance, is
theoretically zero when the couple is applied at an anti-node.

There is not much error in assuming that the deflection
curve is truly sinusoidal, in which case the greatest slope, i.e.
the slope at the node, is 2. = . afL.

Hence, for equal vibratory effects,

Ciz.m.afL)=F.a,
or C=(L)-F.

where C = couple in lbs.-ins.,
F = force in Ibs.,
L = wave-length of vibratory motion imparted to
structure, in inches,
a = amplitude of vibratory motion imparted to struc-
ture, in inches.

In the case of the fundamental mode of vibration of a shi;;’s
hull the wave-length of the vibratory motion of the hull is
usually greater than the total length of the ship. For example,
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in the case of a 400-ft. ship the wave-length for the funda-
mental mode of hull vibration will be about 5000 ins.

Hence, C= 528 =800.F,

i.e. a very large unbalanced couple would be required to pro-
duce the-same vibratory disturbance as a small unbalanced
force at the same frequency of application.

An engine with an unbalanced force is best placed at a
position in the structure which corresponds to a node when
the structure vibrates. Thus in the case of ships where the
nodes for the fundamental mode of vibration are usually located,
about }th to {rd the length of the vessel from each end, an engine
with unbalanced forces would be best placed near the stern of
the ship, as in oil tank steamers with machinery aft. In the
case of engines with unbalanced couples, on the other hand,
the best location for the engine is at an anti-node, i.e. amidships.
Hence, if the engines of a ship are placed amidships, unbalanced
forces should be small; if placed aft, unbalanced couples
should be small. These principles can also be applied to the
mounting of an aero engine.

To sum up, therefore, the following points should be kept
in mind when comparing engines from the point of view of
balance :—

(@) Provided the minimum r.p.m. for continuous operation
is greater than the natural frequency of the engine
on its mounting structure the vibratory effects of
an unbalanced secondary force or couple will certainly
be less than one-quarter the effect produced by an
unbalanced primary force or couple of the same
magnitude. Thus, in general, secondary unbalance
is much less objectionable than primary unbalance.

(8) A very large unbalanced couple is usually required to
produce the same vibratory disturbance as a small
unbalanced force of the same frequency. Thus, in
general, unbalanced couples are much less objection-
able than unbalanced forces.
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In other words, an engine with an unbalanced couple is
better than an engine with an unbalanced force, even if the
magnitude of the unbalanced couple is comparatively large
whilst that of the unbalanced force is comparatively small;
and an engine with an unbalanced secondary force or couple
is better than an engine with an unbalanced primary force or
couple of the same respective magnitudes, provided care is
taken in the design of the engine mount.

In this connection it is worth noting that the straight-eight,
4-stroke cycle engine of reference g in Table 64 has been used
in practice without causing any perceptible vibratory dis-
turbances, notwithstanding the comparatively large magnitude
of the unbalanced secondary couple.

In all multi-cylinder engines there are unbalanced forces
and couples of higher order than the second, but their magnitude
is so small and their frequency so high that they do not normally
cause any perceptible disturbances.

The following notes should be read in conjunction with
Table 64. All the arrangements listed have been used suc-
cessfully in practice. Throughout this table it is assumed
that the cylinder pitches are equal. In some cases an im-
provement in engine balance can be obtained by having un-
equal cylinder pitches. Some notes on this subject are given
by P. Cormac in an article in Engineering, 11th October, 1929,

p- 458.

Four-Stroke Cycle, Single-Acting, In-Line Engines.

Four-Cylinder.—No. 1 is used for high- and medium-speed
engines where the natural frequency of the engine on its mount-
ing is sufficiently below the frequency of the secondary un-
balanced force to avoid perceptible structural vibration from
this cause. It is used in all 4-cylinder, 4-stroke cycle motor-
car engines. It is unsuitable for main engines on board ship
because of starting and reversing difficulties, whilst if it is
used for marine auxiliary engines care must be taken to make
sure that the secondary unbalanced force will not be trans-
mitted to the hull, because the frequency of this force is too

VOL. 1.—33
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near the natural frequency of the engine mounting or other
parts of the hull structure. The latter remark also applies
where the starting and reversing difficulty is overcome by
fitting a clutch and reversing gear, or a reversible propeller.

No. 2 is used for direct reversing engines and also where
the secondary force of No. 1 is likely to cause perceptible
vibratory disturbances. There are many instances in practice
where engines built with crank arrangement No. 1 caused
such severe vibratory disturbances that secondary balancing
equipment or special engine mountings had to be incorporated
before the engines could be put into regular service.

No. 3 is of interest because -the principal unbalance is a
primary couple. It is not used for simple 4-cylinder aggregates
because of this comparatively large unbalanced primary couple,
but it is used in engine aggregates where the primary forces
can be balanced for each crank separately. In such cases the
engine as a whole possesses complete primary and secondary
balance. For example, in the case of an 8-cylinder, go® Vee-
engine the primary forces due to each pair of pistons operating
on each crankpin can be balanced by a rotating balance weight
attached to the crankwebs opposite each crankpin.

The principal torsional vibration characteristics of the
three arrangements are as follows :—

If the node is remote from the crankshaft, as in the case of
the one-node mode of vibration of a marine propeller drive
or of any transmission system in which there is great flexi-
bility between the engine and the driven machine, the only
totally unbalanced orders are the 2, 4, 6, etc., orders for arrange-
ment No. 1, and the 4, 8, 12, etc., orders for arrangement Nos,
2 and 3. All other harmonic orders are completely balanced
for arrangement No. 1, but for arrangement Nos. 2 and 3 all
the half orders are more or less unbalanced, the 1-5, 55, 9-5,
etc., and 25, 65, 10°3, etc., order vectors being large, and the
03, 45, 85, etc., and 35, 75, 115, etc., order vectors being
of medium magnitude.

If the node is situated near the end of the crankshaft, as
in the case of the one-node mode of vibration of an engine
close-coupled to an electrical generator, the totally unbalanced
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orders are the major orders, i.e. orders 2, 4, 6, etc., for No. 1
arrangement ; and orders 4, 8, 12, etc., for Nos. 2 and 3 arrange-
ments. In addition, the remaining orders in each case are more
or less unbalanced. With arrangement No. 1 the half-order
vectors are large and the odd order vectors are small ; with
arrangement No. 2 the remaining even order vectors and the
half-order vectors are large, whilst the odd order vectors are
small; with arrangement No. 3 the remaining even order
vectors are small and the half-order and odd order vectors are
large.

If the node is situated at the centre of the crankshaft, as
in the case of the one-node mode of vibration of an engine with
the driven unit situated at the centre of the cylinder aggregate ;
or with two identical driven units, one at each end of the
crankshaft ; or the two-node mode of vibration of a trans-
mission system, where the driven unit is separated from the
engine by a shaft or coupling of great flexibility, and where
the flywheel effect is distributed along the engine in the form
of crankweb balance weights or else is provided by a single
flywheel at the centre of the engine, or by two flywheels, one
at each end of the crankshaft, there are no totally unbalanced
harmonic orders for arrangement Nos. 1 and 3, whilst orders
2, 6, 10, etc., are totally unbalanced for arrangement No. 2.

In the case of No. 1 arrangement orders 2, 4, 6, etc., and
I, 3, 5 are completely balanced, so that the only orders re-
maining are the half orders and even these are partially
balanced. With arrangement No. 2 orders 4, 8, 12, etc., are
totally balanced; the remaining even order and the half-
order vectors are large, and the odd order vectors are small.
With arrangement No. 3 all even orders are completely bal-
anced, leaving only the odd and half-order vectors partially
unbalanced.

It is evident, therefore, that by so arranging the system
that the node is brought to the centre of the crankshaft a con-
siderable improvement in the torsional vibration character-
istics of the system can be achieved. This improvement is
most pronounced for No. 1, where all except the half orders
are completely cancelled. In No. 3 all except the half and odd
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orders are completely cancelled, whilst in No. 2 only orders
4, 8, 12, etc., are completely cancelled ; orders 2, 6, 10, etc.,
being totally unbalanced.

Five-Cylinder.—No. 4 is the crank arrangement usually
adopted for 5-cylinder engines, because it gives the best degree
of engine balance. There is only one practical firing order for
4-cycle engines of this type, namely, 1-2-4-5-3, and firing im-
pulses occur at even intervals of 144° throughout the 720°
working cycle. As already mentioned there are altogether
twelve different methods of arranging the five crankpins .
round thé crank circle, and these have already been given.
Many of them are ruled out by considerations other than
torsional vibration, but if for some reason or other the tor-
sional vibration characteristics corresponding to the above
generally accepted 5-cylinder crank arrangement are un-
satisfactory it might be worth while exploring the remaining
crank arrangements for a more favourable compromise
between the various design considerations,

If the node is remote from the crankshaft the only un-
balanced harmonic orders are the 2-5, 5, 75, etc., orders,
irrespective of the particular firing order employed.

If the node is near the end of the crankshaft minor orders
as well as major orders are unbalanced. With crank sequence
I-5-2-3-4 and firing order 1-2-4-5-3 (No. 4 in the table) the
05, 3, 5°5, etc., and the 2, 43, 7, etc., order vectors are large,
and the 1, 3-5, 6, etc., and 15, 4, 65, etc., order vectors are
small. If the crank sequence is altered to I-2-4-5-3 with
firing order 1-4-3-2-5, the 0-5, 3, 53, etc., and 2, 45, 7, etc.,
order vectors are small, and the remaining minor order vectors
are large. In both cases the 25, 5, 75, etc., order vectors
are completely unbalanced.

With crank sequence 1-2-4-5-3 the primary couple factor
becomes K, = 48, and the secondary couple factor becomes
K, = 045/, i.e. the unbalanced primary couple is increased
ten times compared with crank sequence 1-5-2-3-4.

With crank sequence 1-5-2-3-4 and firing order I-2-4-5-3
there are mo large vectors in the gaps between consecutive magor
orders.
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If the node is at the centre of the crankshaft there are no
totally unbalanced harmonic orders. With firing order 1-2-4-5-3
the vector sums are very nearly zero for orders 1, 35, 6, etc.,
and 1'5, 4, 6'5, etc. With firing order 1-4-3-2-5 the vector
sums are very nearly zero for orders 05, 3, 55, etc., and 2,
48, 7, etc.  In both cases orders 2-5, 5, and 4-3 are com-
pletely balanced. Thus for firing order 1-2-4-5-3 the only
unbalanced orders are the o-3, 3,°5'5, etc., and 2, 45, 7, etc.,
orders, whilst for firing order 1-4-3-2-5 the only unbalanced

_orders are the 1, 33, 6, etc., and 13, 4, 65, etc., orders.

Six-Cylinder.—No. 5 is the universally accepted crank
arrangement for 6-cylinder, in-line, 4-stroke cycle engines,
because it provides even firing intervals and complete primary
and secondary engine balance.

As already explained there are four different firing orders
corresponding to this crank arrangement, which, incidentally,
is the only balanced crank arrangement for a 6-cylinder, 4-cycle
engine. These four firing orders are as follows :—

3~6~5~4 (0f I-4~5~6-3-2)
4~6-5-3 (or 5~6-4~2)
5-3~62—4 (or I~4-2-6-3~5)
5~4~6~2-3 (or 1-3 4~5)

Firing order 1-5-3-6-2-4 is the one usually adopted, especially
for petrol engines, where it has the advantage of providing
a neat and efficient induction system. Thus when two car-
burettors are employed this firing order fulfils the conditions
that there should be no overlapping of the induction periods
of the cylinders drawing from one carburettor, and the in-
duction piping should be as short as possible.

This point is shown in Fig. 91 where the induction mani-
folding for two different firing orders is shown.

This firing order is also popular in engines where there is no
induction problem, because it ensures that no two adjacent
cylinders fire consecutively.

Where the node is remote from the engine the only un-
balanced harmonic orders, irrespective of the firing order, are
the 3, 6, 9, etc., orders, and these orders are totally unbalanced.

If the node is situated near the end of the crankshaft,
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however, minor orders as well as the 3, 6, 9, etc., major orders
are unbalanced.

Alterations of firing order only affect the half-order har-
monics, all other harmonics remain unaltered. With firing
order 1-5-3-6-2-4 the 1-5, 43, 75, etc., order vectors are com-
paratively large, and the other half-order vectors are compara-
tively small. With firing order 1-2-4-6-5-3 the 1'5, 45, 75,
etc., order vectors are comparatively small, and the other
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F16. 91.—Induction manifolds of petrol engines.
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half-order vectors are comparatively large. With this firing
order, therefore, there are mo large veciors in the gaps between
consecutive major orvders.

With firing order I-5-4-6-2-3 the vector sums for the two
groups of half orders have approximately the same magnitude.

The expedient of altering the firing order can therefore be
used in cases where unsatisfactory operation is due to the
presence of a large half order critical speed in the operating
range. For example, if a 4-5 order was found to be trouble-
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some with firing order 1-5-3-6-2-4, a cure might be provided by
changing to firing order 1-2-4-6-5-3, and so on.

If the node is situated at the centre of the crankshaft the
only unbalanced orders are the half orders, all others are com-
pletely cancelled. With firing order. 1-5-3-6-2-4 the 15, 4'5,
7'5, etc., order vectors are large, and the remaining half-order
vectors small.

With firing order 1-2-4-6-5-3 the 15, 4-5, '3, etc., order
vectors are small, and the remaining half-order vectors large.
With firing order 1-5-4-6-2-3 the vector sums for the two groups
of half orders have approximately the same magnitude. The
foregoing remarks show that the expedient of bringing the
node to the centre of the crankshaft is a very effective means
for clearing the speed range of critical zones.

If two cylinders are permitted to fire simultaneously, i.e.
firing order (1, 6)—(3, 4)-(2, 5), and the node is at the centre
of the crankshaft, there are no unbalanced orders. This
arrangement provides three impulses every two revolutions
spaced at 240° intervals, so that the torque variation would
be similar to that of a 3-cylinder engine.

Seven-Cylinder.—No. 6 is the usually accepted crank
sequence and firing order for a 7-cylinder engine, because it
provides the best degree of engine balance. There are, however,
360 different 7-cylinder crank arrangements, one alternative
being shown at No. 7 in the table.

This second arrangement, No. 7, is interesting because
only the secondary couple is unbalanced. Although the mag-
nitude of this couple is about ten times that of the secondary
couple of No. 6, the elimination of the primary couple in No. 7
might make this a smoother arrangement, bearing in mind
that secondary effects are less important than primary effects
from the point of view of structural vibration, provided there
is no possibility of resonance between the frequency of this
unbalanced couple and the natural frequency of any part of
the surrounding structure.

If the node is remote from the crankshaft the only un-
balanced harmonic orders are the 3-5, 7, 105, etc., orders,
irrespective of the particular firing order employed.



520 TORSIONAL VIBRATION PROBLEMS

1f the node is near the end of the crankshaft minor orders
as well as major orders are unbalanced. With crank sequence
1-6-3-4-5-2-7 and firing order 1-3-5-7-6-4-2, No. 6 in the table,
the 13, 3, 85, etc., and 2, 55, 9, etc., order vectors are very
nearly zero ; the 05, 4, 7°3, etc., and the 3, 6-5, 10, etc., order
vectors are large, and the 1, 45, 8, etc., and 2'5, 6, 93, etc,,
order vectors are small. With this crank sequence and firing
ovder, therefore, there are no large vectors in the gaps between
consecutive major orders. If the crank sequence is altered
to 1-5-6-2-3-7-4 with firing order 1-6-3-4-3-2-7, the 1, 4-3, 8,
etc., and 2-5, 6, g3, etc., order vectors are very nearly zero ;
the 05, 40, 75, etc,, and 3, 6'5, 10, etc., order vectors are
small, and the 1-3, 5, 85, etc., and 2, 55, 9, etc., order vectors
are large. In both cases the 35, 7, 10-5, etc., orders are com-
pletely unbalanced. It should also be noted that with crank
sequence I-5-6-2-3-7-4 the primary unbalanced couple factor
becomes K, =09, and the secondary unbalanced couple
factor becomes K, = 10/g, i.e. both primary and secondary
balance is worse than for arrangement No. 6 in the table.

In arrangement No. 7 in the table the 3-5, 7, 10°5, etc.,
orders are also completely unbalanced ; the 1, 4'5, 8, etc., and
2-5, 6, -5, etc., order vectors are small, the o5, 4, 75, etc.,
and 3, 6-3, 10, etc., order vectors are of medium magnitude, and
the 1-5, 5, 85, etc, and 2, 55, 9, etc., order vectors are large.

If the node is at the centre of the crankshaft there are no
totally unbalanced orders. For crank sequence I-6-3-4-5-2-7
and firing order 1-3-5-7-6-4-2 the only important unbalanced
orders are the 05, 4, 7°5, etc., and 3, 6-3, and 10, etc., orders,
the vector sums being small or zero for all other orders. For
crank sequence I-3-6-2-3-7-4 and firing order 1-6-3-4-5-2-7 the
only important unbalanced orders are the 1-5, 5, 85, etc., and
2, 55, 9, etc., orders, the vector sums being small or zero for
all other orders. For crank sequence I-6-5-3-2-7-4 and firing
order 1-5-2-4-6-3-7 the only important unbalanced orders are
the 1-5, 5, 83, etc, and 2, 5-5, 9, etc., orders, the vector sums
for all other orders being small or zero.

Eight-Cylinder.—There are three balanced crankshaft
arrangements for 8-cylinders, in-line, 4-stroke cycle engines,
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one of which is No. 8 in the table. This is the arrangement
usually adopted in practice, and consists of two 4-cylinder
shafts of the type shown at No. 2 in the table, but with the
crankpins arranged so that the four pins in one-half of the
8-cylinder shaft are the mirror images of the four pins in the
other half. This arrangement therefore provides the good
balance of No. 2 arrangement in each half of the crankshaft
whereby frame loading is minimised.

There are eight different firing orders corresponding to this
crank arrangement, the firing order quoted in the table being
one of the orders used in motor-car practice and having the
advantage that no two adjacent cylinders fire consecutively.

A list of the eight different orders has already been given
as well as a list of the three different balanced crank arrange-
ments.

From the construction of these lists it should not be difficult
to write out corresponding lists of firing orders for the other
two balanced crankshaft arrangements, if required.

If the node is remote from the crankshaft the only un-
balanced harmonic orders are the 4, 8, 12, etc., orders, all
others are completely balanced.

If the node is situated near the end of the crankshaft minor
as well as major harmonic orders are unbalanced. Like the
6-cylinder balanced crankshaft arrangement alterations of
firing order only affect the half-order harmonics, all other
orders are unaltered. With firing orders 1-3-2-4-8-6-7-5 and
1-3-2-5-8-6-7-4 the o-5, 45, 85, etc., and 3'5, 75, II'5, etc.,
order vectors are comparatively large, and the remaining
half-order vectors are comparatively small.

With firing orders 1-6-2-4-8-3-7-5 and 1-6-2-3-8-3-7-4 the
o5, 45, 835, etc.,, and 35, 5, I1'5, etc., order vectors are
comparatively small, and the remaining half-order vectors
are comparatively large.

The vector sums have approximately the same magnitudes
for the four groups of half orders in the case of the remaining
four firing orders.

If the node is at the centre of the crankshaft the only un-
balanced orders are the half orders, all others are completely
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cancelled. The relationship between the half-order vectors
with different firing orders is the same as already described
for the case when the node is situated near the end of the
crankshaft.

The expedient of bringing the node to the centre of the crank-
shaft is therefore a very effective method of clearing the speed
range of critical speeds.

The balanced crankshaft arrangement (1, 8)—(2, 7)—(4, 5)-
(3, 6) is also used in practice. The eight different firing orders
corresponding to this crank arrangement are as follows :—

1~2-4-3-8~7~5-6
T~24=5~8—7~5-3
1~2-5-3-8~7~4-6
1-2-5-6-8~7~4-3
I~jmim3=8=2~5~6
17468253
T~ij—5~3—8—2~4~6
1~7=5-6-8-2~4~3

As before, if the node is near the end of the crankshaft
minor as well as major orders are unbalanced. Changes of
firing order only affect the magnitudes of the half-order vectors,
all others remain unaltered.

Orders 4, 8, 12, etc., are completely unbalanced, as in the
case of No. 8 in the table; the 1, 5, 9, etc., and 3, 7, 11, etc,,
order vectars are small for this arrangement, whilst for No. 8 in
the table they are nearly zero ; the 2, 6, 10, etc., order vectors
are nearly zero for this arrangement, whereas they are small
for No. 8 in the table. The magnitudes of the half-order
vectors depend on the firing order employed.

With firing orders 1-2-4-6-8-7-5-3 and 1-2-5-6-8-7-4-3 the
05, 43, 835, etc., and 35, 75, 115, etc., order vectors are
comparatively large and the remaining half-order vectors are
comparatively small. With firing orders 1-7-4-3-8-2-5-6 and
1-7-5-3-8-2-4-6 the 0-5, 45, &3, etc., and 35, 75, 115, etc.,
order vectors are comparatively small, and the remaining half-
order vectors are comparatively large. The half-order vectors
for any given harmonic order have approximately the same
magnitudes for the remaining four firing orders.

Firing order I-2-4-6-8-7-5-3 1s of special interest because in
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this case there ave no large veciors in the gaps between consecutive
magor orders, a condition which cannot be obtained with crank
arvangement No. 8 in the table.

If the node is at the centre of the crankshaft the only un-
balanced orders are the half orders, all others are completely
cancelled. The relationship between the half-order vectors
with different firing orders is the same as already described for
the case when the node is near the end of the crankshaft.

A disadvantage of the type of crankshaft just described is
that although the engine as a whole possesses complete primary
and secondary balance there is a large unbalanced primary
couple in each half of the crankshaft which might be a source
of vibration, especially if the crankcase is weak. In aero
engines this might lead to an increase in weight due to the
necessity for additional stiffness in the crankcase.

The crankshaft arrangement shown at No. g in the table,
although not of the balanced type, has been used in practice
for straight-eight engines.

It is composed of two 4-cylinder shafts of the type shown at
No. 1 in the table, placed end to end. With this arrangement
there is a comparatively large unbalanced secondary couple,
in fact this secondary couple is the largest of any listed in the
table. In spite of this, however, engines of this type have
been successfully applied in practice without causing any
noticeable structural vibration. A great deal dépends, how-
ever, on the particular application and especially on whether
there is likely to be resonance between the frequency of the
couple and the natural frequency of any part of the surrounding
structure.

A more serious disadvantage of No. 9 arrangement is the
large centrifugal loading on the crankshaft journals between
Nos. 2 and 3 and Nos. 6 and 7 cylinders. Each of these journals
has to carry the combined centrifugal load of two cylinders.
In arrangement No. 8 the only journal carrying the combined
centrifugal loading of two cylinders is the journal between
Nos. 4 and 35 cylinders, ie. the journal at the centre of the
engine, where it is possible to provide increased length if
required.
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Like No. 8 changes of firing order only affect the half-
order harmonics, but unlike No. 8 the 2, 6, 10, etc., orders are
completely unbalanced when the node is situated at the centre
of the crankshaft, and for this condition the only completely
balanced orders are the 4, 8, 12, etc., orders.

In general, therefore, No. 8 crank arrangement is much
better than No. g. The chief virtue of No. ¢ is ease of manu-
facture, since the whole shaft can be forged as a flat forging
and then be given only one twist to form the crankshaft.

Nine-Cylinder.—No. 10 is the usually accepted crank
sequence and firing order for a g-cylinder engine, because it
provides the best degree of engine balance. There are, however,
altogether 20,160 different arrangements, and one alternative
which has very good balancing characteristics is shown at
No. 1r in the table. There is plenty of scope for exploring
o-cylinder arrangements in cases where the standard crank
sequence does not appear to be the best solution. No. 1o
arrangement in the table is, however, very good from torsional
vibration as well as the engine balance viewpoints. The only
important harmonic orders are the 4-5, 9, 13-5, etc., orders,
and even these are eliminated when the node is moved to the
centre of the crankshaft. Moreover, with this crank sequence
theve are no large vectors in the gaps between consecutive major
criticals.

Ten-Cylinder.—There are twelve balanced crankshaft
arrangements and sixteen different firing orders corresponding
to each arrangement.

The arrangement shown at No. 12 in the table is gener-
ally accepted and consists of two sets of five cranks of the
type shown at No. 4 in the table, arranged in mirror forma-
tion. In this way the balance of each half of the crankshaft
is as good as for the 5-crank arrangement shown at No. 4,
whilst the engine as a whole has no primary or secondary
unbalance.

The sixteen different firing orders, corresponding to the
crank arrangement shown at No. 12 in the table, are
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T=5~2~3—4—10-6-9-8~7
I-5~2~3=7=10-6~0~8~4
1~5~2~8—4~10-6-0~3-7
I-5-2-8-7-10-6-0-3~¢  *
T~5-g3—4—T0-6-2-87
I~5~g~3—7~10~6-2-8—4
1~5~0~8—4—10~6-2~3~7
1~5-9~8—7—10~6-2-~3~4
1~6~2-3~4~10~5~0~8—7
1-6-2-3~7~10~5-9~8~4
1-6~2~8~4~10~5-9~3—~7
1~6-2~8~7~10~5-9~3~4
1~6-g-3—4—10~5~2~8~7
1—6~9—3—7~10~5~2~8—4
1~6-9-8—~4~10-5-2-3~7
T—6-9—8~7~10~5~2~3~4

If the node is remote from the crankshaft the only un-
balanced orders are the 5, 10, 13, etc., orders, all others are
completely balanced.

If the node is situated near the end of the crankshaft minor
as well as major orders are unbalanced. Like a 6- and
8-cylinder balanced crankshaft arrangement alterations of
firing order only affect the half-order harmonics, all other
orders are unaltered.

With firing order 1-6-2-8-4-10-3-9-3-7 the only important
unbalanced orders are the 5, 10, 15, etc., major orders, and the
25, 7'5, 12°5, etc., minor orders, all others are small. If the
firing order is altered to 1-6-9-3-4-10-5-2- 8-7 the important
unbalanced orders are the 5, 10, 15, etc., major orders and the
15, 6-5, 115, etc., and 3-5, 85, 13-5, etc., minor orders, all
others are small. With ‘this alternative firing order the 2-3,
etc., orders are made small at the expense of bringing the
1-5, etc., and 3-3, etc., orders into prominence.

A further improvement in the disposition of the critical
speeds can be obtained by adopting a different crankshaft
arrangement, viz. (1, 10)—(3, 8)-(5, 6)~(7, 4)~(9, 2) and a firing
order 1-3-5-7-9-10-8-6-4-2. With this crank arrangement and
firing order the only important harmonic orders are the 5,
10, 15, etc., major orders, and the 03, 55, 10°5, etc.,-and 4-5,
9'5, 145, etc., minor orders, all other orders are small. In this
case there ave no large vectors in the gaps between comsecutive
magor orders.
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This improvement, however, is obtained at the expense of
a much increased unbalanced primary couple in each half of the
crankshaft. The engine, as a whole, has, of course, collective
primary and secondary balance, but the presence of a large
unbalanced primary couple in each half of the crankshaft
might cause trouble, due to frame deflection, unless balance
weights are attached to the crankwebs for the purpose of
minimising this unbalance, or unless a suitably stiffened crank-
case is employed. In either case the additional weight would
be a disadvantage in aero-engine practice.

If the node is at the centre of the crankshaft, the only un-
balanced harmonic orders are the half orders, all others are zero.
In No. 12 arrangement in the table with firing order 1-6-2-8-4-
10-5-9-3-7 the 23, 73, 12-5, etc., orders are totally unbalanced,
but for the other arrangements these orders are partially
balanced. As a general rule the half-order vectors are small,
and their magnitudes can be changed if desired by alterations
of firing order.

If two cylinders are permitted to fire simultaneously,
i.e. firing order (1, 10)}—(2, 9)~(4, 7)~(5, 6)~(3, 8) in the case of
No. 12 in the table, and the node is at the centre of the crank-
shaft, there are no unbalanced harmonic orders. This arrange-
ment provides five impulses every two revolutions, evenly
spaced at 144° intervals, so that the torque variation is similar
to that of a 5-cylinder engine. With simultaneous firing
therefore the engine should be free for all practical purposes
from torsional vibrational disturbances for that mode of vibra-
tion corresponding to a node at the centre of the crankshaft.
If other important modes of vibration exist, these must, of
course, be investigated separately.

Twelve-Cylinder.—There are sixty balanced crankshaft
arrangements of the type shown at No. 13 in the table, and
there are thirty-two different firing orders corresponding to
each crankshaft arrangement.

If the node is remote from the crankshaft the only un-
balanced harmonic orders are the 6, 12, 18, etc., major orders,
and these are totally unbalanced.

If the node is near the end of the crankshaft the major
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orders, i.e. orders 6, 12, 18, etc., are completely unbalanced,
and the only important minor orders are the half orders, all
others are small. Like the 6-, 8-, and 1o-cylinder balanced
crankshaft arrangements changes of firing order only affect the
half-order components, which implies that the relative magni-
tudes of the half-order vectors can be altered by changes of
firing order.

If the node is at the centre of the crankshaft the only
unbalanced harmonic orders are the half orders, all others are
completely balanced, irrespective of firing order. Changes of
fiting order will alter the relative magnitudes of the half-order
vectors.

In the arrangement shown at No. 14 in the table two
cylinders fire simultaneously, as indicated by the half-order
phase diagram. The crankshaft comsists of two 6-cylinder
balanced crankshafts, similar to No. 6 in the table but placed
end to end, so that one is the mirror image of the other. The
engine therefore possesses complete primary and secondary
balance.

Firing impulses occur at equal intervals of 120°

If the node is remote from the crankshaft the only un-
balanced harmonic orders are the major orders, viz. the 3, 6, 9,
etc., orders, and these orders are totally unbalanced. If the
node is near the end of the crankshaft the major orders are
again totally unbalanced, and in addition the half-order vec-
tors may be of appreciable magnitude. The relative magni-
tudes of the half orders can be altered by changing the firing
order, but such changes do not affect the remaining orders.

If the node is at the centre of the crankshaft there are no
unbalanced harmonic orders. This is because cylinders which
are symmetrically disposed relative to the centre of the crank-
shaft fire simultaneously, so that the vibratory energy imparted
by a cylinder on one side of the centre of the crankshaft is
neutralised by the vibratory energy imparted by the sym-
metrically disposed cylinder on the other side of the crankshaft
centre.

There is no special advantage in this simultaneous firing
arrangement when the node is not situated at the centre of the
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crankshaft, but in cases where the node can be brought to this
position simultaneous firing is a means of bringing about com-
plete cancellation of all the harmonic orders.

Complete cancellation of all the harmonic orders can also
be obtained with the 6-cylinder arrangement No. 5; the 8-
cylinder arrangement No. 8; the 10-cylinder arrangement
No. 12 ; and the r2-cylinder arrangement No. 13, by arrang-
ing the system so that the node occurs at the centre of the
crankshaft and by firing symmetrically disposed cylinders
simultaneously.

The advantage of the I2-cylinder arrangement, shown at
No. 14 in the table, is that the firing intervals in each half of
the crankshaft are even. The firing order in each half of the
crankshaft should be chosen so that a satisfactory disposition of
critical speeds is obtained for each half, considered as a separate
unit.

Two-Stroke Cycle, Single-Acting, In-Line Engines.—
The task of investigating the torsional vibration characteristics
of 2-stroke cycle engines is somewhat easier than in the case of
the g-stroke cycle type because 2-stroke engines have no half-
order components, and, moreover, the firing order is the same
as the crank sequence. The following notes should be read
in conjunction with Table 64.

Four-Cylinder.—No. 15 is the crankshaft arrangement
usually employed for z-cycle engines because it gives the best
degree of engine balance of any 4-crank arrangement.

No. 16 is interesting because with this arrangement
secondary couples are balanced. The primary couple, however,
is more than twice as great as in No. 15, and for this reason
No. 16 is usually only found in engine aggregates where the
primary forces are balanced for each line of parts separately,
or alternatively, where special arrangements are made to
eliminate the primary couple, for example, by using bob-
weights or pairs of oppositely rotating primary balancing
masses.

No. 16 is suitable for 4-cylinder opposed-piston engines,
for example, because the primary forces can be balanced for
each cylinder separately by adjusting the strokes of the two
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pistons in inverse proportion to the reciprocating weights of
the two sets of running gear. When this is done the engine is
in complete primary and secondary balance.

The principal torsional vibration characteristics of the two
arrangements are as follows :—

If the node is remote from the crankshaft the only
unbalanced harmonic orders are the 4, 8, 12, etc., orders, all
others are completely balanced.

If the node is near the end of the crankshaft orders 4, 8, 12,
etc., are totally unbalanced in both cases, and the minor orders
are also unbalanced. With firing order 1-3-2-4 the odd minor
order vectors are small and the even ones are large.

With firing order 1-3-4-2, i.e. No. 16, the odd minor order
vectors are large and the even ones small. In this case there
are no large vectors in the gaps between consecutive majov criticals.

If the node is at the centre of the crankshaft, the major
orders, i.e. orders 4, 8, 12, etc., are completely balanced in both
cases. With firing order 1-3-2-4 the even minors are completely
unbalanced, but the odd minor order vectors are small. With
firing order 1-3-4-z the even minor order vectors are completely
balanced, but the odd minor order vectors are large.

Firing order 1-3-4-2 with the crankshaft node at the centre
of the crankshaft is used for large opposed-piston marine oil
engines and by this means a speed range free from major
criticals is obtained. The remaining odd order minors are
suppressed by means of a detuning flywheel, to be described
later.

Five-Cylinder.—No. 17 is the arrangement usually adopted
in practice and this is the same crank sequence as for 4-stroke
cycle engines. The firing order, however, differs from that
for 4-stroke engines because in this case it must be the same as
the crank sequence, viz. I-5-2-3-4.

There are altogether twelve different crank arrangements,
and these have already been listed, but, as previously explained,
No. 17 in the table gives the best degree of engine balance.

If the node is remote from the crankshaft the major orders,
i.e. orders 5, 10, 15, etc., are the only unbalanced harmonics.

If the node is near the end of the crankshaft minor as well

VOL. L.—34
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as major orders are unbalanced. With firing order 1-5-2-3-4
the 1, 6, 11, etc., and 4, 9, 14, etc., order .vectors are small, and
the remaining minor order vectors are large.

f the node is at the centre of the crankshaft the 5, 10, 13,
etc., orders are completely balanced, and the 1, 6, 11, etc., and
4, 9, 14, etc., order vectors are small. There are no totally
unbalanced orders.

An alternative arrangement not shown in the table is crank
sequence and firing order 1-2-4-5-3. With this sequence the
primary couple factor is increased to K’ = 4-98, whilst the
secondary couple factor is reduced to K,”= 0'45/¢. This
large reduction of secondary couple makes this alternative
arrangement very attractive in engines where primary forces
are balanced for each cylinder separately. For this reason and
.also because the torsional vibration characteristics are favour-
able it is used in marine practice for large opposed piston oil
engines, a type in which it is easy to provide primary balance
for each cylinder separately.

If the node is remote from the crankshaft the only
unbalanced harmonics with firing order 1-2-4-5-3 are the
5, T0, 15, etc., orders, and these are totally unbalanced.

If the node is near the end of the crankshaft the 5, 10, 15,
etc., orders are still totally unbalanced, and in addition the
1, 6, 11, etc., and 4, 9, 14, etc., order vectors are large, but the
remaining vectors are small.

If the node is at the centre of the crankshaft the 5, 10, 15,
etc., orders are completely balanced, and the above relation-
ship exists between the remaining vectors. In the large
opposed-piston marine oil engines mentioned above the crank-
shaft node is located at the centre of the crankshaft, a tuning
flywheel being attached to the free end of the shaft for this
purpose. By this means a speed range free from major criticals
bas been achieved. With this sequence there are no lavge vectors
in the gaps between consecutive magjor criticals.

In the case of solid forged shafts for small high- and medium-
speed engines the two shaft arrangements just described would
be forged as flat forgings with crankpins Nos. 1, 3, and 5 in
line and crankpins Nos. 2 and 4 also in line but at 180° to the
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first three. The correct spacing of the pins would then be
obtained by twisting the journal sections through angles of
36° and 108°, ie. two journals twisted through 36° and the
other two through 108°. A crankshaft having the crank
sequence and firing order I-3-5-2-4 would be less severely
strained in manufacture because each journal would only
require twisting through 36° to form the complete shaft from
a flat forging of the shape just described.

With crank sequence I1-3-3-2-4, however, the primary
couple factor is K, = 262, and the secondary couple factor
is K = 4-25/g, i.e. the primary couple is more than five times
that for No. 17 in the table.

If the node is remote from the crankshaft the only
unbalanced harmonic orders with firing order 1-3-5-2-4 are
the 5, 10, 15, etc., orders.

If the node is at the end of the crankshaft the 5, 10, 15,
etc., orders are totally unbalanced, and all the remaining orders
are of appreciable magnitude. If the node is near the centre
of the crankshaft orders 35, ro, 13, etc., are completely balanced,
but all the remaining order vectors are of appreciable magni-
tude. It would appear therefore that firing order 1-3-5-2-4 is
inferior for both balancing and torsional vibration to No. 17
in the table, but this depends to some extent on the position
occupied by the critical speeds in relation to the speed range
of the engine. .

Six-Cylinder.—No. 18 is the crank arrangement usually
employed in practice because it gives the best degree of engine
balance, the only important unbalance being a small secondary
couple.

There are altogether sixty different 6-cylinder crank
sequences and firing orders, and for all of these if the node is
remote from the crankshaft -the only unbalanced harmonic
orders are the 6, 12, 18, etc., orders.

With firing order 1-3-3-4-2-6, i.e. No. 18 in the table, if
the node is near the end of the crankshaft, orders 6, 12, 18,
etc., are totally unbalanced ; the 3, 9, I5, etc., order vectors
are large, the remaining odd order vectors are small, and the
remaining even order vectors are of medium magnitude.
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If the node is at the centre of the crankshaft orders 3, g,
13, etc, are totally unbalanced; orders 6, 12, I8, etc.,
are completely balanced, the remaining odd order vectors are
small, and the remaining even order vectors are large.

No. 19 is sometimes favoured in practice because the
crankthrows are arranged in pairs at 180°, whereas in No. 18
the crankthrows are arranged in two sets of three at 120°.

No. 19 also possesses complete primary balance, but the
secondary couple is twice as large as in No. 18.

If the node is near the end of the crankshaft with firing
order 1-4-3-2-3-6, i.e. No. 19, orders 6, 12, 18, etc., are com-
pletely unbalanced; the remaining even order vectors are
large, and all odd order vectors are small.

If the node is at the centre of the crankshaft, there are no
totally unbalanced orders ; orders 6, 12, 18, etc., are completely
balanced ; the 3, 9, 15, etc., vectors are of medium magnitude,
the remaining odd order vectors are small, and the remaining
even order vectors are large.

The interest of No. 2o lies in the fact that secondary couples
are balanced. There is, however, an unbalanced primary
couple which renders this crank arrangement undesirable
except in cases where the primary forces can be balanced
for each crankthrow separately. For example, it is suitable
for 6-cylinder opposed-piston engines, where the primary forces
can be balanced by making the strokes of the pistons inversely
proportional to the respective reciprocating weights.

It is also suitable for a 12-cylinder, 2-stroke cycle go® Vee-
engine where the primary force, due to the reciprocating parts
of each pair of pistons acting on a common crankpin, can be
balanced by counterweights attached to the crankwebs opposite
the crankpin, )

_ If the node is near the end of the crankshaft, orders 6,
12, 18, etc., are totally unbalanced; the 3, 9, 13, etc., order
vectors are large, the remaining odd order vectors are of
medium magnitude, and the remaining even order vectors are
small.

If the node is at the centre of the crankshaft, orders 3, 9, 13,
etc., are totally unbalanced ; the remaining odd order vectors
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are of appreciable magnitude, but all even orders are totally
balanced.

Crank sequence and fiving ovder I-3-5-6-4-2, not shown in
the table, is inieresting because there ave no large vectors in the
gaps between comsecutive major ovders when the node is
neay the end of the crankshaft. 1If the node is at the centre of
the crankshaft the only unbalanced orders are the odd orders,
and these are small. The engine possesses complete secondary
balance, but the primary unbalanced couple factor is K, = 7-2,
so that this crank arrangement is unsuitable for high-speed
engines unless of a type with primary forces balanced for each
line of parts separately, such as opposed-piston engines with
unequal strokes, or 12-cylinder go° Vee-engines.

A 6-cylinder, 2-stroke cycle engine can also be made from
the 4-stroke cycle balanced crankshaft arrangement shown at
No. 5 in the table. When this is done two cylinders must
fire simultaneously, i.e. the firing order for the arrangement
shown at No. 3 in the table would be (1, 6)—(2, 5)~(3, 4)-

There is no advantage in doing this if the node is near the
end of the crankshaft, but if the node is at the centre of the
crankshaft complete cancellation of all harmonics is obtained.
This is because cylinders which are disposed symmetrically on
either side of the node fire simultaneously, so that the vibra-
tional energy imparted by a cylinder on one side of the crank-
shaft centre is neutralised by the vibrational energy imparted
by the symmetrically disposed cylinder on the other side of
the crankshaft centre.

By this means an engine aggregate is obtained which is for
all practical purposes free from torsional vibration due to
cylinder impulses and is also in complete primary and secondary
balance.

It must be borne in mind, however, that this is only true
for the mode of vibration which corresponds to a node at the
centre of the crankshaft. If other modes exist these must, of
course, be investigated.

Seven-Cylinder.—No. 21 is the arrangement usually
adopted in practice for both 4-stroke cycle and 2-stroke cycle
engines, since it gives the best degree of engine balance. There
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are altogether 360 different crank arrangements for a #-cylinder
engine, and in each case the only unbalanced harmonic orders,
when the node is remote from the crankshaft, are the 7, 14, 21,
etc., orders, which are totally unbalanced.

If the node is near the end of the crankshaft, with crank
sequence and firing order 1-6-3-4-5-2-7, No. 2I in the table,
the 7, 14, 21, etc., orders are totally unbalanced; the 4,
11, 18, etc., vectors are large, and the remaining vectors are
small.

If the node is at the centre of the crankshaft, the 7, 14, 21,
etc., orders are completely balanced, and the above relationship
exists between the remaining vectors.

No. 22 in the table is interesting because only the secondary
couple is unbalanced, which might provide a smoother engine
aggregate in certain cases, as already mentioned.

If the node is near the end of the crankshaft the 7, 14, 21,
etc., orders are totally unbalanced; the 2z, 9, 16, etc., and
5, 12, 19, etc., vectors are large, and the remaining vectors are
small.

If the node is at the centre of the crankshaft the ¥, 14, 21,
etc., vectors are completely balanced and the above relation-
ship exists between the remaining vectors.

Crank sequence I1-2-4-6-7-5-3, not showwn in the table, is
inberesting because theve are no large vectors in the gaps between
consecutive major criticals.

If the node is near the end of the crankshaft the 4, 14, 21,
etc., orders are totally unbalanced, the 1, 8, 15, etc., and 6,
13, 20, etc., order vectors are large, and the remaining vectors
are small.

If the node is at the centre of the crankshaft the 7, 14, 21,
etc., orders are completely balanced, and the above relation-
ship exists between the remaining vectors.

With this crank sequence the secondary couple factor is
only K.’ = 0'25/g, but the primary couple factor is K, =98
Due to the large primary couple this crank arrangement would
require large crankweb counterweights, especially in the case
of high-speed engines. It is therefore not a desirable arrange-
ment for aero engines where weight must be minimised.
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Eight-Cylinder.—The arrangements shown at 23, 24 and
25 in the table have all been used in practice. The first arrange-
ment has the smallest unbalanced primary couple, but there is
also an unbalanced secondary couple.

The other two arrangements have larger primary couples,
but the secondary couples are balanced. There are altogether
2520 different 8-cylinder crank arrangements, and in all cases
when the node is remote from the crankshaft the only un-
balanced harmonic orders are the 8, 16, 24, etc., orders.

With arrangement 23 in the table, if the node is near the
end of the crankshaft, the 8, 16, 24, etc., orders are completely
unbalanced ; the 3, 11, 19, etc., 5, I3, 21, etc., and 4, 12, 20,
etc., order vectors are large, and the remaining vectors are
small. If the node is at the centre of the crankshaft the
8, 16, 24, etc., orders are completely balanced, and the foregoing
relationship exists between the remaining vectors.

With the arrangement shown at 24 in the table, if the node
is near the end of the crankshaft the 8, 16, 24, etc., vectors are
completely unbalanced ; the 4, 12, 20, etc., vectors are large,
and the remaining vectors are small or moderate.

If the node is at the centre of the crankshaft the 8, 16, 24,
etc., orders are completely balanced ; the 4, 12, 20, etc., vectors
are completely unbalanced, and the remaining vectors are small
or moderate.

With the arrangement shown at 25 in the table, if the node
is near the end of the crankshaft the 8, 16, 24, etc., vectors are
completely unbalanced ; the 3, 11, 19, etc., and 5, 13, 2T, etc,,
vectors are large, and the remaining vectors are small or
moderate. If the node is at the centre of the crankshaft the
8, 16, 24, etc., orders are completely balanced, and the above
relationship exists between the remaining vectors.

Crank sequence and firing order I-2-4-6-8~7-5-3 is of interest
because there ave wo large vectors in the gaps between consecutive
magor orders. This arrangement is not shown in the table.
If the node is near the end of the crankshaft the 8, 16, 24, etc.,
orders are completely unbalanced; the 1, 9, 17, etc,, and 7,
15, 23, etc., order vectors are large, and the remaining vectors
are small.
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If the node is at the centre of the crankshaft the only
unbalanced orders are the odd orders, and of these the 1, g
17, etc., and 7, 15, 23, etc., order vectors are large, and the
remainder are small.

There is no unbalanced secondary couple with this crank
sequence, but the unbalanced primary couple factor is
K, =12-9. This large unbalanced pnmary couple is a dis-
advantage especially in high-speed engines.

An 8-cylinder, 2-stroke cycle engine can also be made from
any of the 4-stroke cycle engine balanced crankshaft arrange-
ments, for example, No. 8 in the table. When this is done
two cylinders must fire simultaneously. Thus, if the arrange-
ment shown at No. 8 in the table is adopted the firing order for
the 2-stroke cycle engine would be (1, 8)-(3, 6)-(2, 7)~(4, 5)-

There is no advantage in doing this, however, if the node is
near the end of the crankshaft, because although the engine
possesses complete primary and secondary balance, the crank-
shaft must be stronger to withstand the double impulses and
there are only four main torque impulses per revolution instead
of eight.

If, however, the node is at the centre of the crankshaft,
there are no unbalanced harmonic orders, because cylinders
which are disposed symmetrically on either side of the node
fire simultaneously, so that the vibrational energy imparted
by a cylinder on one side of the centre of the crankshaft is
neutralised by the vibrational energy imparted by the sym-
metrically disposed cylinder on the other side of the centre of
the crankshaft. This arrangement therefore provides an engine
which is for all practical purposes free from torsional vibration
due to cylinder impulses and is also in complete primary and
secondary balance.

It must, of course, be borne in mind that this is only true
for the mode of vibration which corresponds to a node at the
centre of the crankshaft. If other modes of vibration exist,
these must be investigated separately.

Nine-Cylinder.—Nos. 26 and 27 are the arrangements
usually adopted in practice because they provide the best degree
of engine balance.
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There are altogether 20,160 different crank arrangements,
and in all cases, if the node is remote from the crankshaft, the
only unbalanced harmonic orders are the g, 18, 27, etc., orders.

If the node is near the end of the crankshaft the g, 18, 27,
etc., orders are completely unbalanced, and all other orders are
partially unbalanced. The relative magnitudes of the various
orders can easily be determined by drawing the phase diagrams
and evaluating the various vector summations.

If the node is at the centre of the crankshaft orders g, 18,
and 27 are completely balanced, leaving only the remaining
orders partially unbalanced.

Crank sequence and firing ovder 1-2-4-6-8-9-7-5-3, not shown
in the table, is of inferest because theve ave no large vectors in
the gaps between consecutive magjor ovders.

With this crank sequence the secondary couple factor is
K,/ = 019/, and the primary couple factor is K, = 16-2.
The large primary couple renders this crank arrangement
undesirable.

Ten-Cylinder.—There are altogether 181,440 different 10-
cylinder, 2-stroke crank arrangements, and in all cases the
only unbalanced orders are the 10, 20, 30, etc., when the node
is remote from the crankshaft.

The arrangement shown at No. 28 in the table is one which
provides complete primary balance of the engine and leaves
a comparatively small secondary couple unbalanced.

If the node is near the end of the crankshaft the 1o, 20, 30,
etc., orders are completely unbalanced, and in addition the
remaining orders are partially unbalanced.

If the node is at the centre of the crankshaft the 10, 20, 30,
etc., orders are completely balanced, but the 5, 13, 25, etc.,
orders are completely unbalanced. The remaining orders are
partially unbalanced.

Crank sequence No. 28 gives large vector summations for
the 5, 135, 25, etc., orders when the node is near the end or
at the centre of the crankshaft. These can be considerably
reduced by adopting crank sequence I-7-8-3-4-10-3-2-9-6, not
shown in the table, but at the expense of introducing an
unbalanced primary couple. The primary couple factor is
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K, £ 206, and there is also an unbalanced secondary couple
having a factor K’ = 0-73/g.

A 1o-cylinder, 2-stroke engine can also be made from any
of the ro-cylinder 4-stroke cycle balanced crankshaft arrange-
ments, for example No. 12, in the table. When this is done two
cylinders must fire simultaneously, the firing order for a 2-
stroke cycle engine with No. 12 crank arrangement being
(z, 0)~(5, 6)~(2, 9)~(3, 8)~{4, 7).

There is no advantage in doing this if the node is near the
end of the crankshaft, but if the node is at the centre of the
shaft complete cancellation of all harmonic orders is obtained,
as already explained.

Thus an engine is provided which is free for all practical
purposes from torsional vibration disturbances due to engine
impulses, and which, moreover, is in complete primary and
secondary balance.. It must be borne in mind, of course, that
this is true only for the mode of vibration corresponding to
a node at the centre of the crankshaft. If other important
modes exist these must be investigated separately.

Two-Stroke Cycle, Double-Acting, In-Line Engines.—
When investigating the torsional vibration characteristics of
double-acting engines it is convenient to combine the tangential
effort diagrams for the upper and lower sides of the piston
before making an harmonic analysis.

The harmonic analysis of this combined tangential effort
diagram then gives the values of the sine and cosine com-
ponents for one cylinder and these, in turn, can be combined
with any important inertia or other corrections to obtain the
resultant harmonic components for one cylinder. In other
. words, once the harmonic components are determined for the

combined effect of the upper and lower sides of the piston of a
double-acting engine, these can be employed in all subsequent
calculations exactly as though the engine was of the single-
acting type. .

If the tangential effort diagrams for both sides of the piston
of a double-acting engine were identical, the instantaneous
tangential effort for each cylinder would be the sum of two
identical expressions differing in phase by 180°. The odd
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harmonics would therefore cancel, leaving only the even orders
to be considered. In practice, however, the two expressions
are not identical, due to the influence of the connecting and
piston rods and the different combustion characteristics be-
‘tween the upper and lower sides of the piston. The odd
harmonics cannot therefore be neglected in practice, although
they are of much smaller magnitude than the adjacent even
order harmonics (see Table 60).

Four-Cylinder.—The crank arrangements used for single-
acting, 2-stroke cycle engines can also be used for double-
acting engines of this type. No. 15 in the table is the arrange-
ment usually employed, because it provides the best degree of
engine balance. It should be noted that with any of the
2-stroke cycle, single-acting crankshaft arrangements shown
in the table the top side of one piston of a double-acting engine
fires simultaneously with the bottom side of another piston.
Thus, with crankshaft arrangement No. 15, the firing order is
(1T, 2B)—(3T, 4B)—(2T, 1B)-(4T, 3B), i.e. there are four impulses
per revolution at equal intervals of go° the same as for a single-
acting engine.

The relative magnitudes of the vector sums for the dif-
ferent harmonic orders are determined in the same way as for
single-acting engines, so that the remarks already made in
connection with 4-cylinder, 2-stroke cycle, single-acting engines
also apply here. It should be borne in mind, however, that the
odd order harmonic components are relatively smaller than
the adjacent even order harmonic components in the case of
double-acting engines. This implies that odd order critical
speeds are in general less objectionable than the even order
criticals.

Thus with crank arrangement No. 16, if the node is situated
at the centre of the crankshaft, the only unbalanced harmonic
orders are the odd orders, and since the magnitudes of the odd
order harmonic components for a double-acting engine are
smaller than for a single-acting engine the torsional vibration
characteristics of the double-acting type should be more
favourable from this point of view. Unfortunately a dis-
advantage of crank arrangement No. 16 is the somewhat large
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unbalanced primary couple, which could be reduced con-
siderably by employing crankweb balance weights, and could
be eliminated if reciprocating bob-weights were also employed.
It should be borne in mind, however, that the addition of
balance weights to the oscillating system lowers the natural
frequency of torsional vibration, and this might be undesirable
if it causes an important critical speed to be brought into the
running speed range. The size of the balance weights can be
minimised by using only two balancing masses attached to
the endmost crankwebs in correct phase relationship with the
crankpins.

No. 29 is a crank arrangement which avoids simultaneous
firing of the top side of one piston with the bottom side of
another. With this arrangement there are eight impulses per
revolution evenly spaced at 45° intervals.

If the node is remote from the crankshaft the only totally
unbalanced harmonics are the 8, 16, 24, etc., orders. All the
remaining even order vectors are completely cancelled, and
the odd order vectors are partially cancelled.

Since the odd order harmonic components are compara~
tively small the problem of dealing with the odd order criticals
should not, in general, be serious.

If the node is near the end of the crankshaft, the 8, 16, 24,
etc., orders are completely unbalanced, and the remaining
even orders and the odd orders are usually small.

If the node is at the centre of the crankshaft there are no
completely unbalanced orders ; the 4, 12, 20, etc., orders and
the 8, 16, 24, etc., orders are completely balanced, leaving
only the remaining even orders and the odd orders as possible
sources of torsional vibration.

A disadvantage of this crank arrangement is the presence
of a somewhat large primary force and primary couple, but
these can be considerably reduced by employing balance
weights if this can be done without lowering the natural fre-
quency of the system to an undesirable extent.

No. 30 in the table is another crank arrangement which
provides eight firing impulses evenly spaced at 45° intervals.
The torsional vibration characteristics of an engine with this
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crank sequence are somewhat similar to those of an engine with
No. 29 crank arrangement. The principal difference between
the two arrangements is that with No. 30 the only completely
balanced orders when the node is at the centre of the crankshaft
are the 8, 16, 24, etc., orders. In this respect, therefore, No.
30 is inferior to No. 29. No. 30 is superior to No. 29, however,
from the point of view of engine balance, because with No. 30
the unbalanced primary couple is considerably smaller, and
the unbalanced secondary couple is also somewhat smaller.

An advantage of both No. 29 and No. 30 is that the 4th
order torque reaction force and couple on the engine frame is
completely balanced, whereas with any of the z-stroke cycle,
single-acting engine crankshaft arrangements, e.g. Nos. 15 and
16 in the table, the 4th order torque reaction force on the
frame is completely unbalanced. This is important in relation
to engine frame vibration.

Five-Cylinder.—Any of the 5-cylinder crank arrangements
employed for single-acting engines can also be used for the
double-acting type. No. 31 in the table shows the arrange-
ment usually employed, because it provides the best degree
of engine balance. The use of an odd number of cylinders for
double-acting engines automatically avoids simultaneous firing
of the top side of one piston with the bottom side of another
piston. Thus in a 5-cylinder, double-acting engine there are
ten firing impulses per revolution evenly spaced at 36° intervals.

As already explained, since the harmonic components are
the resultant values for the combined effect of the top and
bottom sides of each piston, the vector summations are carried
out in precisely the same way as for a single-acting engine.

The remarks already made in connection with s-cylinder,
2-stroke cycle, single-acting engines are therefore applicable
to double-acting engines having the same crankshaft arrange-
ments, bearing in mind, however, that the odd order harmonic
components of the double-acting engine combined tangential
effort diagram are relatively small.

Six-Cylinder.—Any of the crank arrangements normally
employed for single-acting, 6-cylinder, 2-stroke cycle engines
can also be used for the double-acting type. No. 18 in the
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table is the crank arrangement usually employed because it
provides the best degree of engine balance. With this arrange-
ment the top side of one piston fires simultaneously with the
bottom side of another piston, so that there are six impulses
per revolution at even intervals of 60°. The double-acting
engine firing order with this crank arrangement is (1T, 4B)-
(5T, 2B)~(3T, 6B)-(4T, 1B)~(2T, 5B)-(6T, 3B).

The remarks already made in connection with 2-stroke cycle,
single-acting engines also apply to double-acting engines using
the same crankshaft arrangements, bearing in mind, however,
that the odd order harmonic components are relatively small.

No. 32 in the table is a 6-cylinder crank arrangement with
complete primary and secondary force and couple balance.
This arrangement is the same as the 4-stroke cycle engine
crank arrangement No. 5. In this case simultaneous firing of
the top sides of two pistons occurs alternately with simul-
taneous firing of the bottom sides of two other pistons, so that
here also there are six impulses per revolution equally spaced
at intervals of 60°

If the node is remote from the crankshaft the only
unbalanced harmonic orders are the 3, 6, 9, etc., orders, and
these are completely unbalanced.

It should be borne in mind, however, that the odd order
harmonic components are relatively small. If the node is
near the end of the crankshaft the 3, 6, g, etc., orders are com-
pletely balanced, and the remaining orders are nearly com-
pletely balanced. If the node is at the centre of the crankshaft,
all orders are completely balanced, so that for all practical
purposes the engine is free from torsional vibration due to
engine impulses. This remark is only true, of course, for the
mode of vibration corresponding to a node at the centre of
the engine, and for identical combustion characteristics in all
cylinders.

No. 33 in the table is a crank arrangement which avoids
simultaneous firing of the top side of one piston with the
bottom side of another piston. With this arrangement there
are twelve impulses per revolution evenly spaced at intervals
of 30°
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If the node is remote from the crankshaft the 12, 24, 36,
etc., orders are completely unbalanced, and the 3, 15, 27, etc.,
and 9, 21, 33, etc., orders are partially unbalanced. All other
orders are completely balanced. It should be borne in mind
that for the odd unbalanced orders the harmonic components
are relatively small. If the node is near the end of the crank-
shaft the 12, 24, 36, etc., drders are completely unbalanced ;
the 3, 15, 27, etc., and 9, 21, 33, etc., order vectors are large,
and the remaining vectors are small or moderate.

If the node is at the centre of the crankshaft the 12, 24, 36,
etc., orders are completely balanced ; there are no completely
unbalanced orders; the 3, 13, 27, etc., and 9, 21, 33, etc.,
order vectors are large, and the remaining vectors are small or
moderate. With this crank arrangement there are unbalanced
primary and secondary couples, the primary couple being
particularly undesirable. It could be considerably reduced,
however, by employing crankweb balance weights, the size of
which could be minimised by using only two balancing masses
attached to the endmost crankwebs in correct phase relationship
with the crankpins.

An advantage of this crank arrangement is that the 6th
order torque reaction forces and couples acting on the engine
frame are completely balanced, whereas with any of the 2-stroke
cycle, single-acting arrangements, e.g. Nos. 18, 19, and 20 in
the table, the 6th order torque reaction forces and couples are
completely unbalanced. This is important in relation to frame
vibration.

Nos. 34 and 33 are similar to No. 33 and have somewhat
simijlar torsional vibration characteristics. An advantage of
these two alternative arrangements is that the magnitude of
the unbalanced primary couple is considerably reduced, No. 33
being the best arrangement in this respect. With No. 35 the
unbalanced primary couple could be reduced to negligible
proportions by quite small balance weights attached to the
endmost crankwebs.

With both these arrangements the 6th order torque reaction
forces on the engine frame are completely balanced, but the
torque reaction couples are unbalanced. In general, however,
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an unbalanced couple is less important from the point of view
of frame vibration than an unbalanced force.

Seven-Cylinder.—Any of the 7-cylinder crank arrange-
ments employed for z-stroke cycle, single-acting engines can
also be used for the double-acting type. No. 36 in the table
is the arrangement usually employed in practice because it
provides the best degree of engine balance. As already men-
tioned the use of an odd number of cylinders for a double-
acting engine automatically avoids simultaneous firing of the
top side of one piston with the bottom side of another piston.
In the case of 7-cylinder engines there are fourteen impulses
per revolution at equal intervals of 25714°. The remarks
already made in connection with the torsional vibration char-
acteristics of 7-cylinder, 2-stroke cycle, single-acting engines
are applicable to double-acting engines having the same crank-
shaft arrangements, bearing in mind, however, that the odd
order harmonic components of the double-acting engine com-
bined tangential effort diagram are relatively small.

Eight-Cylinder.—Any of the crank arrangements normally
employed for 2-stroke cycle, single-acting engines can also be
used for the double-acting type. With these arrangements
the top side of one piston fires simultaneously with the bottom
side of another piston, so that there are eight firing impulses
per revolution equally spaced at intervals of 45°. For example,
No. 38 in the table is the same crank arrangement as No. 23,
and in the case of a double-acting engine the firing order is
(T, 6B)-(8T, 3B)~(zT, 4B)-(sT, 7B)~(6T, 1B)-(3T, 8B}
(4T 2B)-(7T, 5B).

The torsional vibration characteristics of these crank
arrangements are the same as already described for 8-cylinder,
2-stroke cycle, single-acting engines, bearing in mind, however,
that the odd order harmonic components of the double-acting
engine combined tangential effort diagram are relatively small,

No. 39 in the table is an arrangement in which the top sides
of two pistons and the bottom sides of two other pistons fire
simultaneously, so that there are four impulses per revolution
evenly spaced at go° intervals. The only interest of this
arrangement is that there are no unbalanced harmonic orders
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when the node is at the centre of the crankshaft. This arrange-
ment therefore provides an engine which is free for all practical
purposes from torsional vibrational disturbances, and which is
in complete primary and secondary balance. These remarks
are only true, of course, for the mode of vibration corresponding
to a node at the centre of the crankshaft. If other modes exist
these must be investigated separately.

Nine-Cylinder.—Any of the g-cylinder crank arrangements
employed for 2-stroke cycle, single-acting engines can also be
used for the double-acting type. No. 40 in the table is the
arrangement usually employed because it gives the best degree
of engine balance. In common with all double-acting engines
having an odd number of cylinders simultaneous firing of the
top side of one piston with the bottom side of another piston
is automatically avoided. In the case of g-cylinder, double-
acting engines there are eighteen impulses per revolution
evenly spaced at equal intervals of 20°. The remarks already
made in connection with the torsional vibration character-
istics of g-cylinder, 2-stroke cycle, single-acting engines are
applicable to the double-acting type, bearing in mind, however,
that the odd order harmonic components of the double-acting
engine tangential effort diagram are relatively small.

Ten-Cylinder.—Any of the 1o-cylinder arrangements nor-
mally employed for 2-stroke cycle, single-acting engines can
also be used for the double-acting type. With these arrange-
ments the top side of one piston fires simultaneously with the
bottom side of another piston, so that there are ten impulses
per revolution evenly spaced at intervals of 36°.

For example, the double-acting engine firing order for the
crank arrangement shown at No. 28 in the table is (1T, 6B)-
(x0T, 3B)-(2T, 7B)-(8T, 3B)~(4T, 9B}-(6T, 1B)-(5T, 10B)-
(7T, 2B)~(3T, 8B)~(oT, 4B).

The remarks already made in connection with the torsional
vibration characteristics of ro-cylinder, 2-stroke cycle, single-
acting engines are applicable to the double-acting type, bearing
in mind, however, that the odd order harmonic components of
the double-acting engine tangential effort diagram are relatively
small.

VOL. .—35
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Alternatively, any of the ro-cylinder arrangements normally
used for 4-stroke cycle, single-acting engines can also be em-
ployed for the double-acting type. With these arrangements
simultaneous firing of the top sides of two pistons alternates
with simultaneous firing of the bottom sides of two other pistons,
so that again there are ten firing impulses per revolution evenly
spaced at intervals of 36°.

For example, No. 42 in the table is the same crank arrange-
ment as No. 12.

With this arrangement, if the node is remote from the crank-
shaft, the only unbalanced orders are the 5, 10, 15, etc., and
these are completely unbalanced.

If the node is near the end of the crankshaft, the 5, 10, 15,
etc., orders are completely unbalanced, but the remaining
order vector summations are small.

If the node is at the centre of the crankshaft there are no
unbalanced orders. This arrangement therefore provides an
engine which is free for all practical purposes from torsional
vibrational disturbances when the node is at the centre of the
crankshaft, and which is in complete primary and secondary
balance. This is only true, of course, for that mode of vibration
corresponding to a node at the centre of the crankshaft.

If other important modes exist these must be investigated
separately.

The foregoing discussion is by no means exhaustive, although
it does contain most of the crankshaft arrangements commonly
employed in practice. It will be shown in the mext chapter
that the phase and vector diagrams can be used to provide a
quick estimate of the relative magnitudes of torsional vibration
at the various critical speeds, by which means the relative
merits of different crankshaft arrangements for a given engine
aggregate can be rapidly assessed.

The device of permitting simultaneous firing of cylinders,
which are symmetrically disposed relative to the node, has
been used very successfully in practice for multi-cylinder
engines in cases where the necessary symmetrical arrangement
of the masses and elasticities can be made.

It may be of interest to set down the firing orders which
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correspond to no large resultant vector summations in the
gaps between consecutive major criticals.

In 4-stroke cycle engines the major criticals are those whose
order numbers are integral multiples of half the number of
cylinders for all crank arrangements which provide even firing
intervals over the two revolutions occupied by the working
cycle. In 2-stroke cycle engines the major criticals are those
whose order numbers are integral multiples of the number of
cylinders for all crank arrangements which provide even firing
intervals during each revolution of the crankshaft, i.e. for all
crankshafts having the crankpins evenly spaced round the
crank circle. The major orders for engines having different
numbers of cylinders are given in column 6 of Table 64. The
following arrangements therefore ensure a disposition of critical
speeds in which the vector summations at the middle of the
gaps between consecutive major criticals are small, thus
providing the widest possible speed range free from large
amplitude disturbances.

This quiet zone is naturally wider the greater the number of
cylinders, due to the wider spacing between consecutive major
criticals.

CRANKSHAFT ARRANGEMENTS WHICH HAVE NO LARGE VECTOR SUMMATIONS'
IN THE GaPS BETWEEN CONSECUTIVE MaJOR CRITICALS.
Four-Stroke Cycle Engines.

Bt | Major Criticals. Firing Order. Crank Arrangement,

5 125, 5°0, 7°5, etc. | I-2-4-5-3 1-5-2-3—4

6 (3,69, etc. 1-2-4~6-5-3 (1, 6)—(2, 5)—(3, 4)

7 135, 70, 10°5, etc. | 1-2—4-6-7-5-3 I—7—2-5—4—3~6

8 |4, 8, 12, ete. 1-2—4~6-8—7-5-3 (1, 8)~(2, 7)~(4, 5)-(3, 6)-

9 |45, 90, 13°5, ete. 4~6-8—9-7-5-3 9—2~7-4—5-6-3-8

10 |5, 10, I35, etc. 1-2-4-6-8-10-9-7- | (1, 10)—(2, O)—(4, 7)~
5-3 (6, 5)-(8, 3)

II |55, 11, 163, etc. 4 1-9— | -1 4~7~6~5

: 7-5-3 -10

12 |6, 12, I8, etc. 1-2-4~6-8-10-12-11~| (1, 12)—(2, 11)-(4, 9)—

9-7-5-3 (6, 7)~(5, 8)~(3, 10)

(Note.—In 4-stroke cycle engines the crank sequence differs

from the firing order.)
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Two-Stroke Cycle Engines.

No. of Cylrs. Major Criticals, Firing Order and Crank Sequence.
5 5, 10, 15, etc. I-2-4~5-3
6 6, 12, 18, etc. I-2=4~6-5-3
7 7, 14, 21, etc. 1-2-4-6-7-5-3
8 8, 16, 24, etc. 1-2-4-6~8-7-5-3
9 9, 18, 27, etfc. 1~2-4-6-8-9-7-5-3
b 10, 20, 30, etc. 1-2-4-6-8-10-9~7-5-3
1z 11, 22, 33, ete. 1-2—4~6-8~10-11-9~7—5~3
12 12, 24, 36, etc. 1-2-4~6-8~10-12-11-9~7~5-3

(Note.—In z-stroke cycle engines the crank sequence and
firing order are identical.)

The 4-stroke cycle crankshafts tabulated are also excellent
from the point of view of engine balance. In engines with an
even number of cylinders there is complete balance of primary
and secondary forces and couples, whilst in engines with an
odd number of cylinders there are no unbalanced primary
or secondary forces, and the unbalanced primary couple is

In 2-stroke cycle engines, however, the crank arrangements
-are not ideal from the point of view of engine balance. Primary
and secondary forces are, of course, balanced, but there is a
very large unbalanced primary couple in all cases. For this
reason the crank arrangements given in Table 64 are usually
adopted in practice for 2-stroke cycle engines,

Vee-Engines.—In this type of engine there are two pistons
operating on each crankpin. As a rule one piston is connected
to the common crankpin by a forked rod and the other by a
plain rod, as already described. Alternatively, an arrange-
ment employing two identical connecting rods, arranged side-
by-side on the common crankpin, with the lines of stroke of the
two pistons slightly offset, is popular in automobile practice.
Articulated rods are not commonly employed in Vee-engines.

A multi-cylinder engine of this type consists therefore of
two banks of cylinders, the lines of stroke of the two banks
being inclined with an included angle § which is called the
Vee-angle. In the following discussion each pair of cylinders
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whose lines of stroke occupy the same plane transversely to the
longitudinal axis of the crankshaft will be referred to as a row
of cylinders. Thus a Vee-engine always has two banks of
cylinders but may have any number of rows.

The types usually found in practice have four, six, or eight
rows of cylinders, ie. four-, six-, or eight-throw crankshaits,
and it is possible to choose the Vee-angle so that there are
equal firing intervals between the cylinders, although this is
not regarded as an absolutely essential requirement.

Since the working cycle of a 4-stroke engine. occupies 720°
the Vee-angle for a 4-stroke cycle Vee-engine, having equally
spaced firing intervals, is obtained as follows :—

Let m = number of cylinders per bank, i.e. total number

of cylinders = 2zm.

Then 8=?ﬂg, or (Zﬁ)+7—22>, or (@—kz——)sﬂ—tzg),etc.

2m - m 2m
———3—69, or 3 % 360 or 5——)&@, etc.
m m m

Furthermore, for equal firing intervals between the cylinders
in each bank, the angular spacing of the crankpins, ¢, is
Y = 720[m, and this is also the firing interval between
the cylinders in each bank.

The firing interval between the two cylinders of one row is
o=138 or (360—38), and (3 360) or (720 — §),
where 8 is the Vee-angle,

Finally, the interval between consecutive firing impulses
for the whole engine is 360/m degrees.

The corresponding expressions for 2-stroke cycle engines,
where the working cycle occupies one revolution, are
8 = Vee-angle for even firing = o ,or 3—X—180, or 5——@, et

" m "
_ crank angle and firing _ 360

$="interval per bank  m’
o ==firing interval per row =g,

.y
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and the interval between consecutive firing impulses for the

whole engine is 180/# degrees.
Table 65 gives a summary of the possible arrangements of
4~and 2-stroke cycle Vee-type engines with equal firing intervals

TABLE 65.

MuLtt-CyLisper VEE-TYPE ENGINES, VEE AND CRANK ANGLES FOR
Evex FIrING,

T'&ra/ [ 4-stoke cycle 2- Stroke Ccle
i NF‘,_% |
3=
2 g )
(m=1) -
* o
(m=2)
5 o
(m=3)
§=50° | §=180"
8
90. /Vd\
(m=+4) F T
, AT
72" <
=g LAna
" G A
60 W
kﬂl“ﬁ) 5 '%‘/‘
| Even firing is also . .
"+ . % I obl’ajr{’efx’j ;7 uIJhen 5 ¥ Even )’lrl’ng is also oblained when,
(m=7)| "|-&- 5"?,??60’{4% | 5= 128% or 1807
% Y [ 5] A .
57 I 22 (/24 Even fifing is also oblained wihen,
m=8) |-& &7 B 5= 675 B or BT

for the engine as a whole, and also equal firing intervals between
the cylinders in each bank.

This table shows that in multi-cylinder Vee-type engines
there is considerable scope for choosing a Vee-angle which best
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suits the torsional vibration characteristics of a specific in-
stallation. The cases where the Vee-angle is 360° (i.e. 0°) are
of academic interest only since it is, of course, impossible to
have superimposed cylinders. The cylinders could be placed
side by side but this merely provides an ordinary in-line engine
aggregate.

Equal firing intervals are obtained with zero Vee-angle for
4-stroke cycle engines when there is an odd number of cylinders
in each bank, but equal firing intervals with zero Vee-angle
cannot be obtained with 2-stroke cycle engines.

It must be borne in mind that the torsional vibration prob-
lem is not the only factor influencing the choice of Vee-angle.
In aero-engine practice it is generally considered desirable to
minimise the frontal aero of the engine with the object of re-
ducing the drag of the power plant, and this consideration
naturally directs attention towards the choice of a small Vee-
angle. In the case of engines intended for installation in the
wing of an aircraft a Vee-angle of 180°, ie. a flat engine, has
some attraction. Equal firing intervals with a Vee-angle of
180° are obtained in the case of 4-stroke cycle engines having
an even number of cylinders in each bank, provided the number
of crankpins divided by two is an odd number. In the case of
2-stroke cycle engines even firing intervals with a Vee-angle
of 180° are obtained when there is an odd number of cylinders
in each bank.

In the case of 8-cylinder, 2-stroke cycle engines even firing
intervals for the engine as a whole are not obtained with Vee-
angles of go° and 180° when the crankshaft is of the type which
provides even firing intervals between the cylinders in each
bank. By employing crankshafts of the type shown at 29 and
30, in Table 64, however, even firing intervals for the engine
as a whole are obtained with Vee-angles of 9go° and 180°,
although the firing intervals between the cylinders in each
bank are uneven.

It is also possible to obtain even firing intervals for the
engine as a whole in the case of rz-cylinder 2-stroke cycle
arrangements with Vee-angles of 60° and 180° by employing
crankshafts of the type shown at 33, 34, and 35 in Table 64.



552 TORSIONAL VIBRATION PROBLEMS

In this case also the firing intervals between the cylinders in
each bank are uneven.

In the case of automobile engines the choice of Vee-angle
tends towards the wider angles, since this shape of engine fits
more conveniently into the bonnet space. The flat 180° Vee-
engine is also used in automobile practice.

The engine must be carefully examined for unbalanced
forces and couples due to the inertia of the reciprocating and
revolving parts, and in some cases the best compromise between
the requirements for engine balance and freedom from severe
torsional vibrational disturbances will require a departure from
the ideal on which Table 65 is based, namely, even firing
intervals.

For example, from the balancing standpoint a 2-cylinder
Vee-engine with a Vee-angle of go° is very favourable, because
primary forces can be eliminated by a balance weight attached
to the crankweb opposite the crankpin, and there is only a
partially unbalanced secondary force in the horizontal plane.

Similarly, an 8-cylinder Vee-engine can be arranged to
have complete balance of primary and secondary forces and
couples by employing a Vee-angle of go® in conjunction with a
crankshaft of the type shown at 16 in Table 64.

If the left-hand bank of cylinders is designated by the letter
A and the right-hand bank by the letter B, then one firing
order for a 4-stroke cycle engine of this type is TA~1B-4A-4B~
2B-3A-3B-2A. There are four firing impulses per revolution
for the engine as a whole, and these are evenly spaced at go°
intervals. The firing intervals in each bank of cylinders are,
however, uneven, and the firing order in bank A is different
from the firing order in bank B. There are altogether 8 dif-
ferent firing orders corresponding to this arrangement when
used for a 4-stroke cycle engine, namely :—

(@) 1A-1B-3B-4B-2B~3A—4A-2A
(0) 1A-1B~3B-2A—2B-3A~4A~4B
(¢) 1A-1B-4A~4B-2B-3A~3B-2A
(d) 1A~1B—4A-2A~2B-34~3B~4B
(¢) 1A-3A~3B-4B-2B-1B-4A~2A
(f) 1A-3A—3B-2A2B-1B-4A~4B
(8) 1A-3A-4A~4B-2B-1B-3B-2A
(h) 1A~3A—4A~2A—2B-1B-3B-4B
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It should be noticed that with firing orders (a), (e), (g), and
(%) there is only one crankpin which receives its two impulses
at go° apart.

With firing orders (3), (¢), (d), and (f), however, there are
three crankpins each receiving two impulses at go® apart, so
that from the point of view of bearing loading these four firing
orders are inferior. On the other hand, with firing orders
(@), (¢), (g), and (h), the four cylinders of one bank fire one after
the other at go° intervals, followed by the four cylinders in the -
other bank, and this would not be good from the point of view
of mixture distribution in petrol engines. The firing order
usually employed in practice is ().

With this crankshaft and cylinder arrangement primary
forces and couples can be eliminated by balance weights
attached to the crankwebs opposite the crankpins, whilst
secondary forces and couples are completely balanced for each
bank of cylinders individually. Due to the better degree of
engine balance this arrangement is often preferred to the
alternative go° Vee, 8-cylinder, 4-stroke cycle engine arrange-
ment which employs a crankshaft of the type shown at 1 in
Table 64.

In 8-cylinder, 2-stroke cycle, go° Vee-engines the above
completely balanced arrangement is not normally employed
because it necessitates simultaneous firing of two cylinders,
one in each bank.

Inertia Balance of Vee-Engines.—Fig. 92 shows the
influence of the Vee-angle on engine balance. The following
discussion refers to one row of a multi-cylinder Vee-engine,
ie. to the two pistons operating on a common crankpin with
their lines of stroke inclined at an angle 8.

Let W = weight of unbalanced rotating parts of one crank-
pin in Ibs., ie. the unbalanced weight of the
crank element plus the revolving weight of fwo
connecting rods,

W’ = weight of reciprocating partsof one cylinder, in Ibs.,
R = crank radius, in inches,
N =revolutions, per minute,
g=ratio : length of connecting rod/crank radius.
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F16. 92.—Balancing factors for Vee-engines.

Then, Unbalanced primary force due to rotating paris
= 0-0000284W . R . N2 Ibs.
This is a constant radial force acting along the crank arm.



DETERMINATION OF STRESSES 355

Unbalanced Primary Force due to Inertia of Reciprocating Pars.
Maximum vertical primary force

=TF,, = 00000284W’ . R. N2, V, lbs,, . (269)
Maximum horizontal primary force

=TF,, :00000284W .R.N? H,lbs, . (270)

where V, and H, are shown in Fig. 92 and can be calculated for
different Vee-angles from the following expressions i—

V,=(+cos8 . . . (277
H,=(1—cos8) . . . (272)
Unbalanced Secondary Force due to Ineriia of Reciprocating Payis.
Maximum vertical secondary force

=TF,, = 0:0000284W' . R.N2.V,jglbs., . (273)
Maximum horizontal secondary force

=F,, = 0-0000284W' . R . N?. HJg Ibs., . (274)

3 3

where Vo= (cos > + cos %), . . (275)
8 3

H, = (cos 5 = cos 3;) . . (276)

The resultant unbalanced primary force due to the re-
ciprocating parts is therefore equivalent to

(i) aweight W’ at crank radius revolving with the crankpin,

(ii) a weight (W' cos 8) at crank radius revolving in the
opposite direction to the crankpin at the same speed
as the crankshaft.

It is therefore evident that a considerable proportion of the
unbalanced primary force due to the reciprocating parts can
be neutralised by attaching a balance weight to the crankwebs
opposite the crankpin. The optimum size of the balance
weights should be such that their combined effect is equivalent
to a weight (W + W) at crankpin radius opposite the crankpin,
where W is the weight of the unbalanced rotating parts of the
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crank element, including the revolving weight of fwo connecting
rods, and W’ is the weight of the reciprocating parts of one
cylinder.

When the crankshaft is counterbalanced in this way the
unbalanced primary force becomes

F, = 0:0000284W’ . R . N2. B, Ibs., . (27)
where B =cos 3. . . . (278)

This is a constant radial force actmg anng the crank arm
so that the maximum unbalanced primary force in the vertical
plane is the same as the maximum unbalanced primary force
in the horizontal plane.

This residual unbalanced primary force can only be
eliminated by employing a balance weight equivalent to
(W’ cos 8) at crank radius and arranging means for driving it in
the opposite direction to the crankshaft at crankshaft speed.

The resultant unbalanced secondary force is equivalent to

(i) A weight (—— cos ) at crank radius revolving in the

same direction as the crankpin at twice the speed of the
crankshaft.

(i) A weight (E cos -32-§> at crank radius revolving in the

opposite direction to the crankpin at twice the speed of the
‘crankshaft.

The secondary force cannot be counterbalanced by simple
balancing masses attached to the crankwebs.

In multi-row Vee-type engines the unbalance produced by
the rotating masses can be investigated in precisely the same
way as for an ordinary in-line engine, and the effect of fitting
counterbalancing masses is the same in both cases.

The unbalance produced by the reciprocating parts can be
investigated by combining the unbalance of each row with the
unbalance of each bank.

For example, if the crankshaft arrangement is such that
there are no unbalanced primary forces or couples for each
bank, then there will be no primary unbalance of the engine
as a whole irrespective of the Vee-angle.
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Similarly, if the Vee-angle is such that there is no unbalanced
primary force for a row (e.g. when the Vee-angle is go° or 270°
there is no unbalanced primary force provided balance weights
are fitted opposite the crankpins as already explained), then
there will be no primary unbalance for the engine as a whole
irrespective of the type of crankshaft employed.

Again, if the crankshaft arrangement is such that there are
no unbalanced secondary forces or couples for each bank and
the Vee-angle is such that there are no primary forces for each
row, then the engine as a whole will be in complete primary and
secondary balance.

Where there is a residual primary or secondary force or
couple for the engine as a whole, the following expressions can
be used :—

F,, = 00000284 . W' .R.N2. K,.V,
= maximum vertical primary force, (279)
F,, = 00000284 . W .R.N2. K, . H,
= maximum horizontal primary force,  (280)
C,, = 00000284 . W' .R.N*.L.K,’. V,
= maximum vertical primary couple, . (281)
C,, = 00000284 . W .R.N2. L. K, . H,
= maximum horizontal primary couple, (282)
F,, = 00000284 . W' .R . N2 . K,.V,
== maximum vertical secondary force, . (283)
» = 00000284 . W' . R . N2. K,. H,
= maximum horizontal secondary force, (284)
C,, = 00000284 . W .R.N2. L. K, .V,
= maximum vertical secondary couple,  (285)
Cy, = 0-0000284 . W . R.N*. L. K/ . H,
= maximum horizontal secondary couple, (286)
where W’ = weight of reciprocating parts for one
cylinder, in Ibs.,
R = crank radius, in inches,
N = revolutions, per minute,
L = cylinder pitch, in inches,
K,, K,', K,, K, = force and couple factors for cylinder banks,
from Table 64,

F,
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V,, H,, V,, H, = force factors for cylinder rows, from Fig,
92, or Equations (271) to (276).

(Note.—In equations (279) to (286) forces are in lbs. and
couples in Ibs.-ins.)

If the reciprocating parts of ome cylinder are counter-
balanced by crankweb balance weights placed opposite the
crankpins as already explained, the factors V, and H, in
Equations (279) to (282) should be replaced by the factor
(B, == cos 8), i.e. the vertical unbalance then becomes the same
as the horizontal unbalance.

The products (K,.V,), (K,.H,), etc., from Equations
(279) to (286), can be used as a very quick means for com-
paring the merits of different combinations of crankshaft and
Vee-angle from the point of view of engine balance.

As an example, consider the effect on engine balance of
altering the Vee-angle of an 8-cylinder, 4-stroke cycle Vee-
engine having a crankshaft of type 1 in Table 64.

The force and couple factors corresponding to this crank-
shaft arrangement, see Table 64, show that the only unbalance
in each bank of four cylinders is a secondary force and that the
factor for calculating the magnitude of this force is X, = 4/g.
Since primary forces and couples and secondary couples are
balanced for each bank they are also balanced for the engine
as a whole irrespective of the Vee-angle, so that alterations in
Vee-angle will only affect the magnitude of the residual
secondary force. The comparative effect of such alterations
can therefore be obtained by comparing the values of the row
factors V, and H, for different Vee-angles. These values can
either be read from Fig. 92 or be calculated from Equations
(275) and (276), as follows :—

Relative Magnitude of Secondary Force.
Vee-Angle.
Vertical. Horlzontal.
90° o 1414
75° o411 1176
60° 0866 0-866
45° 1307 0541
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The above comparison shows that an 8-cylinder, go® Vee-
engine with this type of crankshaft has a large unbalanced
secondary force in the horizontal plane. Experience has
shown that this horizontal unbalance can cause unpleasant
and even destructive vibration. Since secondary unbalance
cannot be reduced by simple balance weights, engines with
this type of crankshaft have been used in automobile and
aeroplane practice with the Vee-angle reduced to 60°, thus
reducing the unbalanced horizontal secondary force by about
40 per cent. at the expense of introducing an equal degree of
unbalance in the vertical plane, and also uneven firing impulses.
Although this expedient reduces the unbalanced vertical
secondary force to 0-866 of the unbalanced force in the case of
a 4-cylinder, in-line, 4-stroke cycle engine, the presence of a
correspondingly large horizontal secondary force is still a con-
siderable disadvantage. The alternative 8-cylinder, go° Vee,
4-stroke cycle engine with a crankshaft of type 3 in Table 64
is therefore preferred in automobile practice, because with
suitable balance weights there is complete primary and
secondary balance. In aeroplane practice the large amount
of weight which must be added for balancing purposes renders
this type of engine unsuitable, and since the alternative just
discussed is unsatisfactory from the point of view of engine
balance, the 8-cylinder, Vee, 4-stroke cycle engine is not a
popular type of aeroplane engine.

The influence of engine balance on the choice of Vee-angle
becomes less important as the number of cylinders increases,
because for engines having twelve or more cylinders the balance
of each bank of cylinders is inherently good.

There is therefore more latitude for choosing a Vee-angle
to suit torsiomal vibration characteristics alone in engines
having a large number of cylinders.

For example, I2-cylinder, 4-stroke cycle engines with the
conventional 6-throw crankshaft shown at 5 in Table 64,
possess complete primary and secondary balance for each bank
independently, and therefore the engine as a whole is also in
complete primary and secondary balance irrespective of the
Vee-angle. In practice engines of this type have been built



560 TORSIONAL VIBRATION PROBLEMS

with Vee-angles of 45°, 50°, 55°, and 60°, the 60° angle being
the correct one for equal firing intervals in each bank and for
the engine as a whole, whilst the 45° angle was used on the
well-known ““ Liberty " aero-engine.

When it is realised that in a multi-cylinder Vee-engine both
the Vee-angle and the firing order can be chosen in a great
many different combinations, the complexity of the problem
makes the selection of the best angle and firing order a rather
difficult matter. It is recommended, however, that the Vee-
angle be chosen in the first instance to give even firing intervals
in each bank and for the engine as a whole, in accordance with
the data given in Table 65, and where there is a choice of angles
the one which best fits into the space available for installation
should be taken.

In 4-stroke cycle engines the crankshaft arrangement
should be chosen in the first instance from considerations of
engine balance, using the data given in Table 64. Since there
are usually several alternative firing orders in the case of
4-stroke cycle engines having six and any greater even number
of cylinders, the opportunity of selecting a firing order to give
the best disposition of critical speeds to suit the particular
installation still remains. In this way it will usually be possible
to obtain an engine aggregate which is economical in shape,
possesses good balance, and has a speed range free from serious
torsional vibrational disturbances.

Firing Order in Vee-Engines.

(@) Four-Stroke Cycle, Single-Acting Vee-Engines with an
Even Number of Cylinders in each Bank.

In the case of 4-stroke cycle, in-line engines having an even
number of cylinders the crankpins are arranged in pairs at equal
angular intervals round the crank circle, and one half of the
crankshaft is the mirror image of the other half, as shown at
I, 5, 8, 12, and 13 in Table 64. This arrangement provides
complete primary and secondary force and couple balance,
as well as equal firing intervals, in engines having six and
more cylinders.



DETERMINATION OF STRESSES 561

In the case of Vee-type engines, if there is no residual primary
or secondary unbalance for each bank, there will be none for the
engine as a whole. Hence when there is an even number of
cylinders in each bank and the crankshaft is of the type just
described, the engine will be in complete primary and secondary
balance.

It has already been shown that in 6-cylinder in-line engines
there is one such balanced crankshaft arrangement and that
there are four different firing orders corresponding to this
arrangement ; in 8-cylinder engines there are three balanced
crankshaft arrangements each having eight different firing
orders; in Io-cylinder engines there are twelve balanced
crankshaft arrangements each having sixteen different firing
orders ; and in Iz2-cylinder engines there are sixty balanced
crankshaft arrangements each having thirty-two different
firing orders. Thus there are altogether 4, 24, 192, and 1920
different firing orders for 6-, 8-, 1o-, and 12-cylinder in-line
engines of the balanced type. These numbers also apply to
each bank of a Vee-type engine having 6, 8, 10, and 12 cylinders
in each bank, or 12, 16, 20, and 24 cylinders for the engine as
a whole. Furthermore, in a Vee-engine one of the possible
firing orders can be chosen for one bank and another for the
other bank, whilst the two cylinders comprising each row can
either fire consecutively or after a lag of (360 + 8), where 8 is
the Vee-angle.

The following table shows the number of possible balanced
crank arrangements and firing orders for Vee-engines having
various numbers of cylinders :—

No.of | No. of Firing Orders
Total No- ot |palanced Crank | ~per Crankshatt Total Nuaber of
s, Arrangements. “Arrangement, iring, J

12 1 32 32
16 3 128 384
20 12 512 6,144
24 60 2,048 122,880

VOL. 1.—36
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The thirty-two alternative firing orders for the 12-cylinder
Vee-engine are shown in the following table :—

Bank A :
1-2-3-6-54 1-2~4~6-5-3 1-5-3-6-2-4 1-5-4-6~2-3

Bank B :
1-2-3-6-5-4 1-2-3—6-5-4 1-2-3-6-5-4 1-2-3-6-5-4

Alternative Firving Orders for Bank B :
f2-4-6-5-3 124653 1-a46573 1-2-4-6-5-3
1-5-3-6-2-4  1-53-6-2-4 1537024 1-5-3-6-24
1gg-b6-2-3  I-54-6-2-3 154623 1-5-4-6-2-3
6-5—4-1~2-3 6-5-4—1-2-3 6—5-4~1-2-3 6-5-4—I~2~3
6-5-3—1—2—4 6-5-3-1-2—4 6-5-3-1-2—4 6-5-3-1—2—4
6-2-4-1-5-3  6-2-4~1-5-3  06-2~4-1573 6-2-4-1-5-3
6rg15g 623T54 6a3Es4 OEETISTA

In practice, it is customary to use the same firing order for
each bank of cylinders and to choose the firing interval
(8 + 360°) between corresponding cylinders in the two banks.
When the firing order is the same in both banks of cylinders
mixture distribution, ignition and valve timing, etc., are simpli-
fied, whilst the choice of the longer interval between the firing
impulses of corresponding cylinders in the two banks avoids
having two consecutive impulses on each crankpin, and is
the only possible arrangement in cases where the valves of
corresponding cylinders in each bank are operated by a common
centrally situated cam. For example, in a 12-cylinder, 60°
Vee-engine each cylinder in bank B must fire 60° or 420° of
crankshaft rotation after the corresponding cylinder in bank A.
The corresponding camshaft motion is 30° or 210° and it would
be impossible to use a common cam for operating the valves of
both A and B bank cylinders with the smaller angle because
the two cam followers would interfere.

The above considerations reduce the number of alternative
firing orders to four in the case of 12-cylinder engines; 24 in
the case of 16-cylinder engines ; 192 in the case of zo-cylinder
engines; and rgzo in the case of 24-cylinder engines. The
choice is still large for engines having more than twelve
cylinders.
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The four alternative arrangements for the 12-cylinder engine
are as follows (—

(i) 1A-6B-2A-5B-3A-4B-6A-1B-3A-2B-4A-3B,
ie. firing order in each bank = 1-2-3-6-3-4.

(ii) TA-6B-2A-5B-4A-3B-6A-1B-5A-2B-3A-4B,
i.e. firing order in each bank = 1-2-4-6-5-3.

(iii) TA-6B-5A-2B-3A-4B-6A-1B-2A-5B-4A-3B,
i.e. firing order in each bank = 1-5-3-6-2-4.

(iv) 1A-6B-5A-2B-4A-3B-6A-1B-2A-5B-3A-4B,
i.e. firing order in each bank = 1-5-4-6-2-3.

No. (iii) is the firing order usually adopted in practice,
because it gives good longitudinal spacing of firing impulses
in each bank and simplifies the mixture distribution problem
in the case of petrol engines.

It should be noticed that by reversing the firing order in
each bank, four apparently different firing orders are obtained
for the engine as a whole.

These are not, however, really different arrangements,
because the characteristics of the engine with regard to balance,
torsional vibration, mixture distribution, etc., are not altered
when the firing order is reversed in both banks. The reversed
firing order for the arrangement usually employed in practice,
viz. No. (iii), is

1A-6B-4A-3B-2A-5B-6A-1B-3A-4B-5A-2B,
i.e. firing order in each bank = 1-4-2-6-3-5.

In an 8-cylinder, go° Vee-engine with the crankshaft arrange-
ment shown at 1 in Table 64, the firing interval between bank B
and bank A is g0° or 450°, the latter being usually adopted for
the reasons stated above.

The firing order in each bank is 1-3-4-2, or the reverse
order 1-2-4-3 (see Table 64). The firing order for the whole
engine is therefore

1A-4B-3A-2B-4A-1B-2A-3B, or 1A-4B-2A-3B-4A-1B-3A-2B.
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(8) Four-Siroke Cycle, Single-Acting Vee-Engines with an
0dd Number of Cylinders in Each Bank.

When there is an odd number of cylinders in each bank
there is only one practical firing order for each bank, since it is
desirable to have even firing in each bank over the complete
working cycle of two revolutions. The firing orders usually
employed in practice for in-line engines having an odd number
of cylinders are given in Table 64, and these can be used to deter-
mine the firing order of the corresponding Vee-type engine.

For example, the firing order normally employed for a
s-cylinder, in-line, 4-stroke cycle engine is 1-2-4-5-3, the crank
arrangement being shown at 4 in Table 64. If this crankshaft
is used for a ro-cylinder Vee-engine the firing order for the
complete engine is therefore

1A-1B-2A-2B-4A-4B-5A-5B-3A-3B,
ie. firing order per bank = 1-2-4-5-3.

Alternatively, the engine will have the same characteristics
if the firing order in each bank is reversed, giving the following
firing order for the whole engine :—

1A-1B-3A-3B-5A-5B-4A-4B-2A-2B,
ie. firing order per bank = 1-3-5-4-2.

It should be noted that the two pistons operating on each
common crankpin fire consecutively, and for this reason and
also because the engine is not in complete primary and secondary
balance, 4-stroke cycle Vee-engines with an odd number of
cylinders in each bank are not normally employed.

(c) Two-Siroke Cycle, Single-Acting Vee-Engines.

In 2-stroke cycle Vee-engines the firing order in each bank
is necessarily the same as the crank sequence, and the two
cylinders in each row must fire consecutively, the firing interval
between corresponding cylinders in each bank being the same
as the Vee-angle.

The crank sequences and firing orders for z-stroke cycle,
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in-line engines are given in Table 64, and these can also be used
for the corresponding Vee-type engines.

For example, the firing order normally employed for a
5-cylinder, 2-stroke cycle engine is 1-5-2-3-4, as shown at 17
in Table 64. If this crankshaft arrangement is used for a
10-cylinder Vee-engine the firing order for the whole engine
is

1A-1B-5A-5B-2A-2B-3A-3B-4A-4B,
ie. firing order per bank = 1-5-2-3-4

Alternatively, the engine will have the same characteristics
if the reversed firing order is used in each bank, giving the fol-
lowing firing order for the whole engine :—

TA-1B-4A-4B-3A-3B-2A-2B-5A-5B,
ie. firing order per bank = 1-4-3-2-5.

. Torsional Vibration Characteristics of Vee-Engines.
—Since the firing order is necessarily the same for each bank of
a z-stroke cycle Vee-engine, and is usually made the same for
each bank of a 4-stroke cycle engine, it follows that the resultant
vector summations for any given harmonic order are identical
for both banks of cylinders. '

Also, since the firing interval between each pair of cylinders
which constitute a row is necessarily the same for all the rows
in a 2-stroke cycle engine, and is usually made the same in the
case of 4-stroke cycle engines, it follows that the resultant
vector summations for any given harmonic order are identical
for all rows. -

These two summations will be referred to as the bank and
row summations respectively, the resultant vector summation
for the engine as a whole being the product of the bank and
row summations.

This method of obtaining the resultant vector summations
for the engine as a whole is very convenient when investigating
the effect of altering the bank firing order whilst retaining the
Vee-angle unaltered. It is also a very quick method for
investigating the effect of changes of Vee-angle when the bank
firing order remains unaltered.
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Row Summation.—Referring to Fig. 93, the resultant vector
summations for each row of cylinders is obtained as follows :—

Let § ='the Vee-angle,
¢ = firing interval between banks, ie. between the
two cylinders which constitute a row
= 3 or (8 + 360°) for 4-stroke cycle engines having
an even number of cylinders in each bank.
In practice this angle is invariably (8 +- 360°)
=§ for 4-stroke cycle engines having an odd
number of cylinders in each bank, and for all
2-stroke cycle engines,

b = nth order vector summation for ome row of
cylinders, assuming unit amplitude at the
point on the normal elastic curve where the
row is situated,

% = the harmonic order number, i.e. the number of
complete oscillations per revolution.

Since the amplitude on the normal elastic curve is the same
for both the cylinders in any one row, it follows, from the phase
and vector diagrams in Fig. 93, that

Zh=2.c0s" % . i . (287)

The values of Zb for various firing intervals between banks,
i.e. for various values of ¢, are shown graphically in Fig. 93
for orders 05 to 6.

This diagram can be used for both 2-stroke and 4-stroke
cycle engines, bearing in mind that in the case of z-stroke cycle
engines there are no half orders.

Bank Summation—The bank summation Xz is carried out
in precisely the same manner as already described for in-line
engines. That is to say, each bank of cylinders is regarded as
an ordinary in-line engine and the resultant vectors sums are
determined in the usual manner.

Resul Vector S tion for the Whole Engine.—Since
unit amplitude was assumed for the cylinders in each row when
determining the row summation, and since the bank summation
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is based on unit amplitude at the free end of the crankshaft
and takes into account the variation of amplitude at the several
cylinders in each bank, the resultant vector summation for the
whole engine is simply the product of the row and bank
summations,
ie. FA=2Ja.Zb, . . . (288)
where JA = the resultant vector sum for the engine as a
whole, assuming unit amplitude for each
of the two cylinders in the row which is
situated at the free end of the crankshaft,
Za = the vector summation for each bank, assuming
unit amplitude at the free end of the crank-
shaft,
Zb = the vector summation for each row, assuming
unit amplitude for each of the two cylinders
which constitute a row.

Also, if T, = the maximum value of the #th order harmonic
component of the tangential effort curve for
one cylinder, in 1bs. per sq. in.,

R = the crank radius, in inches,
A = the area of the cylinder, in sq. ins.,

then the work done by the wth order component per unit

deflection at the free end of the crankshaft for the whole

engine is

W,=2.T,.4.R.2A, ins-lbs. per cycle [see also

Equation (307)].

Equation (288) shows that JA is zero when either La or
Zb is zero, hence by finding the condition for which Xb is zero
it is possible to determine the Vee-angle which will eliminate
any given harmonic order.

o

Now Zb=2zc0s.”" e . . (287)

n.o __

and this is zero when  cos o,

ie. when ”—2—0 = (¢ + 0'5) 180 degrees,
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or o= 33,,670(5 + 03),
where ¢ = any integer =0, I, 2, 3, etc.,
# = the harmonic order number,
o = firing interval between banks, ie. between the
two cylinders which constitute a row,
but & = 8 for all 2-stroke cycle engines and for 4-stroke
cycle engines with an odd number of cylinders
in each bank,
o = (5 4 360) for 4-stroke cycle engines with an even
number of cylinders in each bank.
Hence, &= 3—?;’ (¢ + 0°5) degrees . . . (289)
where & = the Vee-angle.

The abové expression applies to either 2-stroke or 4-stroke
engines, bearing in mind that there are no half orders in the case
of 2-stroke cycle engines. It should also be noted that since
the shape of the normal elastic curve does not enter into the
expression for the row summation, the elimination of a specified
harmonic order by a suitable choice of Vee-angle holds good
for all modes of vibration, and for engines having any number
of cylinders in each bank.

ExanpLe—Determine the Vee-angles which will eliminate the
3rd, 4-5th, and 6th order criticals.

3rd Ovder :
# == 3, hence, 0 = 3’2—0@' 4- 0'5) degrees
— 60, 180, 300, etc., degrees.
4+5th Order :
360, .
=45, hence, 8 = ;3(1 + 05)

= 40, 120, 200, etc., degrees.



570 TORSIONAL VIBRATION PROBLEMS

6th Order :
n =6, hence, 3 = 3%(1’ + 0°5)
= 30, 90, 150, etc., degrees.

Fig. 93 also shows that the value of Zb is zero when the
above conditions are fulfilled.

The Vee-angle which makes the value of any given har-
monic order a maximum can also be deduced from Equation
(287), since the value of Zb and therefore JA is a maximum
when

n.o
c0§ —— =1,
2

= n.o .
ie. when = 180.4, or o=

3604 degrees.

n
Hence, finally, for the #th order harmonic to have a maximum
value,

_360.¢
8= = - . . . - (290)

This applies to either 2-stroke or 4-stroke cycle engines
and is true for all modes of vibration and for any number of
cylinders per bank.

ExampLe.—Determine the Vee-angles which give maximum
values for the 3rd, 4-5th, and 6th, order vibrations.

3rd Order :

#n = 3, hence, & = 36(;' d = 0, 120, 240, 360, etc., degrees.
4°5th Order :

# = 45, hence, § = %Z =0, 80, 160, 240, etc., degrees.
6th Ordey :

# = 6, hence, 8§ = 3-6O—'i =0, 60, 120, 180, efc., degrees,
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Finally, it is of interest to determine the Vee-angles which
make the resultant vector summation for the whole engine,
ie. ZA, the same as the vector summation for each bank,
ie. Za.

This condition is fulfilled when 26 = 1,

i.e. when cos "0—0 =1/z [from Equation (287)]
.o o
or - = (3.7 + 1) 60 degrees,
whence, 8= I%(3 R I). . . (201)

ExampLE.—Determine the Vee-angles which make the vector
summations for the whole engine the same as the vector
summations for each bank, in the case of the 3rd, 4-sth,
and 6th order criticals.

3rd Order :
120, .
n =3, hence, § = =—(3.17 &+ I) = 40, 80, 160, 200, etc.,
3 degrees.
4-5th Order :

# = 43, hence, 5 = %’ (3.4 £ 1) = 2667, 5333, 106:66,

13333, etc., degrees.
6th Order :
120

# = 6, hence, § = G (3.4 =+ 1) = 20, 40, 80, 100, etc.,
degrees.

Note—1It must be carefully borne in mind that the foregoing
analysis is only applicable in cases where both banks of cylinders
have the same firing order. This condition is automatically
fulfilled in the case of 2-stroke cycle engines.

The following example illustrates the application of the
foregoing methods to a rz-cylinder, 60° Vee, 4-stroke cycle,
single-acting engine. The firing order in each bank is
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1-5-3-6-2-4 ; the firing interval between the pairs of cylinders
constituting each row is (8 - 360) = 420°; and the normal
elastic curve and vector summations for each bank are shown
in Fig. 94. The firing order for the whole engine is therefore
1A-6B-5A-2B-3A-4B-6A-1B-2A-5B-4A-3B.

Case a: Node near end of Crankshaft.—The normal elastic
curve is shown at (4) in Fig. 94, and is representative of the
type of curve obtained for the one-node mode of vibration of
aero-engine/air-screw combinations. From Fig. 94 the vector
summations for each bank are

Orders Bank Vector Summations
(n). (Za).

05, 35, 6-5, etc. ;

275, 55, 83, ete. 0485

1, 4, 7, etc.

2,38, etcA} 0214

5, 45, 75, etc. 1298

3,6, 9, ete. 4280

The row summations, from Fig. 93, or from Equation (287),
where ¢ = 420°, are :

Orders Row Vector Summations

(). {ZB).
05, 65, 12°5, etc,
5'5, I1I'5, 17°5, etc.} 0518
1, 7, 13, etc.
5, II, 17, etc. 732
1°5,7°5, 135, etc.
&5, 10'5, 165, etc. 414
2, 8, 14, ete.
4 10, 16, etc.} 1-000
2+5, 85, 145, etc.
5, 05, 15°5, etc.} 032

3, 9, 15, ete. o
6, 12, 18, etc. 2-000
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F1G. 94.—I2-Cylinder Vee-engine vector summation for each bank.
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The resultant vector summations for the whole engine are
therefore as follows i—

letal(zge_n:gz ‘Sgl;.naﬁons
Orderg‘vfabers
F.O. ;-;5—53;%—2—4- F.O. 16:_64;“6._5-3'
;;: 5155,]:755,32;:-‘0} (0485 X 0-518) = 0-252 0537
LTI, (o234 X x732) = 0377 o3z
TSTSI ) | s x g = xiss | 0wty
i: 3;,1‘1‘;;:;;, (0214 X 1-000) = 0°214 0214
i) | caoemsem | s
2: 3)2,12'8,622. E:Z:Sg ;(2:::))00_) o= 8560 2»560

The above analysis shows that with a Vee-angle of 60° the
3, 9, 15, etc., orders are zero, but the 6, 12, 18, etc., orders are
completely unbalanced. The 1-5, 4°5, 75, etc., orders are also
of appreciable amplitude.

The frequency values usually found in practice are such that
both the 4-5 and the 6th order criticals are liable to occur in
or near the operating speed range, and in such cases it is de-
sirable to make some alteration in the system which will reduce
the amplitude at these critical speeds.

It has already been shown in connection with in-line engines
that in a 6-cylinder, 4-stroke cycle engine altering the firing
order from 1-5-3-6-2-4 t0 1-2-4-6-3-3 brings about a considerable
reduction of the 15, 4-5, 75, etc., amplitudes but leaves the
3, 6, 9, 12, etc., amplitudes unaltered. In the present example,
if the bank firing order is altered to 1-2-4-6-3-3, the resultant
vector summations are as shown in the 3rd column of the
above table. The effect of this alteration is to reduce the
4'5 order considerably, at the expense of a considerable in-
crease in the 3-5 order, leaving the 6th order unaltered. This
alteration would only be effective, therefore, where the 3-3
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order is well above and the 6th order well below the running
speed range.

A 60° Vee-angle is the correct angle for even firing impulses
in a 12-cylinder, 4-stroke cycle engine. If even firing is sacri-
ficed in the interests of the torsional vibration problem it is
possible to alter the relative amplitudes at the various critical
speeds by altering the Vee-angle. The following table shows
the effect of altering the angle to 30° with firing order 1-5-3-6-2-4,
and also with firing order 1-2-4-6-5-3. For a 4-stroke cycle
engine the firing interval between the pairs of cylinders con-
stituting a row is (30 - 360) = 390° when the Vee-angle is 30°.

Resultant Vector Summations
(ZA =2z . Z0).
Order Numbers
()
F.0. 1-5-3-6-2~4. F.0. 1-2-4-6-5-3.

&= 30° §=30°.
05, 12'5, 24°5, etc. | ;
115, 23°5, 35°5, o) o o270
1, 13, 35, ete. ) )
11, 23, 35, etc.} o413 o413
1'5, 13°5, 25°5, etc. } . y
10°5, 22°5, 34'5, eto. 0995 0090
2, 14, 26, ete. 0371 o371
10, 22, 34, etc.f
2°5, 14°5, 26°5, etc.} 0500 1260
9°5, 21°55 33°5, etc.
3, 9, 15, ete. 6-060 6-060
3'5, 155, 27°5, etc.} y .
8:5, 205, 325, et. o770 640
4, 16, 28, etc. o214 o214
8, 20, 32, etc.
4°5, 16-5, 28-5, etc. 2400 0218
75, 195, 31'5, etc.
5. 17, 29, ete. ©O°III 01T
7, 19, 31, etc.
5'5, 17°5, 29°5, etc. . .
65, 185, 30°5, etc. 0962 2050
6, 18, 30, etc. o o
12, 24, 36, etc. 8560 8:560

The above table shows that when the Vee-angle is altered
to 30° the 6th order is eliminated irrespective of firing order,
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but the 3rd order becomes completely unbalanced. The 45
order is large for firing order 1-5-3-6-2-4, but is very consider-
ably reduced by changing the firing order to 1-2-4-6-5-3 at the
expense of an increase in the magnitude of the 34, 5% and 6}
orders.

The 12th order is also completely unbalanced for both firing
orders, but since the 12th order harmonic component is small
this should not be important.

The foregoing discussion may therefore be summarised as
follows :—

With Vee-angle 60°, which gives even firing impulses, and
firing order 1-5-3-6-2-4 in each bank, the 3rd order critical is
eliminated, but the 4-5 and 6th order criticals are not negligible.
Unless suitable damping means are provided, therefore, this
arrangement should only be used where the running speed range
lies between the 2-5 (which is not negligible because of the large
magnitude of the 2-5 order tangential effort component) and
the 4-5 order criticals, or between the 4'5 order and the 6th
order criticals, or below the 6th order critical. For example,
if the natural frequency of the system is 7500 vibs./min., and
allowing a margin of xo to 20 per cent. clear of the critical
speeds, the above considerations imply that the operating speed
range should lie between about 1900 and 2600 r.p.m.; be
confined to about 1400 r.p.m., or lie below about 1100 r.p.m.

With Vee-angle 60° and firing order 1-2-4-6-3-3, the 3rd
order critical is still eliminated ; the 6th order critical remains
unaltered, but the 45 order is very considerably reduced at
the expense of a considerable increase in the 3-5 order critical.
This arrangement is therefore suitable where the running
speed range lies between the 3-5 and 6th order criticals, or
lies below the 6th order critical. If the natural frequency is
7500 vibs./min., therefore, the running speed range should lie
between about 1400 and 1900 r.p.m., or be below 1100 r.p.m.

With Vee-angle 30°, which gives uneven firing, and firing
order 1-5-3-6-2-4, the 6th order critical is eliminated, but the
3rd and 4-5 order criticals are not negligible. This arrange-
ment is therefore suitable where the running speed range lies
between the 3rd and 45 order criticals, or below the 45
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order critical (assuming that the 7-5 order stress is not found to
be serious).

Assuming a frequency of 7500 vibs./min., the above con-
siderations imply that the running speed range should lie
between 2000 and 1900 r.p.m., or below about 1500 r.p.m.
The narrow range between the 3rd and 4-5 orders is due to the
necessity for providing a margin of at least 20 per cent. clear
of the powerful 3rd order critical.

With Vee-angle 30° and firing order 1-2-4-6-3-3, the 6th
order critical is still eliminated, the 3rd order remains unaltered,
but the 45 order is considerably reduced at the expense of an
increase in the 3-5, 5:5 and 6-5 orders.  If the stress calculations
show that the 3-5, 55 and 65 orders are not negligible, the
running speed range should lie between the 3-5 and 5-5 order
criticals, or below the 6-5 order critical. Thus for a frequency
of #500 vibs./min., the permissible speed ranges are 1500 to
1900 r.p.m., or below about 1100 r.p.m.

In general, the effect of altering the Vee-angle on the magni-
tude of any given critical speed can be quickly obtained from
Fig. 93. For example, in the case just discussed Fig. 93 shows
that the 3rd order critical is zero when the Vee-angle is 60°,
and gradually increases in amplitude as the Vee-angle is reduced,
until it is completely unbalanced when the Vee-angle is o°.
The 6th order critical, on the other hand, is completely un-
balanced when the Vee-angle is 60°, and gradually diminishes
as the Vee-angle is reduced, until it becomes zero when the
Vee-angle is 30°.

Case b: Node at Centre of Crankshaft.—The normal elastic
curve is shown at (3) in Fig. 94. This diagram shows that
the only unbalanced orders for each bank are the half
orders.

The row summations are the same as already given for
the Case a, i.e. the shape of the normal elastic curve does not
affect the row summations.

Since the resultant vector summations for the whole engine
are the products of the bank and row summations, it follows
that only the half orders need be considered when the node is
at the centre of the crankshaft. The following table shows

VOL. L.—37
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the relative magnitudes of the half-order resultant torque
summations when the Vee-angle is 60° :—

RESULTANT VECTOR SUMMATIONS : 12-CYLINDER 60° VEE-ENGINE.

Firing Order Firln%omez
Order Numbers. per Bank. per Bank,
1-5-3-6-2-4. 1-2-4-6-5-3.
o3, 65, 12-5, etc. } 0665 1610
5'5, 11°5, 17°5, etc.
15, 7°5, 135, efc. } . §
43, 105, 165, ete. 5650 0003
25, 85, 14°5, etc.} 3 '
35, 9%, 155, efe. 2490 6000
All other orders are eliminated.

The above table shows that with firing order 1-5-3-6-2-4
and the node at the centre of the crankshaft the only really
severe critical speeds are the 1-3, 4-5, 7°5, etc., orders, although
it should be borne in mind that the 2-5 and 3+5 orders will also
require consideration, because the 2-5 and 3-5 order components
of the tangential effort curve are large. This arrangement is
therefore suitable in cases where the running speed lies between
the 3:5 and 4-5 order criticals, or below the 45 order critical.
In the latter case the 75 order should be considered as a pos-
sible source of vibration if the -5 order torque component is
sufficiently large.

If the firing order is altered to 1-2-4-6-5-3, the 1-3, 45, 7'5,
etc., orders are very nearly zero, but the 2-5 and 3-5 orders are
increased. Due to the elimination of the 4'5, 75, etc., orders
this arrangement provides an engine which is for all practical
purposes free from any serious torsional vibration when the
running speed is kept below the 3-5 order critical speed.

The foregoing analysis is a quick and easy method of
assessing the torsional vibration characteristics of Vee-type
engines with various combinations of Vee-angle, crankshaft
arrangement, and bank firing order.



DETERMINATION OF STRESSES 579

It can be applied to other types of engines with equal
facility, for example, fan-type engines in which there are three
banks of cylinders, with three cylinders in each row, and X-type
engines in which there are four banks of cylinders with four
cylinders in each row. In all cases, provided the firing order
is identical for each bank, it is only necessary to determine the
row and bank summations separately and then obtain their
products to give the resultant vector summations for the engine
as a whole.

The device of permitting two cylinders to fire simultaneously
with the object of providing a favourable disposition of critical
speeds has been used successfully for engines having several
banks of cylinders. For example, Fig. 95 shows a 1z-cylinder,
2z-stroke cycle engine with two banks of diametrically opposed
cylinders arranged for simultaneous firing. In this case the
Vee-angle is 180°, and a crankshaft of the type shown at 5 in
Table 64 is employed. The engine therefore possesses com-
plete primary and secondary balance. The firing order is
(1A, 6A)~(3B, 4B)=(24, 5A)-(1B, 6B)-(34, 4A)~(2B, 5B), and
there are six double-firing impulses per revolution equally
spaced at intervals of 60°.

The phase diagrams in Fig. 95 show that when the node is
at the centre of the crankshaft the bank vector summations
for all orders are zero, hence for all practical purposes the com-
plete engine is free from torsional vibrational disturbances.
Furthermore, since the firing interval between the two cylinders
in each row is 180° the odd order row summations are zero
(see Fig. 93). The odd orders are therefore completely can-
celled for all modes of vibration. The even orders, however,
are only cancelled for the mode of vibration corresponding to

“a node at the centre of the crankshaft. If other important
modes of vibration exist these must be investigated separately
with respect to the even order critical speeds.

In the case of 2-stroke cycle engines there are, of course, no
half orders. .

Resultant Vector S tion for Vee-type Engines when the
Firing Order is not the same in Both Banks of Cylinders.—In
4-stroke cycle Vee-engines having an even number of cylinders
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in each bank and employing crankshafts with mirror symmetry,
for example, Nos. 1, 5, 8, 12, and 13 in Table 64, there are
several possible alternative firing orders for each bank, and
it is possible to employ any one of these alternative firing orders
for one bank whilst at the same time employing one of the
remaining alternatives for the other bank. It is normal
practice, however, to employ the same firing order in both
banks, but if for one reason or another it is necessary to in-
vestigate the effect of departing from this general rule the
following method can be used.

airs [
12 3 4 | 6
Flyjuheel
i /! H [ A 7 -6 B
| - =~
! -3 5-4
Node N i
Normal Elaslic Curve 14|38 241 ]18] [34] 28
GA| 48] |SA| |68 15 B]
A <64 .6A,68
764 1A, 1B, 6A,68 CIA <A, 1B
JB®ZB @ @
8 58
68 3 3% Zis
1=7=13, £lc] [2-8~14. K] S-9-~I5 Lt 6—12-18,Ek.
S=11~17, Eke] |4~10-6, Ei]
Za=0 Za=0 Za=0 Za=0

F16. 95.—12-cylinder 180° Vee 2-stroke engine. Bank summations.

Fig. 96 shows a 12-cylinder, 4-stroke cycle, 60° Vee-engine
with firing order 1-5-3-6-2-4 in bank A and firing order
I-2-4-6-5-3 in bank B, the firing order for the whole engine
being 1A-6B-5A-5B-3A-3B-6A-1B-2A-2B-4A-4B, the firing in-
terval between IA and 1B, and 6A and 6B being 420°, whilst
between the pairs of cylinders in the remaining rows it is 60°,

The resultant vectors summations for the whole engine
are obtained in precisely the same way as for an ordinary
in-line engine, by seiting down the phase diagrams, starting
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with the half-order diagram in the case of a 4-stroke cycle
engine and the rst order diagram in the case of a 2-stroke
cycle engine.

In the case of 4-stroke cycle engines the cylinders come
into action in the half-order phase diagram at intervals equal
to half the firing interval apart and in the same order as the
firing order. In the case of 2-stroke cycle engines the cylinders
come into action in the st order phase diagram at intervals
equal to the firing interval apart and in the same order as the
firing order. The remaining phase diagrams are obtained from
these basic phase diagrams by multiplying the basic phase
angles by 2, 3, 4, etc., exactly as already described in connection
with in-line engines. The vector summations are then obtained
from the phase diagrams, bearing in mind that the specific
amplitude is the same for the two cylinders in any one row.
For example, if the amplitude on the normal elastic curve for
cylinder 2A is 0:947, then it is also 0-947 for cylinder 2B, and
S0 on.

Since Fig. 96 applies to a 4-stroke cycle engine and the Vee-
angle is 60°, there are six firing impulses per revolution evenly
spaced at 60° intervals. Hence the cylinders come into action
in the half-order phase diagram at intervals of 30°, and in the
same order as the firing order for the whole engine, namely,
IA-6B—5A~5B-3A—3B—6A—1B-zA-2B-4.A-4B. Theremaining phase
diagrams, derived from this basic phase diagram, are shown in
Fig. ¢6.

The vector summations are then obtained by drawing the
vector diagrams in the usual way, and in this case these sum-
mations are the resultants for the whole engine. The normal
elastic curve in Fig. 96 is the same as that shown at (@) in
Fig. 04, so that the only difference between these two cases is
the change in the firing order of one bank of cylinders, If the
resultant vector summations for the whole engine in Fig. 96
are compared with the resultants for diagram (a) of Fig. 94, the

" Vee-angle being 60° in both cases, it is seen that the change in
the firing order of one bank only affects the magnitudes of the
half-order summations. This is the same result as was obtained
when the firing order of both banks was altered. Hence, in
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general, when the Vee-angle remains unaltered, the order
numbers corresponding to the bank summations which remain
unaltered when the bank firing order is changed, are also the
order numbers of the resultant vector summations for the whole
engine which remain unaltered irrespective of whether one or
both bank firing orders are changed.

The foregoing method can also be applied to engines having
more than two banks of cylinders. Once the firing order for
the whole engine has been settled the basic phase diagram can
be set down and from this all the remaining phase diagrams
can be quickly obtained.

Geared Engines.—Fig. g7 shows some examples of geared
oil engine installations in which two.identical prime movers are
geared to a common driving shaft.

It was shown in Chapter 5 that in addition to the normal
modes of vibration in which the whole system executes torsional
oscillations, the duplicated parts of the system, i.e. the prime
movers, can execute torsional oscillations independently of the
remainder of the system. The latter modes of vibration will
be called the ““node-at-gears” case, since there is always at
least one node at the gear faces.

Diagram I of Fig. g7 shows the node-at-gears case in which
the fundamental mode occurs when one of the duplicated engine
systems swings against the other with a node or nodes at the
gear faces. The upper diagrams illustrate the case when the
engines are on the same side of the gear assembly, whilst in the
lower diagrams the engines are on opposite sides of the gear
assembly. Higher modes of vibration are possible, but in all
cases there is at least one node at the gear face, the remainder
occurring within the engine crankshafts.

Since one of the duplicated systems swings in opposite
phase to the other it follows that the nth order component
harmonic of the engine torques will cancel if the crank arrange-
ment and firing order is the same for each duplicated engine,
and if the firing interval between corresponding cranks of each
engine is such that the nth order harmonic torques for these
cranks are in phase.
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The necessary firing angle between corresponding cranks of
each engine to fulfil this condition is determined as follows :—
Referring to the phase and vector diagrams at the bottom
of Diagram I of Fig. 97—
Let o= firing angle between corresponding cranks of
each engine,
# = harmonic order number,
amplitude at any selected crank of one engine,
amplitude at the corresponding crank of the
other engine,
# . ¢ = phase angle of #th order torque components,

and, from the vector diagram,

+a=
Then —a =

Za=2.a.sinn.of2

Hence, Za is zero, i.e. these modes of vibration are not
excitable when
sin (n . o/2) = o,
%n. o =0, 360° 720°, 1080°, 1440°, etc.
The following table gives the firing angles, o, which render
the node-at-gears modes non-excitable in the case of the first
six harmonic orders :—

ie. when

FIRING ANGLES BETWEEN CORRESPONDING CRANKS OF DUPLICATED GEARED ENGINES
WHICH MAKE THE NODE-AT-GEARS MODES OF TORSIONAL VIBRATION NON-EXCITABLE

:L‘o;ri'c Firing Angle between Corresponding Cranks

Order @, Degrees.

n

05 | 0° 720°

10 | 0 360 720°

5 | 0 240 480  720°

20 | o 180 360 540 720°

25 | 0 144 288 432 576  720°

30 |0 I20 240 360 480 600  720°

35 | o 102§ 205§ 3084 4113 5143 617} 720°

40 |0 go 18 270 360 450 540 630 720°

145 ] 0 8 160 240 320 400 480 360 640  720°

50 |0 72 144 216 288 360 432 514 576 648  720°
55 | 0 65 13134 1064 261 3277 3024 4584 5237k 5807 G54y 720°
60 |0 60 120 180

240 300 360 420 480 540 600 660 720°
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The above table applies to both 2-stroke cycle and 4-stroke
cycle engines. In 2-stroke cycle engines, however, there are
no half-order harmonics and the firing angles repeat after 360°.

The table shows that all harmonic orders of the node-at-
gears modes of vibration, ie. the modes shown in Diagram I
of Fig. g7, are non-excitable when the firing angle between
corresponding cranks of the duplicated engines is zero. This
condition is fulfilled when corresponding cranks of each engine
reach top-dead-centres and fire together and is therefore re-
ferred to as “ Simultaneous Firing.” It does not provide
so smooth an output torque as when the two crankshafts are
phased so that the firing impulses for the two engines are evenly
spaced, but in many cases the advantages gained by the com-
plete elimination of a whole series of troublesome critical zones
more than compensates for the somewhat greater normal
torque variation.

It should also be noted that when the firing angle between
corresponding cranks is 180° all even orders cancel, whilst if
the angle is 360° both odd and even orders cancel. The latter
condition implies that in a 4-stroke cycle engine only half
orders remain, whilst in a 2-stroke cycle engine where there
are no half orders all node-at-gears vibration is suppressed.
The foregoing considerations may in certain cases enable all
serious vibration of the node-at-gears type to be suppressed,
whilst at the same time yielding a smoother normal torque
curve than would be obtained by adopting simultaneous
firing. This possibility can be investigated easily in any specific
example with the help of the above table.

It should be kept in mind in applying the above results
that the same firing interval must be adopted for each pair
of corresponding cranks, as shown in Fig. g7.

Diagram II of Fig. 97 shows the conditions which apply for
the normal modes of vibration of the system, i.e. when the
system vibrates as a whole.

In this case the duplicated parts of the system swing in
phase, so that the #th order component harmonic of the engine
torques will now cancel if the crank arrangement and firing
order is the same for each duplicated engine, and if the firing
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interval between corresponding cranks of each engine is such
that the #th order harmonic torques for these cranks are out-
of-phase.

Referring to the phase and vector diagrams at the bottom
of Diagram IT of Fig. 97, and using the same symbols as before,
Za=2.a.sin(90° —n.0/2) =2.a.cos (#.0/2).

Hence, in this case Zz is zero, i.e. these modes of vibration
are not excitable when

cos (n.0/2) =0,
ie when 7.0 = 180° 540° 900°, 1260°, 1620°, etc.

The following table gives the firing angles, #, which render
these modes of vibration non-excitable in the case of the first
six harmonics :—

FIRING ANGLES BETWEEN CORRESPONDING CRANKS OF DUPLICATED GEARED ENGINES
WHICH MAKE THE NORMAL MODES OF TORSIONAL VIBRATION NON-EXCITABLE.

Harmonic L .
Firing Angle between Corresponding Cranks
Order
Py , Degress.
05 360°

10 180  540°

15 120 360 6oo°

2:0 g0 270 450 630°

25 72 216 360 504 648°

30 6o 180 300 420 540 660°

35 | 513 Is4F 257h 360 4628 565% 668¢°

40 |45 135 225 315 405 495 585 675°

45 40 120 200 280 360 440 520 G6oo  680°

50 |36 108 180 252 322 396 468 540 612 684°

55 | 320 087 1637T 2207% 2941F 360 425 4903f 5564 621y 68774°
60 30 9o 150 210 270 330 390 450 510 570 630 690°

The above table applies to both 4-stroke cycle and 2-stroke
cycle engines. In 2-stroke cycle engines, however, there are
no half orders, and the firing angles repeat after 360°.

The table shows that for the normal modes of vibration
all odd orders cancel when the firing angle between correspond-
ing cranks of the duplicated engines is 180°, and that all half
orders cancel when the angle is 360°.
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This is, as it should be, the same as for one row of a Vee-
engine, see Fig. 93.

The above table and also Fig. 93 show that when the firing
angle is go°, orders 2, 6, 10, etc., cancel.

The foregoing tables will be found useful for determining
which orders of both the node-at-gears modes and the normal
modes cancel for any given firing order, or, conversely, will
enable the possibility of choosing a firing angle which will
cancel any prescribed order or orders to be explored quickly.

Propeller Torque Variation—Marine Installations.—
In marine turbine installations the principal exciting force is
that due to torque variation at the propeller. From published
information, and from the author’s own observations, it appears
reasonable to assume that the principal harmonic of the pro-
peller torque variation has an amplitude of 10 to 12 per cent.
of the mean torque under normal operating conditions, assum-
ing constant immersion. This harmonic torque variation
reaches a maximum four times per revolution for a 4-bladed
propeller and three times a revolution for a 3-bladed propeller.

Torque variation originated at the propeller may also be of
some importance in marine installations employing reciprocating
steam or oil engines. In the case of a 6-cylinder, 4-S.C., S.A.
marine oil engine, for example, it will be shown later that for
the one-node mode of vibration, the only harmonic component
of the engine torque curve of practical importance is the 3rd
major order. All minor orders practically cancel.

If this engine drives a four-bladed propeller, however, the
possibility of appreciable disturbances being originated by the
4th order propeller torque viriation should be investigated.

Fig. 98 shows curves of the approximate torque variation
to be expected from 3- and 4-bladed marine propellers, If the
propeller moved in a perfectly uniform stream of water and was
remote from other bodies no vibratory forces would be produced.
In practice, however, the wake in the vicinity of the propeller
is by no means uniform, and the propeller works in more or less
close proximity to the hull of the ship. In the case of 3-bladed
propellers of twin-screw ships the variable portion of the pro-
peller torque consists of three impulses per revolution, the
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resistance being a maximum when a blade tip is nearest to
the hull, as shown at X in diagram (a) of Fig. 98, and a minimum
when a blade tip is furthest from the hull, as shownat Y. In
the case of 3-bladed propellers of single-screw ships the variable
portion of the propeller torque consists of two superimposed
periodic torques, one having a three per revolution impulse
frequency and the other a six per revolution impulse frequency.
The maximum value of the three per revolution impulse occurs
when a blade tip passes the bottom of the propeller aperture,
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Fi1e. 98.—Marine propellor torque variation.

as shown at X in diagram (a) of Fig. ¢8, and the minimum
value occurs when a blade tip passes the top of the propeller
aperture, as shown at Z. The maximum value of the six per
revolution impulse occurs when a blade tip passes either the
top or the bottom of the propeller aperture, as shown at X and
Z, and the minimum value occurs when a blade tip is about
30° from the propeller aperture, as shown at Y.

In the case of 4-bladed propellers of twin-screw ships the
variable portion of the propeller torque consists of four impulses
per revolution, the resistance being a maximum when a blade
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tip is nearest to the hull, as shown at X in diagram (b) of Fig. g8,
and a minimum when a blade tip is at its greatest distance
from the hull, as shown at Y.

In the case of 4-bladed propellers of single-screw ships the
variable portion of the propeller torque is mainly composed
of four impulses per revolution, the resistance being a maximum
when the blades are passing through the propeller aperture,
as shown at X, and a minimum when the blades are at an angle
of about 45° from the aperture, as shown at Y. In addition,
however, the variable torque of a 4-bladed propeller in a single-
screw ship has components having impulse frequencies of two
and eight impulses per revolution. These are, however, of
smaller magnitude than the four per revolution impulse.

The magnitude of the variable portion of the propeller
torque depends on many factors, such as the characteristics of
the hull in the vicinity of the propeller, the location of the
propeller in relation to the hull, the depth of immersion of the
propeller, the prevailing weather conditions, and so on.

It is therefore impossible to reduce the matter to a cut and
dried mathematical formula, and reliance must be placed on
experimental data. In this connection Professor Lewis gives
a tabulation method for determining the tangential forces
from wake variation in his paper, * Propeller Vibration,”
Trans. Soc. Naval Avchitects and Marine Engineers, New York,
1935. This method was applied to the evaluation of the 3rd
order propeller torque variation in a twin-screw vessel and
gave a value o 3-2 per cent. of the mean torque, and subsequent
torsiograph tests on the ship showed a 3rd order variation of
=+ 33 per cent.

The vessel was a 630-ft. electrically driven twin-screw pas-
senger boat with three-bladed propellers, the mean torque being
355,000 lbs.-ft.

Some information relating to propeller torque variation is
contained in a paper by Messrs. Thorne and Calderwood en-
titled *“ Notes on Torsional Oscillations, with Special Reference
to Marine Reduction Gearing,” Trans. N.E. Coast Instn. of
Engineers and Shipbuilders, Vol. XXXIX, Part 2, 1922. This
information was derived from torsiograph measurements on
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single- and twin-screw turbine driven ships, and in all cases
the torsiograph readings were divided by the appropriate
dynamic magnifiers to obtain the equivalent “ static ™ torque
variation.

For a 3-bladed propeller in a twin-screw vessel a three
impulses per revolution torque variation was obtained having
a maximum amplitude of + 4'5 per cent. of the mean torque.
There was also a slight indication of a six impulses per revolu-
tion torque variation.

For a 3-bladed propeller in a single-screw vessel a three
impulses per revolution variation of maximum amplitude
=+ 475 per cent. superimposed on a six impulses per revolution
variation of maximum amplitude 4+ 5-5 per cent. of the mean
torque was obtained.

For a 4-bladed propeller in a twin-screw vessel a four
impulses per revolution torque variation was obtained having
a maximum amplitude of 4 4 to 4 6 per cent. of the mean
torque.

For a 4-bladed propeller in a single-screw vessel the torque
variation was found to contain several components, as follows :

With propeller tips immersed 7 ft. :

1 per revolution amplitude = 4 6-8 per cent. of mean torque.
2 per revolution amplitude = 4 1-8 per cent. of mean torque.
4 per revolution amplitude = 4 5-3 per cent. of mean torque.
8 per revolution amplitude = trace (not measurable).

With propeller immersed only go per cent. :

1 per revolution amplitude = + 4-8 per cent. of mean torque.
2 per revolution amplitude = 4+ 1-6 per cent. of mean torque.
4 per revolution amplitude = 4 36 per cent. of mean torque.
8 per revolution amplitude = < 0-3 per cent. of mean torque.

The large one per revolution torque variation was considered
to be due to the propeller, because an abnormal tooth error
in the low speed wheel would have been necessary to account
for such a large variation.

- With perfect propellers no vibration of once a revolution
frequency would be experienced unless the propellers were
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damaged in service, and although absolute perfection is not
attainable ordinary care in manufacture should suffice to
render it difficult to detect any once a revolution disturbance,

As a result of the experiments described in this paper the
authors concluded that the torque variation of a marine pro-
peller was not likely to exceed about 4 10 per cent. of the
mean torque under any conditions of immersion of the propeller
or at any speed of the ship.

It can also be safely assumed that the principal impulse
frequency in the case of 4-bladed propellers, whether fitted in
single- or in twin-screw vessels, is four impulses per revolution,
In the case of 3-bladed propellers, however, the impulse fre-
quency can be taken as three per revolution for twin-screw
vessels, but for single-screw installations a six per revolution
impulse frequency as well as a three per revolution disturbance
must be considered.

In an article entitled “ Torsional Vibration Amplitudes in
Marine Diesel Installations,” Engineering, 29th May, 1931,
p. 694, Dr. Lockwood Taylor quotes a harmonic torque varia-
tion of 4 12 per cent. for a propeller in a single-screw ship
with rather extreme wake distribution. He considers that
this probably represents the extreme limit of torque variation
under normal conditions, and that a twin-screw vessel should
show less variation than a single-screw vessel, whilst a 3-bladed
propeller should give less variation on a single-screw ship, but
possibly more on a twin-screw ship, than a propeller with four
blades.

The two per revolution disturbance mentioned above in
connection with the 4-bladed propeller in a single-screw ship
is probably due to interference between the four blades of
the propeller and the stern post and rudder, the latter being
virtually equivalent to two stationary blades.

The expression given in the next section for the number
of torque variations per revolution when a rotating member
with # blades passes a stationary member with #, blades can
be applied,

s _ %Ny
e N= H.CF. of nand s,
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For a 4-bladed propeller passing a rudder (equivalent to
two stationary blades),

N= 4;<-—2 = 4 impulses per revolution.

The above expression is of interest where guide vanes or
contra propellers are used. For example, if four guide vanes
are used in conjunction with a 4-bladed propeller, the principal
impulse frequency is obtained as follows :—

# = number of propeller blades = 4,
n; = number of fixed blades =6 (ie. 4 guide vanes
and 2 virtual vanes due to the rudder),
H.C.F. = highest common factor of # and #, = 2.

Then, assuming that the six vanes are evenly spaced at 60°,
N= 4%6 = 12 impulses per revolution.

It is also of interest to note that if » and %, have no common
factor, then, in addition to the above periodic torque, there
will be an unbalanced periodic lateral force in any fixed
direction through the centre of the propeller hub of frequency
F =# X (revs. per min.).

If, however, there is a common factor this lateral force
disappears. .

The above considerations indicate that the fitting of guide
vanes might result in an appreciable reduction of propeller
vibration, provided the number of vanes is such that high
impulse frequencies are obtained.

Phasing of Engine and Propeller Torque Variations—
Diagrams (¢) and (d) of Fig. 18 show that in marine engine
installations the specific vibration amplitude at the propeller
is large for the one-node mode of vibration and very small for
the two-node mode of vibration.

It is evident, therefore, that a periodic torque at the pro-
peller will be effective in producing vibration corresponding
to the one-node mode of vibration, but will have a negligible
effect in the case of two-node vibrations.

VOL. 1.—38
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These diagrams also show that for the one-node mode of
vibration all the engine cylinders vibrate with the same
amplitude, so that, as already explained, the only unbalanced
harmonic torque orders for the engine are the major orders
which are all in phase. If the transmission shaft between the
engine and the propeller is very flexible compared with the
engine crankshaft the oscillating system can be reduced to the
simple two-mass system shown at (c) in Fig. 98, which consists
of the engine masses at one end of the transmission shaft and
the propeller mass at the other end.

Let J, = polar moment of inertia of the engine masses,
J» = polar moment of inertia of the propeller,
C = torsional rigidity of the transmission shaft,
w, = phase velocity of the one-node mode of vibration,
M,,, = max. value of the #th order harmonic torque of
the engine,
M, = max. value of the nth order harmonic torque of
the propeller.

Then, assuming unit amplitude at the engine, the amplitude
at the propeller is — (J,/]).

The equilibrium amplitude at the engine is given by equa-
tion (246), viz.,
_T,.A.R.2%

0, = TSI radian, . . (246)
In this case,
T,,.A.R.ZG=M5,, ian(Js/Jm)= (Mm-Jp iMpn'Js)/Jw
w? = %-Gﬁj’) [from Equation (16)]
E(J aa) =Ja + Jn(Js/Jw)g = Je(Jc + Jm)/]n-
Men - Jp £, T,) « —JI»
CU.+172 Js+ 10

This is the equilibrium amplitude at the engine. The
equilibrium amplitude of twist between the engine and the
propeller, i.e. the total twist in the transmission shaft, is

Ienl = (0o¢ - 001:): where oy = — onc(J n/J »)-

Hence, Oy =
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,,) ,

Hence, [0,] = 9,,.(‘]" +J
»

J
. [ (Mqu :‘:Mﬂn-Js) 3.
e 0, =12 = __omJe . .
ie 16,] ) radian (292)
Also fio = equilibrium stress in transmission shaft

= 9—'#, where Z = polar moment of resistance
of shaft = x . 4%16 for a solid
shaft of diameter 4,
and fy=maximum vibratory stress in transmission shaft

' = f;o X (dynamic magnifier).

Equation' (292) shows that the magnitude of the vibratory
stress in the transmission shaft depends on the phase relation-
ship between the engine and propeller torque variations.
These relationships are shown in Fig. ¢8.

" For the fundamental or one-node mode of vibration the
propeller swings in opposite phase to the engine. Hence for
minimum input energy and therefore minimum vibratory
stress in the propeller shaft the engine and the propeller
harmonic torques must be in phase as shown in the phase and
vector diagrams in Fig. ¢8.

The torque variation curves shown at () and (b) in Fig. g8
are the harmonic torques exerted by the propeller on the shaft,
ie. they represent the propeller resistance torques. Since
driving and resisting torques act in opposite senses it follows
that the engine driving torque is in phase with-the propeller
resisting torque when the greatest positive value of the engine
torque variation occurs at the same instant as the greatest
negative value of the propeller resistance torque variation.

The position of, say, No. I engine crank when the #th order
harmonic component of the engine torque curve has its greatest
positive value can be determined from an harmonic analysis of
the engine torque curve, as already explained. If this crank
is assumed to be placed in this position the corresponding
position of the propeller for correct phasing is as follows :—

For the 3rd order component of 3-bladed propellers in twin-
screw ships, position Y in Fig. g8.
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For the 3rd order component of 3-bladed propellers in
single-screw ships, position Z in Fig. 8.

For the 6th order component of 3-bladed propellers in
single-screw ships, position Y in Fig. 98.

For the 4th order component of 4-bladed propellers in
twin-screw ships, position Y in Fig. 98.

For the 4th order component of 4-bladed propellers in single-
screw ships, position Y in Fig. ¢8.

With correct phasing the equilibrium amplitude of twist
in the transmission shaft becomes

- e R

Since, for the single-node mode of vibration the only un-
balanced harmonics of the engine torque curve are the major
orders, the engine types to which Equation (293) applies are
those having a ‘major order number equal to the number of
propeller blades. Thus for 3-bladed propellers this method
of reducing the vibration stress in the transmission shaft
could be employed with 6-cylinder, 4-stroke cycle engines,
or 3-cylinder, z-stroke cycle engines. In both types the
fundamental unbalanced engine harmonic is the 3rd order.

In the case of 4-bladed propellers the method applies to
8-cylinder, 4-stroke cycle engines and 4-cylinder, 2-stroke
cycle engines, since both these types have the 4th order harmonic
unbalanced.

In steam reciprocating engines the torque curve must be
analysed to see if there is a sufficiently large unbalanced har-
monic of blade impulse frequency.

It should be noted that for the oil engines,

M, =T,.A.R.Za,

where T, = the resultant nth order harmonic component of
the tangential effort curve for one cylinder,
A = area of cylinder,
R = crank radius,
Za = vector sum of ordinates at each cylinder from
normal elastic curve, assuming unit amplitude
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at free end of crankshaft (if the transmission
chaft is very flexible compared with the crank-
chaft, Za = the number of cylinders, very
nearly).

The foregoing method of determining the position of the
pmpe]ler blades relative to the engine cranks should be regarded
as approximate only because in specific examples peculiarities
of wake distribution and of the combustion characteristics of
the engine cylinders might cause serious departures from this
theoretical method of phasing for minimum vibrational energy.
In all cases, therefore, it is desirable to check the phasing by
torsiograph tests.

Furthermore, due to the variation of the individual phasing
of the engine torque harmonics with engine speed and mean
indicated pressure, and the variation of the individual phasing
of the propeller harmonics with the speed and trim of the ship,
and with the prevailing weather conditions, it-follows that the
phase relationship between the propeller blades and the engine
cranks which is correct for one set of operating conditions
is not necessarily the optimum. setting for other operating
conditions.

For these reasons it is not easy in practice to apply the
principle of phasing the propeller and, cranks for minimum
vibrational energy, except perhaps in the case of strongly
marked impulses such as are obtained when the three per re-
volution impulse from 2 3-bladed propeller interferes with the
three per revolution torque impulse from 2 6-cylinder, 4-stroke
cycle engine.

There is therefore a tendency to avoid using a propeller
which excites the same fundamental impulse frequency as the
engine. When this is dome it is, of course, not possible to
utilise the propeller impulses as & ‘means for partially cancellin
the engine impulses. On the other hand, the possibility of th,
propeller impulses augmenting the engine impulses is avoidihe
irrespective of the prevailing operating conditions.

Thus, for example, according to this last arrangel
3-bladed propeller would not be used with 6-cylinder, 4hncipal
cycle engine or with a 3-cylinder 2-stroke cyclefescend.
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Similarly, a 4-bladed propeller would not be used with an
8-cylinder, 4-stroke cycle engine, or a 4-cylinder, 2-stroke
cycle engine. In steam engine installation§ a 3-bladed pro-
peller would not be used with an engine having a strong three
per revolution component of the torque curve, anE:I a 4-bladed
propeller would not be used with an engine having a strong
4th order torque component.

The principles underlying the phasing of the blades of a
propeller relative to the engine cranks, so that the vibrational
energy is minimised, can also be applied where the driven unit
is of a type which has a strongly marked torque harmonic of
the same impulse frequency as the corresponding harmonic
of the engine torque, e.g. an oil engine driven air-compressor
plant. In such cases it is necessary to make an harmonic
analysis of the torque curve of the driven unit to determine the
amplitude and phase of the relevant harmonic component.
The idea already described of arranging a multi-cylinder in-line
engine so that the node occurs at the centre of the cylinder
group with the cylinders arranged in symmetrical pairs relative
to the node and then firing these symmetrically disposed pairs
of cylinders simultaneously is, in effect, an application of the
phasing principle just discussed.

In geared engine installations or of engines driving through
clutches, it is, of course, impossible to fix any phase relationship
between the driving and the driven units.

Aero-Engine/Air-Screw Combinations.—Just as in the
case of marine propellers the air forces on an air-screw are liable
to cause torsional vibration in the shaft system when the air-
flow is not uniform over the air-screw disc. Such effects would
be experienced, for example, with two air-screw discs operating

close together, or when the air-screw blades pass close to other
‘hodies such as fuselage, wings, radiators, etc., or when the
r-screw shaft is inclined to the direction of flight.
" Although these disturbing factors can be expected to pro-

" noticeable effects in severe cases, they are not likely to

e dangerous, because the node is usually situated very
" the air-screw, so that the vibrational energy imparted to
" by air-screw disturbances is small, and is insignificant
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compared with the energy imparted by the #ngime torque
components. e ST

It is of interest in this connection to note that if an air--
screw having # blades is mounted directly in front of another
air-screw having #, blades and the two air-screws rotate in
opposite directions at the same speed, the fundamental fre-
quency of the impulses imparted to the shaft is

2.7 0

N =5CF ofnandn,
For example, if both air-screws have three blades,

impulses per revolution.

ie. n=m =3,

then N =2 X 3 X 3/3 = 6 impulses per revolution.
If, however, # =2andn,=3,

then N =2 X 2 X 3/1 = 12 impulses per revolution.

It should also be noted that in the latter example, since
# and #, have no common factor (excluding 1), there is a periodic
lateral force of the same fundamental frequency as the periodic
torque. This lateral force is an additional source of vibration
which is not present in the first example.

With regard to the phasing of air-screw blades relative
to engine cranks, it is customary in the case of small ungeared
in-line engines fitted with 2-bladed air-screws, where the engine
is invariably started by hand, to phase the air-screw so that a
good leverage can be obtained by pulling on a blade when the
engine passes over compression centres. In larger installations -
where the engine is started mechanically this requirement need -
not be fulfilled, and in such cases it is desirable to phase éf
air-screw so that the blades are favourably located relag_'mm
the engine cranks for withstanding the explosion SI}Q/
ginated in the engine cylinders. This is especially { 4o
in the case of metal air-screws. The blades arefy yoyooo
responsive to the explosion shocks originated ir, thought

f . ; s
adjacent to the air-screw, the shocks from t?i/aluating the
cylinders being cushioned to some extent byjeo pe ysed for
structure. If, for example, a blade is loca}’be remembered,
to the adjacent crankthrow the explosion f{334i,na1 principaj
pin tend to produce lateral accelerationy e anq descend.
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plane of rotation and at right angles to the length of the blade,
which may cause very high blade stresses. The stiffness of
the crankcase prevents the whole of the explosion force from
being applied to the air-screw, and the effect is further re-
duced if the blade is phased so that its length lies parallel to the
adjacent crank-arm,

The problem of the phasing of air-screw blades does not
arise, of course, in the case of geared installations.

Engine Direct-Coupled to a Hydraulic Dynamometer.
—Examples of torsional vibration of the shaft systems of
engines undergoing bench tests due to periodic impulses origin-
ated by rotation of the rotor of a hydraulic dynamometer
within its casing are not unknown.

If % = number of cells in each side of the rotor, and #, =
number of cells in each side of the casing, then

N— n X 1y
T HCF.of »n and n,’
where N = number of torque variations per revolution of the
rotor,
H.C.F. = highest common factor.

The frequency of the applied impulses is, therefore,
F = N X revs. per min. of rotor.

If # and #, have no common factor, then in addition to the
above periodic torque there will be an unbalanced periodic
lateral force in any fixed direction through the centre of the

“gor of fundamental frequency
flow . F, = (n X revs. per min.).

- De eXPr 14 he noted that if # and #, are both even there is no
-, close toge. gic force,
}?‘;‘?::e:vuia%}ere both membgrs rotate the frequency of the
W, Although E‘n by th-e following expression :—
. noticeable y32), impulses per minute when the two
"¢ dangerous members rotate in the same direction.
" the air-screp, impulses per minute when the two

*. by air-screw. Iembers rotate in opposite directions,
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Thus, if the natural frequency of torsional vibration of
this installation is 600 vibs./min., corresponding to a 4th order
critical speed at 150 r.p.m., a 6th order critical at 100 r.p.m.
and a 12th order critical at 50 r.p.m., the values of the 4th,
6th and 12th order harmonic components corresponding to
mean indicated pressures of 82, 48 and 2y Ibs. per sq. in.
respectively, should be used for calculating the equilibrium
amplitudes and stresses when these are intended for the sub-
sequent evaluation of the amplitudes and stresses at resonance.

Another important aspect of the variation of mean indicated
pressure with speed is the effect on the magnitudes of the
forced vibration amplitudes and stresses at mon-resonant
speeds, Since any reduction of mean indicated pressure
usually causes a corresponding reduction of the magnitudes of
the harmonic components, the equilibrium amplitudes are
likewise reduced. This in turn implies a reduction of the
forced vibration amplitudes and stresses.

Thus a true representation of the resonance curve, corre-
sponding to any given harmonic order, can only be obtained
by evaluating the forced vibration amplitudes at each non-
resonant speed from the equilibrium amplitude corresponding
to the mean indicated pressure at that speed. As a general
rule, this method of obtaining the resonance curves is regarded
as a refinement, and these curves are usually plotted by multi-
plying the equilibrium amplitude corresponding to the mean
indicated pressure at the resonant speed by the dynamic
magnifiers appropriate to each speed. The more accurate
method of plotting the resonance curve must, however, be
used when it is required to compare the theoretical diagram
with torsiograph measurements at non-resonant speeds.

Aero engines—Since a similar relationship exists between
the torque and speed of a fixed pitch air-screw as between
the torque and speed of a marine propeller, it might be thought,
at first sight, that the foregoing method of evaluating the
vibration amplitudes at reduced speeds could also be used for
aero-engine/air-screw combinations. It must be remembered,
however, that an aeroplane possesses an additional principal
degree of freedom, namely, the ability to rise and descend.
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This implies that theoretically any mean indicated pressure
from no load to full load can be maintained at all r.p.m. In
a marine propeller drive, for example, if full load mean in-
dicated pressure is applied at low r.p.m. there is an immediate
increase of r.p.m. until a speed is attained at which the power
developed by the engine balances the power absorbed by the
propeller, all in accordance with the propeller law. The same
result would be obtained in the case of an aero engine coupled
to a fixed pitch air-screw and operating under steady conditions
in level flight. In both cases the difference between the power
absorbed by the propeller or air-screw at low speed and the
power which could be developed by the engine at maximum
permissible mean indicated pressure is an indication that energy
is available for accelerating the power plant to full speed.

In the case of the aero engine, however, even when coupled
to a fixed pitch air-screw, it is possible to put the machine into
an appropriate climbing attitude which will absorb the power
corresponding to maximum permissible mean indicated pres-
sure at any r.p.m. within the operating range of the engine.
If the engine is coupled to a variable pitch propeller, and
assuming that there is sufficient pitch range, it is possible to
maintain the maximum permissible mean indicated pressure
in level flight at any r.p.m. within the operating range by an
appropriate adjustment of blade pitch. Conversely, by putting
a machine with a fixed pitch air-screw into a glide it is possible
to reduce the mean indicated pressure below that corresponding
to the propeller law, and the same result can be achieved with
a variable pitch air-screw in level flight by fining the blade pitch.

A fundamental difference between aircraft and marine
engines therefore is that whereas the mean indicated pressure
of marine engines operating at low r.p.m. is fixed within fairly
narrow limits by the propeller law, the mean indicated pressure
of aero engines can be varied over a wide range at each operating
speed by alterations in the attitude of the aircraft or by altering
the setting of a variable pitch air-screw.

In common with other types of prime mover, however, the
mean indicated pressure of an aero engine is limited by the
necessity for avoiding overloads. Thus to avoid detonation
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the use of full throttle at low r.p.m. is not permissible, whilst
the mean indicated pressure of a supercharged engine at rated
altitude must not be exceeded at lower altitudes because of
mechanical and heat dissipation problems. In general, there-
fore, the calculation of torsional vibration amplitudes and
stresses in aero-engine installations should be based on the
following mean indicated pressures.

For a normally aspirated engine, the maximum permissible
mean indicated pressure at sea-level should be assumed at all
speeds from minimum to maximum cruising r.p.m., and at
take-off. Below minimum cruising r.p.m., ie. at idling and
warming-up speeds, the mean indicated pressure determined
from the normal air-screw load curve may be used. Ifa variable
pitch air-screw is employed the high pitch load curve should
be used.

In supercharged engines the maximum permissible mean
indicated pressure at rated altitude should be assumed at all
speeds from minimum to maximum cruising r.p.m., whilst at
idling and warming-up speeds the mean indicated pressure
corresponding to the normal air-screw load curve may be used.
It should be borne in mind, however, that in supercharged
engines a somewhat higher mean indicated pressure is permitted
for short periods during take-off than would be permitted for
continuous operation at sea-level, and this higher pressure
should be used for determining the torsional vibration ampli-
tudes and stresses at take-off r.p.m.

In the absence of specific data full throttle operation down
to 1000 r.p.m. should be assumed.

An important factor which must be taken into account
when evaluating the torsional vibration stresses originated
by the harmonic components of the torque curves of high-speed
engines is the effect of the inertia correction.

Table 54 shows that the 2nd, 3rd and 4th order inertia com-
ponents have negative values. These are all sine terms, and
since the 2nd, 3rd, and 4th order gas pressure sine components
all have positive values, it follows that at high rotational speeds
the magnitudes of the 2nd, 3rd and 4th order resultant har-
monic components for each cylinder may increase when the
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mean indicated pressure is reduced, and thus attain their
maximum values when the gas pressure is zero.

For this reason it is necessary to investigate the effect of
reducing the mean indicated pressure in certain cases. For
example, the major 3rd order component of a high-speed 6-
cylinder, in-line, 4-stroke cycle engine has a large inertia term.
It is therefore possible that when the rotational speed exceeds
a certain value the numerical value of the inertia term is
greater than that of the gas pressure sine term corresponding
to the maximum permissible mean indicated pressure. When
this occurs the magnitude of the resultant 3rd order harmonic
component increases when the mean indicated pressure is
reduced and reaches its maximum value when the inertia term
alone is acting. Under these circumstances, therefore, the tor-
sional vibration stresses in an aero-engine installation would
be more severe when the air-screw was wind-milling than when
it was being driven by the engine.

The same conditions may occur in all types of power plant
where it is possible to idle the engine at high rotational speeds and
where, under full load, the numerical value of the inertia term
at these high rotational speeds is greater than that of the gas
pressure sine term.  In all such cases it is advisable to calculate
the torsional vibration stresses at the relevant speeds, on
the assumption that there is no gas pressure in the engine
cylinders.

It should also be noted that even when the numerical value
of the inertia term is smaller than that of the gas pressure sine
term, the magnitude of the resultant harmonic component
may still attain its maximum value when the gas pressure in
the cylinder is zero. It is only when the numerical value of
the inertia term is less than one-half that of the gas pressure
sine term that the maximum value of the resultant harmonic
component is attained at full load mean indicated pressure.

In a paper entitled ' Permissible Amplitudes of Torsional
Vibration in Aircraft Engines” (S.4.E. Preprint, March,
1939), F. Masi states that the modern high performance air-
craft engine requires complete freedom from excessive torsional
vibration throughout its normal operating range, extending
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from 30 per cent. to 170 per cent. of rated speed, whilst military
engines intended for extensive diving manceuvres should be
safe up to possibly 130 per cent. of rated speed.

The most severe engine operating conditions from the point
of view of torsional vibration, according to the above statement,
are shown in Fig. 99, where rated power and speed refers to
take-off conditions.
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Operation beyond the limits shown in this diagram is either
prohibited or is impossible with a fixed pitch air-screw.

Automobile Engines.—The undulations of the road and the
presence of a gearbox render it possible for an automobile
engine to develop a wide range of mean indicated pressure at
each operating speed. It is advisable, therefore, to assume
full load mean indicated pressure over the whole of the speed
range, although in general the engine will never be called upon
to run for any length of time at very low r.p.m. with wide open
throttle.
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Typical Values of the Full Load Mean Indicated Pressure.
(a) High-Speed, Four-Stroke Cycle, Spark Ignition (Petyol)

Engines.
Automobile engines: 100 to 130 lbs. per sq. in.
Aero engines : From 140 lbs. per sq. in. for a

normally aspirated engine using
low octane fuel to 240 lbs. per
sq. in. for a fully supercharged
engine using high octane fuel.
(6) High-Speed Compression Ignition Oil Engines.
100 to 130 lbs. per sq. in.

(¢) Large, Slow-Speed Marine Oil Engines.

4-Stroke cycle, single-acting
engmes, normally as-

pirated . . . 9o to 95 Ibs. per sq. in.
4-Stroke cycle, smgle—a.ctmg
engines, supercharged . 120 to 130 Ibs. per sq. in.
2-Stroke cycle opposed-pis-
ton engines . . 85 to go Ibs. per sq. in.

2-Stroke cycle, mngle—actmg
and double-acting engines 80 to 85 lbs. per sq. in.

Examples of Calculations for Equilibrium Amplitudes
and Torsional Vibration Stresses at Non-Resonant
Speeds.

ExaMPLE 46.—Calculate the equilibrium amplitudes and vibra-
tion stresses at non-resonant speeds for the one-node mode
of vibration of a 4-stroke cycle, single-acting engine
direct coupled to a 275 kw. electrical generator, 6-cylin-
ders, 134-inch bore X 18-inch stroke, operating at 310
r.p.am. ; firing order, 1-3-5-6-4-2.

The equivalent oscillating system is shown in Fig. 13; the
one-node frequency calculation in Table 1 ; and the phase and
vector diagrams in Fig. 86.
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(a) Equilibrium Amplitudes.~ -These are calculated from
Equation (248), viz.,

100.D2.R.T,.%a
0y = 4;—2—2(]'—;2)_—— degrees, . (248)
where D = diameter of cylinder in inches = 1335 ins.,
R = crank radius in inches = g ins.,

T, = nth order resultant harmonic component of tan-
gential effort curve for one cylinder in lbs.
per sq. in. of piston area, from Table 60,*

Za = vector sum for one-node vibrations, from Fig. 86,

F = one-node frequency of torsional vibration, 2520
vibs. /min., from Table 1,

Z(J . 4% = effective moment of inertia of whole system

referred to free end of crankshaft in Ibs.-ins.
sec..

The value of Z(J . 4?) is obtained from columns D and F of
the frequency tabulation, Table 1 (see next page).

4100 X 1352 X 9 X T, . Za
2520 X 2520 X 570
T,.2Za
538

Table 66 gives the values of the equilibrium amplitudes and
equilibrium stresses for orders 54 to 12. The values for orders
less than 5% have not been included, because these critical speeds
are well above the normal operating speed.

The equilibrium stresses are obtained from the equilibrium
amplitudes by multiplying the latter by the maximum stress

* Strictly speaking, the values of Ty con'espondmg to the mean 1nd1ca.ted
pressure at each speed as d d from
should be used instead of the values given in Ta.ble 60, wh:ch are ior a constant
mean pressure corresponding to full load conditions. The mean pressure at
reduced speeds and therefore the values of T, are smaller than the full load
values. Hence the low speed amp].\tud% and stresses in Table 66 are over-

i d. Since an electri is ially a constant speed
machine, however, the more refined method need only be employed if there
is an unduly severe critical in the Jower speed range which has to be negotiated
when starting or stopping the engine.

VOL. 1L.—39

Hence, 7=

- degrees.




610 TORSIONAL VIBRATION PROBLEMS

for one degree deflection at the free end of the crankshaft
given in column K of Table 1, viz. 4 7600 Ibs. per sqg. in. per
degree.

The stresses so calculated are the maximum stresses, and
they occur at the nodal point, where the slope of the normal
elastic curve is a maximum. If required, the stress at any other
point in the shaft system can be obtained by multiplying the
equilibrium amplitudes by the stress for one degree deflection
given in column K of Table 1 corresponding to the point in
question, e.g. the stresses at No. 3 cylinder are obtained by
multiplying the equilibrium amplitudes by 5040.

ErFECTIVE MOMENT OF INERTIA.

One-Node Frequency.

Mass. CoL Dol Table . | Col. Fof Table . a g.a.
No.rcyl . 165 1°0000 1:0000 165'0
No.zcyl. . 165 09430 0-8g00 147°0
No.3cyl. . 165 08325 0-6930 1145
No. 4cyl . 165 06745 04540 750
No.5cyl. . 165 04780 0-2285 377
No.6¢cyl. . 165 02540 0-0645 106
Generator . 23,500 —0-0293 0:0009 20°2

Z(] .a% = 5700
Ibs.~ins. sec.2.

It should be noted that the specific stresses in column K of
Table 1 are based on a shaft diameter of 8} ins., which is the
actual diameter of the shaft at the nodal point in this installa-
tion. If the stress at any other point is being investigated,
care should be taken to allow for any difference in shaft dia-
meter, as follows :—

f=ta. (B,

where fs = actual stress for diameter d,
fo = stress based on diameter d,.



DETERMINATION OF STRESSES 611

The vibration stress at any non-resonant speed N is obtained
from the values of the equilibrium stresses by multiplying the
latter by the dynamic magnifier given in Equation (234),

ie. Vibration stress at N‘r.p.m. = fo X -
I—
e

TABLE 66,
EQUILIBRIUM AMPLITUDES AND EQUILIBRIUM STRESSES.

One-Node Frequency, B = 2520 Vibs.|Min.

Har- Critical Res. Harm. Vector Res. Harm, | Equilibrium | Equilibrinm
moni¢ Speed, Compt. Sum. Compt. Amplitude, Stress.
Order.| per Cyl. all Cyls,
N, Ty Za Tn. S0 A fso

" RPM. | Lbs/Sq. In. Degrees. | Lbs./Sq. In.
5% 459 *60 1090 £6'540 | xo-o1215 +92°50
6 420 4'5 4182 18-800 0+03500 266-00
6% 388 35 1-090 3820 | 000710 5400
7 360 30 0223 0-669 0-00124 9'40
7% 336 25 0123 0307 0700057 433
8 315 2'0 0-223 0°446 000083 630
8 297 15 1:090 1-635 0:00303 2300
9 280 10 4182 4182 000777 59°10
of 265 o8 1°090 0872 000162 12:30
10 252 o7 0223 0156 0100029 220
10} 240 06 0123 0074 0°00014 106
Ir 229 o5 0223 o112 0°00021 160
11} 219 o4 1°090 0436 000081 6°x5
12 210 03 4182 1255 000233 1770
F Table 6o | Fig. 86 T,.Za | 7600.0

n 538 B

Values of the dynamic magnifier, I Ner corresponding to
I— }—I,‘
diffferent values of the frequency ratio N/N, are given in
Table 5T, from which the vibration stress at any non-resonant
speed \may be determined.
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For example, the vibration stresses at various speeds for the
gth order are as follows :—
f.» = & 591 Ibs./sq. in. for gth order (Table 66),
N, = 280 r.p.m. for gth order critical.

Dy ic Magnifier. Vibration Stress.
R NN, e ) Dym. W5, X o
140 o5 1°34 + 791 Ibs. /sq. in.
168 06 156 92°1
196 07 1°96 1160
224 o8 278 164°0
252 09 526 3100
308 T 476 281°0
336 12 2727 1340
364 13 45 856
392 14 _1704 616
420 5 o080 47'3

The values given in the last colummn of the foregoing table
may be plotted to give the flanks of a resonance curve similar
.to that shown in Fig. 75, and similar curves may be obtained
for other orders from the corresponding values of N, and fi,.

ExaMPLE 47.—Marine Installation.—Calculate the equilibrium
amplitudes and vibration stresses at non-resonant speeds
for the one- and two-node frequencies of a 4-stroke cycle,
single-acting marine oil engine. Six cylinders, 620 mm.
bore X 1300 mm. stroke, developing 2750 B.H.P. at 138
r.p.m. Firing order 1-4-2-6-3-5.

The equivalent oscillating system is shown in Fig. 15 ; the
one-node and the two-node frequency calculations in Tables 3
and 4 respectively; and the phase and vector diagrams in
Fig. 8.

A. One-Node Frequency Caloulations.—Since in this example
there is a long length of intermediate shafting between the
engine and the propeller, the two-mass method of calculating
the equilibrium stresses can be employed without much error.
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For steel shafts the equilibrium stresses are given by
Equations (240) or (241) in cases where the system is subjected
to a single harmonically varying torque. When there are
several cylinders, each having a series of harmonically varying
components of the torque curve, these equations are modified
as follows :—

_4.D*.R.T,.Zas J,
i R
when R and d are in inches,
f _D*R.T,.22s_J, )
* 36. Jo+Js
when R and 4 are in feet.

- (295)

In these expressions
[+ = equilibrium stress in Ibs. per sq. in.,
D = dijameter of cylinder in inches,
R = crank radius, unit as specified above,
T, = nth order harmonic component of tangential effort
curve in Ibs. per sq. in. of cylinder area,
2Za = vector sum for #th order,
d = diameter of shaft at node, unit as specified above,
J. = moment of inertia of engine masses, including fly-
wheel if fitted,
J» = moment of inertia of propeller. (Including allowance
for entrained water as explained in Chapter 3.)

In the present example it is convenient to have R and 4 in
feet, i.e. to employ Equation (295).
Hence, D = 620 mm. = 24-4 ins.,
R = 650 mm. = 2-13 ft.,
T, = values from Table 6o,
Za = values from Fig. 87 for one-node vibs.,
d=r1ft.,
J. = 8175 tons-ft. sec.? (from Table 3),
J. = 1°97 tons-t. sec.? (from Table 3),
. _ 244* X 213 X T, X Zas 197
Le Jo= 36 X 1 (10-145)
= 685 . T,Za Ibs. per sq. in.
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Table 67 gives the values of the equilibrium stresses and
amplitudes for orders § to 6, the equilibrium amplitudes being
obtained from the equilibrium stresses by dividing the latter
by the maximum stress for one degree deflection at the free end
of the crankshaft given in column K of Table 3, i.e. 3260 Ibs.

per sq. in.
TABLE 67.
EQUILIBRIUM AMPLITUDES AND EQUILIBRIUM STRESSES.

One-Node Frequency, F = 165-5 Vibs.[Min.

Harmonic | Critical |Res. Harm.| Vector |Res, Harm.| Equilibrium Baquilibrium
Order. Speed. Compt. Sum. Compt. all |  Amplitude. Stress.
per Cyl. Cyls.

* e x.w"g'a n Tn. 22 Demmes. Lbs./éa. In.

3 331 40 0048 1920 | & 0°00404 + 13°15

I 166 40 0024 o960 0100202 657
1} 110 40 0179 7160 0-01500 49°00
2 83 35 0024 0840 000176 " 575
2% 66 30 0048 1°440 000303 987
3 55 25 5781 | 144°500 030400 99000
3% 47 20 0048 o960 000202 657
4 4t 15 0024 0-360 000076 2-47
4% 37 10 0179 1790 0:00375 1225
5 33 8 0024 0192 0°00040 131
5% 30 6 . 0048 0288 000060 197
6 28 45 5781 26-000 005450 178-00

F/n | Table6o| Fig. 87 . Jrof3260 |6:85.Ty. Za

The equilibrium stresses are the maximum stresses occurring
at the node, and the equilibrium amplitudes are the amplitudes
at the free end of the crankshaft.

The equilibrium amplitudes and stresses may also be ob-
tained from Equation (247) or (248).

In the present example it is convenient to express R in feet
and J in tons-ft. sec.?, so that Equation (247) applies—

183.D2.R.T,.2Za )
6= “31”—2(]-;%—- degrees, . (247)
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where D = diameter of cylinder in inches = 24-4ins.,
R = crank radius in feet =213 ft.,
T, = nth order harmonic component of tangential
effort curve for one cylinder, Ibs./sq. in.,
Za = nth order vector sum,
F = one-node frequency = 165'5 vibs./min., from
Table 3,
2(J . @%) = effective moment of inertia of system referred to
free end of crankshaft, in tons-ft. sec.2.

TABLE 68.

ErrFECTIVE MOMENT OF INERTIA—MARINE INSTALLATION.

One-Node Vibs. ‘Two-Node.

Mass, ! . B
cdp. | oo a, (J.a. | GlF. a, (J.ad.
(Table 3.) | (Table 3.) (Tabie 4.)

No.xcyl | 16350 | 1°0000| 1-0000 | I'6350 I‘OOOO’ 10000 | 16350
No.zcyl. | 08175 | 0'9943| 09860 | 08075 | 07748| 05990 | 0°4900
No.3cyl. | 1:6350 | 0:9858| 09710 | I'5900 | 0°4626| 02140 | ©°3500
No.4c¢yl. | 146350 | 0°9541| 0°9I00 | I°4900 |—0'4764| 0-2260 | 0°3695
No.5cyl.| 08175 | 09346 0'8720 | 07125 |—0'7854( 06175 | ©°5050
No.6¢yl. | 1-6350 | ©0'9124| 0°8325 | 1'3600 |—1'0064| I‘0I20 | 1'6500
Proplr. . | 1:9700 (—4:0076 | 16:0600 | 31'6500 | ©0-0210| 0:0004 | ©'0008
2(J . a%) = 39°2450 Z(J . a*) = 570003
tons-ft. sec.? tons-ft. sec.?

L‘(J . d’) is obtained from columns D and F of Table 3, as

shown in Table 68 above.

_ 183 x 2442 X 213 X T, . %a
Hence, 0o = 1555 X 1655 X 392430

- 12:62:1 ¢ degrees at free end of crankshaft.
The equilibrium stress is obtained by multiplying the equilibrium
amplitude by the maximum stress per degree in column K of
Table 3,

te.  fo=

T,2a

X 3260 = 703 . T, . Za Ibs.[sq. in.
261 <3 703 fsq
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This value is only 3 per cent. greater than the value obtained
by applying Equation (295), viz. f, = 685 . T,Za, so that the
values tabulated in Table 67 are confirmed by applying
Equation (247).

In the case of marine installations with the machinery at the
after end of the vessel, i.e. with a short stiff shaft between the
engine and the propeller, the agreement may not be so good
as in the present example, and in such cases Equation (247) or
(248) should be used in preference to Equation (294) or (295).

Propeller Torque Variation—In the present example the
engine drives a 4-bladed propeller, so that there is a fourth
order torque variation due to the passage of the propeller
blades through the varying wake.

The equilibrium stress may be obtained by modifying
Equation (240) as follows':—

_ 5T T, Je :
Joo= £ o (.L T J,) 1bs./sq. in.,
where T, = maximum value of propeller torque variation in
Ibs.-ins.,
d = diameter of shaft at node in inches,
J. and J, = moments of inertia of engine masses and of
propeller, in Ibs.-in. sec.?, or tons-ft. sec.2.

The engine develops 2750 B.H.P. at 138 r.p.m., and the

4th order critical speed is at 41 r.p.m.
3
Hence, B.H.P.at 41 r.p.m. = 2750(111—38) =72 B.H.P.
_ B.H.P. X 33000
Mean torque = SN
__ 72 X 33000
T 2.mo41
The propeller torque variation may be taken to be 10 per cent.
of the mean torque,
ie. 4th order propeller torque = 4 925 Ibs.t.,
variation = 4 11100 lbs.-ins.
Also, d = 12 ins.; J, = 81y5 tons-ft. sec.?; and J, = 1-97
tons-ft. sec.? (from Table 3).

= 9250 lbs.-ft.
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_ is-I X 11100 /8175
° 12° (8-175 + 197/
= = 264 Ibs.[sq. in.

(Note—The equilibrium stress for the 4th order engine
torque variation is only + 2-47 Ibs. per sq. in. from Table 67.
Hence, the principal cause of 4th order one-node vibrations is
the propeller torque variation.)

B. Two-Node Frequency Calculations.—The equilibrium
amplitudes and stresses for the two-node mode of vibration are
obtained from Equation (247) or (248). In the present example
it is convenient to express R in feet, and J in tons-ft. sec.?, so
that Equation (247) applies, viz.,

Py 1-83.D2.R.T,.2a
p = ot on S

Hence, fs

degrees, . . (247)

" F2L2(J.a%)
where D = diameter of cylinder in inches = 24-4 ins.,
R = crank radius in feet = 2-13 ft.,

T, = nth order harmonic component of tangential
effort curve for one cylinder in lbs./sq. in.
(Table 60),
Za = nth order vector sum (Fig. 87),
F = two-node frequency = 1041 vibs./min. (Table 4),
Z(J . a? = effective moment of inertia referred to free end of
crankshaft
= 5-0003 tons-ft. sec.? (Table 68).
183 X 2442 X 213 X T,,. Za
T04I X IO4I X §
T,.Za
2330
The equilibrium stress is obtained by multiplying the
equilibrium amplitude by the maximum stress per degree from
column K of Table 4, viz. + 18,270 Ibs. per sq. in.,

ie. o= Tgs'Sf” X 18270
= 783 . T, . Za lbs. per sq. in.

Values of 6, and f,, for orders 6 to 1z are given in Table 69.

Hence,

degrees.
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The vibration stresses at any non-resonant speed for any
given order may be obtained by multiplying the equilibrium
stress for that order by the appropriate dynamic magnifier
from Table 51.

TABLE 69.

EQUILIBRIUM AMPLITUDES AND EQUILIBRIUM STRESSES.

Two-Node Frequency, F = 1041 Vibs.|Min.

Har- | Cotical | Res.Ham.| Veotor | Res. Harm.| Equilibrium | Equilibrium
Compt. 9 . itude, 3
monle | Speed. Compt, Sum. ,ﬁ‘l"é‘}’é, “Amplitude, Stress.
* | RPYM (esen| Tua Degies. s/ 1.
6 174 45 0031 0'1395 | £0'000060| & 1'096
64 | 160 35 0'929 | 32510 0001395 25455
7 149 30 0007 0-0z10 0°000009 0164
7% 139 2-5 4506 | 11-3000 0004850 88500
8 130 20 04007 0°0140 0000006 o110
8% 123 15 0920 1°3950 0000600 10'960
9 116 10 0031 0-0310 0000013 0243
=3 110 08 0929 07430 0000319 5830
10 104 07 0:007 0°0049 07000002 0-038
10} 99 06 4506 277100 0°001160 21200
11 95 o5 0007 00035 0°000001 0027
11} 91 o4 0'929 03720 0000160 2:930
12 87 03 0°031 0-0093 0000004 0073
Fin Table 60 | Fig.87 Jo/18270 |7°83.T,.Za

For example, the vibration stresses at non-resonant speeds
for 7% order two-node vibrations are

fio = + 885 1bs. per sq. in., from Table 69,
N, = 139 r.p.m. for 7% order critical.

The values given in the last column of the following table
may be plotted to give the flanks of a resonance curve similar
to that shown in Fig. 75, and similar curves may be obtained
for other orders from corresponding values of N, and f,,.
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RPM. N/Ne. Fe it O G o
69 05 134 + 119
83 06 156 138
97 07 1:96 174

j3¢3 08 278 246
125 09 526 466
153 I 476 421
167 12 C 22y 201
181 13 145 128
195 14 104 92
208 15 080 71

The vibration stresses in the foregoing table are calculated
on the assumption that the mean indicated pressure remains
constant ‘and equal to the full load value over the whole of
the speed range, whereas, to be strictly accurate, the mean
indicated pressure corresponding to the propeller law should
have been used.

If this refinement is introduced the table is modified as
follows :—

The full load M.I.P. and M.B.P. are 130 and 10 lbs. per
sq. in. respectively, these values corresponding to 2750 B.H.P.
at 138 r.p.m. B

The mean friction pressure is therefore 20 Ibs. per sq. in.
The mean indicated pressures at speeds differing from 138
r.p.m. can therefore be calculated in the manner already
explained and the revised vibration stresses are then obtained
as shown in the following table :—

R.PM. | MB.P. | MFP. | MLP. Ty T, Za. fror for

138 110 20 130 —_ _ —_ —
69 27 20 47 24 10:8 +84'5 *II3
83 39 20 59 24 10°8 845 132
97 54 20 74 2'3 10°4 815 160
110 69 20 89 22 99 775 216
124 88 20 108 21 95 74'3 392
152 132 20 152 1-8 8x 633 302
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Note.—Za = 4506 for 7+5 order, from Table 69.
T, is obtained from Fig. 83A.
fio =783 T, Za, as before.
f, =dyn. mag. X f,,; the dynamic magnifier
being obtained from Table 51.
Above 138 r.p.m. the mean indicated pressure reaches
unattainable values.
ExamPLE 48.—Calculate the equilibrium amplitudes and stresses

for the system shown in Fig. 100, i.e. a triple expansion
steam engine direct coupled to a marine propeller.

HPMPLP Propeller,
.;. E , ¥, 15 dia. ld
L ' N
Jg=30Tons.Ft.Sec? Jp=170 T, fe.Sec?
-4

Normal Elastic Curve.

Equivalent Two-Mass System.

181"
181 1

Fig. 100.—~Marine steam engine installation.

The engine dimensions are: H.P. cylinder, 26-inch
diameter ; M.P. cylinder, 45-inch diameter; L.P. cylinder,
77-inch diameter ; 54-inch stroke, developing 3000 LH.P. at
70 r.pam.

In this example there is a long length of shafting between
the engine and the propeller, so that the system may be reduced
to the equivalent two-mass system shown in Fig. 1oo without
much error.

For one-node vibrations the engine masses vibrate with
practically equal amplitudes. Hence, only the major orders
need to be considered, i.e. the 3rd, 6th, etc., orders. All other
orders very nearly cancel.
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Natural Frequency of System.—This is obtained from

Equation (229)—
C(
_955J L+J )

where C = torsional rigidity of shaft = G L
_m.dt_m X125t Lo
I, = TR T 0239 ft.* units,
Le. C= 772%(;—————&“0239 = 1020 tons-ft. per radian.

10203 +7) _ i :
Hence, F= ¢ 55\/ =Sx7 = 210 v1bs: Jmin.

and N, = 210/3 = 70 r.p.m. for 3rd order
= 210/6 = 35 r.p.m. for 6th order.

Resultant Harmowic Torque —Since the harmonic components
of the engine torque curve for each cylinder are in phase for the
major orders, and since in this example all cylinders vibrate
with very mnearly equal amplitudes, the resultant harmonic
torque for the whole group of cylinders is the sum of the torques
due to each cylinder.

The 3rd and 6th order harmonic torques are therefore
obtained from the factors given in Table 60 as follows :—

3rd Order. 6th Order.
Cyliner, | AT30f | pactorfrom | * Harmonic Factor from. ‘Harmonic
Cytinder. | “Table Go. Tangontil Table 6o. Taggeotia

rt. 3

Sq. In. Lbs./Sq. In. Lbs. Lbs./Sq. Tn. Lbs,
H.P. 532 + 120 + 6384 + 30 + 1596
M.P. 1590 40 6360 10 1590
L.P. 4660 13 6058 03 1398
Total tan. effort for all Cylinders = = 18 802 + 4584
at 27-inch crank radius 1bs.
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Equilibrium Amplitudes—These are obtained from Equation

(232),
e, wpy= LR (I
s ¢ C Je+7s
where |T,| = tangential effort for all cylinders in tons
= 84 tons for 3rd order
= 2-05 tons for 6th order,
R = crank radius in feet = 2-25 ft.,
C = torsional rigidity of shaft in tons-ft. per radian
= 1020,
J.and J, = moments of inertia of masses
= 3 and 7 tons-ft. sec.? respectively (see Fig. x00).

> radians,

Hence,
_ B4 x225 X7 . .
18] = &+ g — 0013 radian for 3rd order.

Similarly, [8,| = & 0-00317 radian for 6th order.

Equilibriwm Styesses—These are obtained from Equation
(241),

Le. Juo= W(ﬁﬁ) Ibs. per sq. in.,

where 4 = diameter of shaft at node in feet = 1-25 ft.
'3 X 84 X 225 X
Hence, foo= & %_5_7
= 4 538 Ibs. per sq. in. for 3rd order.
Similarly,  fi, = 2 131 Ibs. per sq. in. for 6th order.

The vibration stresses at any non-resonant speed may be
obtained from the equilibrium stresses by multiplying the latter
by the dynamic magnifiers given in Table 51. .

The foregoing calculations are based on the assumption
that, although for any given order the magnitudes of the
harmonic components differ for the various cylinders, the
position of the respective crankpins relative to top dead centre,
when the harmonic components attain their maximum ampli-

* |8] is the equilibrium amplitude of twist, ie. the angular deflection
between the engine masses and the propeller.
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tudes, is the same for all cylinders. It has already been ex-
plained that, in general, this condition is not fulfilled in the
case of reciprocating steam engines. The differences in phase
are, however, usually small, so that the assurmnption of identical
phasing is permissible for a preliminary analysis. The phase
relationships should be taken into account in the manner
previously described if the preliminary investigation shows
that a more detailed analysis is desirable.

The calculations also assume that full load mean indicated
pressure is maintained over the whole of the speed range.
Since, in this example, the 3rd order critical speed happens
to coincide with the full load operating speed this procedure
is correct for calculating the equilibrium amplitude and stress
at the 3rd order critical speed. It is not accurate for speeds
above and below the 3rd order critical speed where, strictly
speaking, the magnitudes of the harmonic components cor-
responding to mean indicated pressures determined according
to the propeller law should be used. For example, the equi-
librium amplitude and stress at the 6th order critical speed,
i.e. at 35 r.p.m., is over-estimated in the foregoing calculations
to the following extent :—

Since (M.I.P.) = (M.B.P.) + (M.F.P.),

and assuming a mechanical efficiency at full load, ie. at 70
r.p.m., of go per cent., hence, at full load,
M.B.P. =0-9 (M.LLP.), and M.F.P. =o1 (M.LP.).
At the sixth order critical speed, i.e. at 35 r.p.m., therefore,
(M.B.P.) = 09 (M.L.P.)(35/70)? = 0225 (M.L.P.),
ie. (M.LP.) = o225 (M.IP.) + o-x (M.LP.) = 0325 (M.L.P.).
The magnitude of the harmonic component is approximately
proportional to the M.L.P.

Hence, if |T,| = 6th order tangential effort at 70 r.p.m.
(i.e. the value assumed in the fore-
going calculations),

|T4’| = 6th order tangential effort at 35 r.p.m.
(i.e. at the 6th order critical speed),
then [T/ Tal = (M.LP.)Y/(M.LP.) = 0-325.
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The equilibrium amplitude and stress is directly propor-
tional to the magnitude of the harmonic component.
Hence, at the 6th order critical speed, i.e. at 35 r.p.m.,
18, = 0:325 X 0°00317 = = 0-00103 for 6th order,
Joo == 0325 X I3T = = 425 lbs. per sq. in.
An excellent analysis of the tangential effort diagrams for
reciprocating steam engines is given in a paper by F. P. Porter,
Trans. American Soc. of Mech. Engs., APM-51-22.

ExaMPLE 49.—Assuming that the system shown in Fig. 100
employs a 3-bladed propeller giving a propeller torque
variation of -+ 10 per cent. of the mean torque, calculate
the equilibrium amplitude and stress at the 3rd order
critical speed, ie. at 70 r.p.m. (a) when the propeller is
correctly phased relative to the engine cranks; and
(b) when the propeller is incorrectly phased relative to
the engine cranks.

Propelier Torque Variation.—The engine shown in Fig. oo
develops 3000 LH.P. at 7o r.p.m. :

Assuming a mechanical efficiency of go per cent. and a
propeller torque variation of 4 10 per cent., the maximum
amplitude of the propeller torque variation is
M, = L 0-1(B.H.P. X 33000) -+ 01 X 0°9 X 3000 X 33000

on 2.7.N 2 X 3T4I6 X 70
=+ 20,250 Ibs.-ft.
= 4 904 tons-ft.
The 3rd order harmonic torque due to the engine is
M,,, = +|T,|.R, where |T,|= +1880z Ibs. and
R = 225 ft., from Example 48
ie. Mm = 418,802 X 2:25 = 4 42,300 lbs.-ft.
= = 18-9 tons-ft.

Equilibrium Amplitude.
From Equation (292)
|0¢| p— (M”‘ . JP :tMDﬂ M Jl)
CUs+ 1)
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where, in this example,

J» = 70 tons-ft. sec.?
Jeo = 3-0 tons-ft. sec.? from Example 48.
C = 1020 tons-ft./radian

89X74+904%X3_, .
T R (1323 -+ 27-12)/10200

= 0-0I56 or 0:0103 radian.
The equilibrium amplitude is therefore - 0-0103 radian with
correct phasing and = 0-0156 radian with incorrect phasing.
Equilibrium Stress—f,, = C . |0,|/Z.

The stress will be expressed in Ibs. per sq. in. if C is expressed
in Ibs.-in. per radian, and Z in ins.?,

Hence, [0,| =

ie. C = 1020 tons-ft./radian = 27,400,000 Ibs.-ins, /radian.
The shaft diameter is 15 ins. at the node.

Hence Z = = . d3/16 = 663 ins.3,

ie.  f, = & 27,400,000 X [0,[/663 = -+ 41,300 16,

= = 41,300 X 00103 = =+ 426 Ibs. per sq. in. with

correct phasing

=+ 41,300 X 00156 = 4= 645 Ibs. per sq. in. with
incorrect phasing.

I

These values compare with the value of 4 538 Ibs. per
sq. in. for the 3rd order engine torque variation acting alone,
and show that the forced vibration stresses with the propeller
correctly phased are over 30 per cent. less than those which
occur when the propeller is incorrectly phased.

Forced Vibration Amplitudes.—The amplitudes of forced
vibration at any point in a complex system at speeds above
or below a critical speed, where damping can be neglected, may
be obtained by the tabulation method described in Chapter 2,
for it can be shown that the system as a whole vibrates with
the same frequency as the forcing torque, and that as for free
or natural vibration each mass is at one of its extreme positions
of displacement at the same instant as the remaining masses.

The method is best described with the aid of ome or two
simple examples.

VOL. 1.—40
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Two-Mass Systems.—A simple two-mass system is shown
at (I) in Fig. ro1. In this system the two masses have the

J|wh = 2000 | w?=1500; M=$50000 lbs Ins ot Jp
4y=2000 12=2000 Lbs . Sec?
- Normal Eestic
=
+10000 | e _ _
200000t 31900
Tl 1500; = 50000 by s a g T w=1800s M= £30000 Los s dy and

et

=00 | E3 & .@
T{’r\‘ el Mode | | 0gu-00083 oign-06T o “&*"‘
£3 < T SR r Erint0

7
B f
B‘Z:Mzafl/x Twe N 5!\ &u,?-om Dlogram &%@1
o 00150
o ] wie 1500;_tte 2500 or i end 550000 a1

1 e voa T
00T et e, & o0 nq-,-pm\v ua-/—agfoo
i -——»m ) rede [ T 5,
oo ”!“I’adc a0 7 o
I

-0
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OFym 0031
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Fic. ror.—Forced Vibration Amplitudes. Two-mass system.
same polar moments of imertia, so that there is only one
principal mode of free vibration, the node being situated



DETERMINATION OF STRESSES 627

midway between the masses. Assuming that a periodic
torque of magnitude 4 50,000 bs.-ins. is applied to the left-
hand mass [, at a frequency of 370 cycles per minute, determine
the forced vibration amplitudes.

Natural Frequency.—The natural frequency of the system
is given by Equation 17, viz.,

F, = 9:55v2. C[J] = 9-55V/2 X 2,000,000/2000
= 427 vibs./min.,
or w,? = 2000.
Tabulation Method.—The forced vibration tabulation is
given at (i) in Table 70 (pp. 628-9), which is built-up as follows :—

Column A.—Corresponds to column A of Table 1, and con-
tains a description of the various masses in the oscillating
system.

Column B.—Corresponds to column D of Table 1, and con-
tains the polar moments of inertia of the masses.

Columm C.—Corresponds to column E of Table 1, and
contains the maximum acceleration torques due to vibration
of the masses with unit amplitude, at the frequency of the
forcing impulses.

The frequency of the forcing impulses in this example is
370 per minute.
Hence, w? = (2.7 .F[60)? = 1500,
and the torque per radian deflectionis M = J. w?,
ie. for mass J;, M = 2000 X 1500 = 3,000,000 Ibs.-ins.

Columm D.—Corresponds to column F of Table 1. Since,
however, there is an external torque acting on the system the
amplitude at the first mass cannot be assumed to be unity as
in a natural frequency tabulation. Instead, the symbol x
is inserted to denote the unknown forced vibration amplitude
at the first mass J,. The remaining amplitudes are then
obtained in terms of x as the tabulation proceeds.

Column E.—Corresponds to column G of Table 1, and con-
tains the torques due to acceleration of the various masses,
i.e. the products of columns C and D.
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Colummn F.—This column does not occur in Table 1. Tt
contains the values of the externally applied forcing torques
at the various masses. In the present example there is only
one external forcing torque and this is applied at mass J,.
It is therefore entered in column F opposite mass J,.

Column G.—Corresponds to column H of Table 1, and
contains the total torque, including the externally applied
torque.

Column H.~Corresponds to column I of Table 1, and con-
tains the torsional rigidities of the respective sections of the
shaft system. In the present example there is only one shaft
section.

Colummn I.—Corresponds to column J of Table 1, and
contains the change in deflection up to the next following
_mass, i.e. column G divided by column H.

In general the tabulation proceeds in the same manner
as for the natural frequency tabulations described in Chapter 2,
except for the introduction of the externally applied forcing
torque and the insertion of the symbol » to denote the unknown
forced vibration amplitude at the first mass.

The value of % is obtained by equating the last torque
summation in column G to zero, since the torque beyond
the last mass is zero.

In this example

= 25,000/I,500,000 == 0-0167 radian.

Finally, the forced vibration tabulation is completed by
inserting this value of x in the table, as shown by the lower
part of Table 70 (i).

It is of the utmost importance to observe all changes of
sign carefully.

Diagram (II) in Fig. 101 shows the forced vibration ampli-
tudes for this system when a forcing torque of + 50,000 Ibs.-ins.
is applied to mass J, at a frequency of 370 per minute. The
apparent shift of the node towards mass J, should be noted.

Alternative Method.~The forced vibration amplitudes may
also be determined by the following analytical method.
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Referring to Diagrams (I) and (II) of Fig. ro1,

let oy, = amplitude of forced vibration at mass J,,
ap, = amplitude of forced vibration at mass J,,
ap = amplitude of oscillation assumning rigid shafting,
ay, = amplitude at mass J, due to twisting of the shaft,
oy, = amplitude at mass J, due to twisting of the shaft.

Loy Will be referred to as the rolling amplitude, since it is
calculated on the assumption of rigid shafting, under which
condition the whole system would simply be rolled back and
forth by the action of an externally applied periodic torque.
It should be noted that this amplitude corresponds to the speed
fluctuation obtained from calculations which neglect the
elasticity of the shafting. «y is constant throughout the
system, and this gives the misleading impression that the speed
fluctuation is also constant throughout the system, a subject
which will be discussed later. Since oy is constant throughout
the system, it does not induce any stress in the shafting.

oy is the amplitude of the twist in the shaft and therefore
the magnitude of the stress induced in the shaft is proportional
to ay.

ap may be calculated by equating the maximum value of
the externally applied torque to the maximum value of the
acceleration torque when the masses are oscillating at the
impulse frequency, assuming rigid shafting,

ie. (max. amp. of applied torque)=(max. ang. accn. of masses)
X (total moment of inertia of masses),

or M= — w?. ag(Z]).

In this example, when w? = 1500, M = — I500 X 4000 X ag
= — 6,000,000 . oy,

and, since M = 50,000, oy, = — 50,000/6,000,000

= — 00083 radian.

ay, may be obtained by multiplying the equilibrium ampli-
tude corresponding to the mode of free vibration under con-
sideration by the appropriate dynamic magnifier.
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The equilibrium amplitude is given by Equation (246),
namely,
_T,.A.R. %

A N

In this example the forcing torque of = 50,000 Ibs.-ins. is
applied at mass J,, where, as shown at Diagram (I) in Fig. 1o1,
the amplitude on the normal elastic curve is unity.

Hence, T,.A.R.Za = Z(M . ay) = 50,000,

also w,? = 2000,

and Z(J . a%) = (2000 + 2000) = 4000 lbs.-ins. sec.?,
since the amplitude on the normal
elastic curveis unity at both masses,
50,000

Le. 2 — = 0-00625 radian.
2000 X 4000

The dynamic magnifier is given by Equation (234), namely,

Dynamic magnifier =
=,
In this example w? = 1500 ; and w,? = 2000.
S
I — I500/2000
and ay, = 0, X dynamic magnifier = 0-00625 X 4
= 0-0250 radian.

Hence, Dynamic magnifier 4,

This is the twist amplitude at mass J,. The twist amplitude
ay, at mass J, is determined from that at J, by the respective
ordinates on the normal elastic curve,
ie. ay, = — oy, = — 00250 radian.

The forced vibration amplitudes can now be evaluated
by simple algebraical summation of the rolling and twist
amplitudes,

ie. op = (ag + ay).
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In this example, therefore,

ap, = — 0°0083 + 0-0250 = -+ 0-0167 radian,
and g, = — 0-0083 — 00250 = — 00333 radian.

These values agree with the values obtained by the tabula-
tion method, see Table 70.

The dotted line in Diagram (II) of Fig. 1ox represents the
rolling amplitude ag, which is constant throughout the system.
It is of interest to note that the rolling amplitude line cuts the
vibration amplitude line at the true nodal point. Thus the
total motion of the shaft can be regarded as compounded of
a periodic twisting motion superimposed on a periodic rolling
motion of the same frequency, and phased as shown in Fig. 1o1.

It should also be observed that the virtual node divides the
shaft into two lengths, such that the torsional rigidity of the
portion between the virtual node and the right-hand mass
is 3,000,000 lbs.-ins. per radian. The frequency of the right-
hand mass J, about the virtual node is therefore 370 vibs./min.,
which is the frequency of the forcing torque applied to mass J.

Coefficient of Speed Fluctuation.—This is obtained from
Equation (421), viz.,

C=2.05.7,
where # = order number of oscillations, i.e. the number
of complete oscillations per revolution.

Assuming 1 oscillation per rev. in this example, then,
Atmass J;: € =2 X 00167 X I == 0-0334 = I/30.

At mass J,: € =2 X 00333 X I == 00666 = 1/15.
Thus the cyclic irregularity at mass J, is only half that at
mass Js.

If rigid shafting is assumed the cyclic irregularity at both
Jiand J, is
C=2.up.7=2 X 00083 X I = 00167 = 1/60.
It is therefore apparent that large errors can be introduced

if the elasticity of the shafting is neglected when calculating
cyclic speed fluctuation.
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Diagram (III) in Fig. 101 shows the forced vibration ampli-
tude curve when the forced vibration frequency is greater
than the natural frequency of the system. In this diagram
w? = 2500, and the forced vibration amplitudes are calculated
as follows :—

Rolling Amplitude.

M = — 2500 X 4000 X oy,
ie. ap = — 50,000/10,000,000 = — 0:0050 radian.

Twist Amplitude.

8, = 0-00625 radian, as before (this assumes that there
is no change in the magnitude of the forcing
torque due to the change of speed).

1
I — 2500/2000
The negative sign should be carefully observed. It is
important in these calculations, although it is usually neglected

when plotting resonance curves (see Fig. 75),

Dynamic magnifier = ~ 4.

ie. ty, = — 4 X 000625 = — 0-0250 radian,
and, from the normal elastic curve,
ty, = — ay, = 0-0250 radian.
Hence, finally,
oy, = — 00050 — 0°0250 = — 0-0300 radian,
op, = ~ 070050 + 00250 == 0-0200 radian.

These values would also be obtained by applying the
tabulation method.

Forced Vibration Amplitudes with Forcing Torques Applied
to both Masses.—If the forcing torque at J, is exactly in phase
with the forcing torque at J, the forced vibration amplitudes
can be determined by the tabulation method already described.
The final tabulation is given at (iii) in Table 70 and the forced
vibration amplitudes are shown graphically at (V) in Fig. ror.

It should be noticed that since the forcing torques are in
phase they have the same sign in the forced vibration tabulation.
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The forced vibration amplitudes may also be determined
from the rolling and twisting amplitudes as follows :—

Rolling  Amplitude.—Since the forcing torques are equal
in magnitude and phase the total torque acting when the
system is assumed to be rigid is the sum of the two forcing
torques.

Hence, My + Mg) = — w?. oy . (Z]),
ie. (50,000 4 50,000) == — I500 X 4000 X ug,
or og = — 100,000/6,000,000 =— 0-0167 radian.

Twist Amplitude.—The phase and vector diagrams are shown
at (V) in Fig. 101, from which the value of T,.A.R.Za
in the expression for the equilibrium amplitude is found to
be zero. Hence the equilibrium amplitude and therefore the
twist amplitude is zero at all points in the system. This
result can also be deduced from the fact that the forcing torques
are of equal magnitude and of the same phase, whereas the
specific deflections on the normal elastic curve, Diagram I of
Fig. ro1, are of equal amplitude but opposite phase. Thus
the energy imparted to the system by the forcing torque at
mass J, is neutralised by the energy imparted to the system
by the forcing torque at mass J,.

In this case, therefore, the forced vibration amplitude has
a constant value — 0-0167 radian throughout the system, i.e.
both masses vibrate in phase through an amplitude + 0-0167
radian at a frequency of 370 vibrations per minute, and there
is no twist and therefore no stress in the connecting shaft due
to this vibratory motion. The speed fluctuation, assuming
that there is one complete oscillation per revolution, is

C=2.ap.7=2 X 00167 X I = 00333 = I/30.
These results agree with the tabulation method.

An alternative method of obtaining the forced vibration
amplitudes, where there are several masses and several forcing
torques applied at different points in the system, is to prepare
separate tabulations for each forcing torque and then combine
the results of the various tabulations vectorally. This method
must be employed when the various forcing torques are not
in phase.
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In the present example, Table 70 (i) is the tabulation for
the forcing torque at mass Jy, whilst Table 7o (ii) is the tabula-
tion for the forcing torque at mass J,. Since the forcing
torques are in phase the resultant motions when the two
forcing torques act together are obtained by adding, alge-
braically, the motions given by the separate tables,
ie. oy = 0-0167 — 00333 =— 0-0x67 radian at mass J,

ag, = — 00333 + 0-0167 =— 0-0167 radian at mass J,.
This result agrees with the previous results.

The special case when the forcing torques are in exact
anti-phase can also be solved by a single forced vibration
tabulation. The final result in the present example is given
at Table 70 (iv). In this case the forcing torque at mass J,
must be entered in its appropriate position in the forced
vibration table with a negative sign, indicating that it is of
opposite phase to the forcing torque at mass J;.

The forced vibration amplitudes in this case are shown at
(VI) in Fig. 101. )

The forced vibration amplitudes can also be determined
from the rolling and twisting amplitudes, as follows :—

Rolling Amplitude—Since the forcing torques are equal in
magnitude but opposite in phase, the total torque acting when
the system is assumed to be rigid is zero. Hence there is no
rolling amplitude in this case.

Twist Amplitude—The phase and vector diagrams are shown
at (VI) in Fig. 101, from which it is seen that the value of
T,.A.R.Zain the expression for the equilibrium amplitude
is M . ey = 100,000 lbs.-ins.

T,.A.R.Za _ _ 100000

Hence, 6, = W Z(]. @) 2000 X 4000 = 0-0125 radian.

The dynamic magnifier is
I —_—
100~ *
~ 2000
ie. ay, = 4 X-0:0I25 = 0'0500 radian,
and ay, = — ay, =— 00500 radian.

This agrees with the values obtained by tabulation.
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Alternatively, the forced vibration amplitudes may be ob-
tained by combining the separate tabulations at (i) and (ii)
in Table 70. Since the forcing torque at mass J, is in anti-
phase to the forcing torque at J,, the values in Table 7o (ii)
must be subtracted, algebraically, from the values in Table 70 (i),

ie. oy, = 00167 + 0-0333 = 0-0500 radian,
g, = — 0:0333 — 00167 = — 0-0500 radian.

This result also agrees with the previous results, and shows
that when the forcing torques are of equal magnitude and
opposite phase the shaft connecting the masses is subjected
to a pure twist and there is no rolling motion.

The cases discussed so far are all fairly simple and easy to
interpret. It should be noted that although the examples are
based on a symmetrical system with two equal masses and
forcing torques of equal magnitude, the same methods can be
applied in cases where the system is not symmetrical and where
the forcing torques are not of equal magnitude.

The case where the forcing torques are not in phase (ex-
cluding the simple special arrangement where the forcing tor-
ques are in anti-phase) will now be discussed.

Diagram VII in Fig. 101 refers to the case when the forcing
torque at mass J, is 9o° out of phase with the forcing torque
at mass J,. As already mentioned the resultant forced vibra-
tion amplitudes can be obtained by combining amplitudes
produced by applying each torque separately. The separate
tabulations are given at (i) and (i) in Table 70, and since the
forcing torques are phased at 9o° the separate amplitudes must
also be combined vectorally with this phase difference. The
phase diagram is shown at the top of Fig. ror (VII), and from
this the following resultant forced vibration amplitudes are
obtained :—

g, = 1V0-0167% + 00333 = 00373 radian.
g, = 1/0:0333? + 0-0167% = 0-0373 radian.
There is a phase relationship between ay, and o, which is

determined by the signs of the displacements in the separate
tabulations.
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The resultant forced vibration amplitudes can also be
calculated from the rolling and twist amplitudes, as follows :—

Rolling Amplitde—The vector diagram when the system is
assumed to be rigid is shown at the top of Fig. zox (VII), the
resultant forcing torque being 70,710 Ibs.-ins.

Hence, the rolling amplitude when w? = 1500 is

oy = — 70,710/6,000,000 = — 0-0118 radian.

Twist Amplitude.—The vector diagram for obtaining the
resultant specific input energy is shown at the top of Fig.
101 (VII). In this case the vector for M, must be drawn in
the opposite direction to the corresponding crank in the phase
diagram, because the normal elastic curve at (I) in Fig. 1ox
shows that the specific amplitude at mass J, is — 1.

Hence, in the expression for the equilibrium amplitude,
T,.A.R.Za=170,710 lbs-ins. per radian deflection at
mass J;,

T,.A.R.Za 50710

ie. 8, = wE 0.4~ 800000 = 00088 radian.
The dynamic magnifier is L 500 = 4,
™ 2000
so that ay, = 4 X 00088 = 0-0354 radian,
and ay, = — oy, = — 00354 radian,

It is now necessary to bear in mind that the rolling amplitude
is in anti-phase to the resultant forcing torque, whereas the
twist amplitude is in phase with the torque when the applied
frequency is less than the natural frequency, and is in anti-
phase to the torque when the applied frequency is greater
than the natural frequency, assuming, of course, that damping
is negligible at non-resonant speeds.

In the present case the applied frequency is less than the
natural frequency, so that the twist amplitude is in phase with
the torque.

Thus there is a go° phase relationship between the rolling
and twist amplitudes, so that the resultant motion must be
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obtained by means of the vector diagram shown at the top of
Fig. ror (VII),

ie. oy, = 00373 radian,
similarly, g, = 00373 radian,

and there is a phase relationship between o, and ap, which
can be determined by means of vector diagrams.

These results agree with those previously obtained.

The motion cannot be portrayed in a simple co-planar
diagram because of the go° phase relationship between the
rolling and twist diagrams, but the three-dimensional sketch
in the middle of Fig. ror (VII) may help to enable the motion
to be visualised.

The lower diagram in Fig. 1ox (VII) gives an end view of
the various motions at each end of the shaft from which the
rolling and twisting motions have been projected.

As in the simple cases previously described, the resultant
motion is composed of rolling and twisting, the former causing
merely a cyclic variation: of speed, and the latter stressing the
connecting shaft. As before, the node for the twisting motion
is at the same position in the shaft as the node formed by the
normal elastic curve for natural vibration.

Two-Mass System with Forcing Torque Applied at Node.—
This interesting special case is illustrated in Fig. 1oz, the system
being the same as before. Since this system is symmetrical the
node is located at the middle of the shaft and the stiffness of
the sections of shafting between each mass and the node is
therefore C = 4,000,000 lbs.-ins. per radian, as shown at (I)
in Fig. ro02.

The forced vibration amplitudes can be determined by the
tabulation method already described, a third line being intro-
duced between the lines for J, and J, in which the forcing
torque is entered in column F. Since there is no mass at
the point of application of the forcing torque the value of J
in column B is zero, as shown in Table 71. The tabulation
is carried out precisely as before, and the forced vibration
amplitudes for the case where w? = 1500 are shown graphically
at (II) in Fig. 71.
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These amplitudes can also be determined by calculation,
as follows :—

_I_l wc’ = 2000
Jy= 2000 Jy= 2000 Lbs. Ins. Sec?
+ M=450000 LbsiisE
+1-0000 ~— e
KA
"
~1:0000

¢=4000000 C3=4000000 Lbs. Ins/Radian

I w= 500
0,(;2-—0-0020

e i e N\
(g Xg=—0-008. o(py=+0-0063 TO(F;—O 0083
I0| w?= 2000

4 ‘sz- 4]

S —
(R0 =~0-0063 op=+0-0063
| w?=2500

D(Fz-+o!~ 0013

k2
PSS iy
Sgeg=-0-005|  C(p=+0-0063

Fr1e. 102.—Forced vibration amplitudes. Two-mass system.

Rolling Amplitude—Since the forcing torque and the mass
system are the same as at (II) in Fig. 101, the rolling amplitude
is also the same, namely, — 0-0083 radian.
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Twist Amplitude—Since the forcing torque is applied at
the node where the specific amplitude is zero, the value of
T,.A.R.Za is also zero. Hence in this case there is no
dynamic magnification of the applied torque, even at resonance.

There is, however, a definite amount of twist in the sections
of shafting at either side of the point where the forcing torque
is applied, due to the transmission of this torque to the masses.

Let C; and C, = the torsional rigidities of the sections of

shafting between the node and masses
J: and J, respectively,
m, and m, = the corresponding proportions of the
forcing torque,
ay = the twist amplitude at the node due to
the transmission of 7, and m,.

Then, if C = the torsional rigidity of the total length
of shafting,

Ci=C.(Ji+JlJe; and Co=C. (Jo+ Ja)/J1;
also m1=M-J1/(J1+Jz);Mdmﬁ=M-J2/(J1+Jz)’
where M = the total forcing torque,
but my=Cy.oy; and my=C,. ay.

M.J,.
Hence, oy = my[Cy = m,|Cy = (Mf&-j{_;“
Now, the frequency equation for a two-mass system is
wp— COL+T)
¢ Jl . J2
so that, finally, M

Iy = T
wt(Jy+ Jo)
In_the present example w,?=2000; C = 2,000,000;
J1=Js=2000; and M = 50,000.
0000
Hence oy = 50000 _ 006 jan.
’ ™= 2000 X 2 X 2000 — 00003 radian

The forced vibration amplitudes are therefore as follows :—

At mass J,, g, = — 0-0083.
At point of application of forcing torque,
wp, = — 0°0083 + 00063

= — 0-0020 radian.
At mass J,, ap, = — 00083 radian,
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These values agree with the values obtained by tabulation,
as shown at (II) in Fig. 102.

The forced vibration amplitudes at other frequencies of
application of the forcing torque are determined in precisely
the same way. Fig. 1oz (III) shows the forced vibration
amplitudes when the applied frequency is equal to the natural
frequency, ie. w?=w?=2000. In this case the rolling
amplitude is the same as the twist amplitude, so that the
resultant forced vibration amplitude is — 0-0063 at each mass
and zero at the node. Fig. 1oz (IV) shows the forced vibra-
tion amplitudes when the applied frequency is greater than
the natural frequency. In this case the rolling amplitude is
smaller than the twist amplitude, so that the resultant forced
vibration amplitude is — 0-0050 at each mass and - 0-0013
at the node.

At very low applied frequencies the twist amplitude is
very much smaller than the rolling amplitude, so that the
resultant forced vibration is very nearly constant and equal
in magnitude to the rolling amplitude throughout the system.
At .resonance the two masses simply swing through a sufficient
amplitude to balance the applied torque and there is no
dynamical magnification, the amplitude at the node being
zero. At very high applied frequencies the rolling ampli-
tude becomes very nearly zero, so that the amplitude at the
masses also becomes very nearly zero, whilst the point of
application of the forcing torque, i.e. the node, vibrates with
the same amplitude that the masses would have to swing
through to balance the applied torque without any dynamical
magnification.

Three-Mass Systems.—A simple three-mass system is
shown in Fig. 103. A symmetrical system has been chosen
as an example purely for the purpose of simplifying the cal-
culations. The methods are, of course, equally valid for
unsymmetrical systems.

Natural Frequencies—There are two principal modes of
vibration in the case of a three-mass system, the natural fre-
quencies for the symmetrical system shown in Fig. 103 being

F=g35vC]] or 955v3.C/J (see Chapter 1).



QJCuLATING SYTEM

S 0 S0t

el
U0
A\ ;
ot i e 7
A0 GO0 b b %
i 4
et el 1o 10 wike) 0o et by Y
g L ‘ ] _{J-mma
ﬁ'a‘“’ TT Rote |0 l I | i g
‘ . | . :“@“’” et B g
. -y . i
.H»; o .-,MIM —L C(W"%‘M_M . Oiwnomw L?MM‘ l_ J MM 7
sl sty T ¥
v i e | et “'W"'%WM o 8
| A L] ‘_{% S
b’
itk - Dol | e %
% | ‘ :
| | I
7 ' o b (oo OFH | ‘
B AN R 19 A - N 1] %‘Mmﬁ%
Kai-.oam T\ﬁf bATY T\ .
% o SR el i G

Ti. 103—Forced vlbraion amplitudss, Three-mass st



DETERMINATION OF STRESSES 645

In the present example
C = 4,000,000 and J = 2000,

i.e. One-node frequency

= F; = 9°55V/4,000,000/2000 = 427 vibs./min.,
and @?y = 2000.
Two-node frequency

= F; = 9-55V/3 X 4,000,000/2000 = 740 vibs./min.,
and w?,4 = 6000.

Tabulation Method.—The forced vibration tabulation when
the applied frequency is 370 vibs./min. (w?= 1500) and an
external torque of - 50,000 Ibs.-ins. is applied at J, is given
in Table 2. This table is built-up in precisely the same
way as already described for two-mass systems, an additional
line being inserted for the third mass.

The forced vibration amplitudes are shown graphically in
the bottom diagram at (I) in Fig. 103.

The forced vibration amplitudes can also be determined
from the rolling and twist amplitudes in the manner already
described for two-mass systems, but modified to take account
of the fact that with three masses there are two principal modes
of natural vibration.

Rolling Amplitude.—As before, M = — w? . ag . (Z])

In this example )
w* = 1500; M= 30,000; and (J) = (J1+ J2 + Js) = 6ooo.

—_ . Soeco . i
Hence, o= 1500 X 6000 — 0-0056 radian.

The rolling amplitude diagram is shown separately at (I)
in Fig. 103.

Twist Amplitudes (1-Node Mode).

e . T,.A.R.Za

As before; equilibrium amplitude, §, = wd T

In this example the forcing torque is - 50,000 lbs.-ins.
applied at mass J,, where the specific amplitude on the one-
node normal elastic curve is + I (see diagram of oscillating
system in Fig. 103).

The value of (T, . A. R. Za) is, therefore, 50,000.
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Also, w,y? = 2000, and X(J . a?) == 4000, since the specific
amplitudes on the one-node normal elastic curve are + r at
mass J;, — I at mass J,, and zero at mass J,.

Hence, 0, = 2oogof<°:ooo = 0-0063 radian.
The dynamic magnifier when
; I
w? = I500 is 1500 = 4,
~ 2000
ie. ay, =4 X 00063 = 0-0250 radian,
ay, = — ay, = — 0-0250 radian,

ay, = 0 (since J, is at the node for this mode of vibration).

Twist Amplitudes (2-Node Mode),

For this mode of vibration w.* = 6000.

The value of (T,.A.R.2Za) is the same as for the one-
node mode, viz. 50,000, since the specific amplitude on the
two-node normal elastic curve is also + 1 at the point of applica-
tion of the forcing torque, i.e. at mass J,. The value of 2(J . a?)
for the two-node mode is

Miss. Specific .:v‘npﬁmde. Joat,
2000 1-0000 2000
2000 —2°0000 8000
2000 1-0000 2000
2(J . a¥)=12,000

50000

——2———— = 0-00069 radian.
6000 X 12000

Hence, 9, =
The dynamic magnifier is 1500 o — 1’3333,
~ Booo

ie. o v = 1-3333 >< 0-00069 = 00009 radian at mass J,,
a'y,= —2.a'y, = — 2 X 00009 = — 0-0018 radian at

o'y, = o'y, = 00009 radian at mass J.
These amplitudes are shown separately at (I) in Fig. 103.
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Forced Vibration Amplitudes.—The forced vibration ampli-
tudes are now simply obtained by adding the rolling and twist
amplitudes, algebraically, thus—

ag, = forced vibration amplitude at mass J,
= (ag + oy, + “’v,)
= (— 00056 + 0:0250 + 0-0000)
= + 0-0203 radian, at J,,
o, = (— 0°0056 + 0 — 0:0018) = — 0:0074 radian, at J,,
ap, = (— 00056 — 0-0250 -+ 0:0009)
= — 0-0297 radian, at J,.
These values agree with the values obtained by tabulation.
The curve of forced vibration amplitudes, given at the
bottom of Fig. 103 (I), shows that when the impulse frequency
is 370 vibs./min. the one-node twist amplitudes predominate.
This is because the impulse frequency is much closer to the
one-node than to the two-node natural frequency, so that the
dynamical magnification of the one-node amplitudes is greater.
It is also of interest to note that the true coefficients of
speed, assuming I oscillation per revolution in this example,
are as follows :—

At mass J;,C=2.0p .7 =2 X 00203 X I

= 0'0406 = 1/25.
Atmass Jp, C = 2. o, . # = 2 X 00074 X T

= 00148 = 1/68.
At mass J,,C=2.ap, .7 =2 X 000207 X I

= 00594 = I/17.

If rigid shafting is assumed,
C=2.ap.%=2 X 00056 X I = 00112 = 1/89.

" The importance of taking into account the elasticity of
the shafting when calculating speed fluctuation is therefore
apparent.

Fig. 103 (IT) shows the rolling and twist amplitude diagrams
and the resultant forced vibration amplitude diagram when the
forcing torque is applied at mass J, with an impulse frequency
of 640 vibs./min., i.e. w? = 4500.
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These amplitudes are obtained exactly as in the previous
case. :

In the present case the impulse frequency is greater than
the one-node natural frequency, so that the twist amplitude at
mass J, for one-node vibration is in anti-phase to the applied
torque. The impulse frequency is less than the two-node
natural frequency, so that the twist amplitude at mass J, for
two-node vibrations is in phase with the applied torque.
Neither mode of vibration dominates the resultant forced
vibration curve. These relationships are automatically ob-
tained when the tabulation method is employed, whilst the
analytical method enables the twist amplitudes due to one-
node vibration to be determined independently of those due
to two-mode vibration.

The analytical method is carried out precisely as before,
thus—

Rolling Amplitude.—In this case w? = 4500 and, as before,
M = 50,000 and J = 6000.

50000
™ 4500 X 6000

Twist Amplitudes (One-Node Mode).
6, = 00063 radian, as before.

In this case, however, the dynamic magnifier is
’ I

Hence, op = = — 0-0018 radian.

4500 _
- =
Hence, oy, = — 0-8 X 0:0063 = — 00030,
%y, =0,
ty, = — &y, = 0-0050.

Twist Amplitudes (Two-Node Mode),
', = 000069, as before.
In this case, however, the dynamic magnifier is
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Hence, a’y, = 000069 X 4 : : 00028,
av,——2><acv = — 00056,
o'y, = a'y, = 0:0028

Forced Vibration Amplitudes.

oy, = (ap + ay, + o'v)
=(— 0:0018 — 0:0050 + 0-0028) = — 00040 radian.
ar = (— 0-0018 4 0 — 0:0056) = — 0-0074 radian.
= (— 0-0018 - 0-0050 + 0-0028) = + 0-0060 radian.

These results will be found to agree with the results obtained
by the tabulation method. '

Fig. 103 (III) shows the rolling and twist amplitude diagrams
and the resultant forced vibration amplitude diagram when the
forcing torque is applied at mass J» with an impulse frequency
of 640 vibs./min., i.e. w? = 4500.

In this case, since the forcing torque is applied at the node
of the one-nvde normal elastic curve, the one-node twist ampli-
tudes are zero at all points in the system, i.e. the applied torque
cannot excite one-node vibration.

The resultant forced vibration amplitude curve is therefore
composed of the two-node twist amplitude curve superimposed
on the rolling amplitude curve. It should also be noted that
the rolling amplitude line crosses the twist amplitude lines at
the true nodal positions, as determined by the normal elastic
curve for the two-node mode of natural vibration. As in the
previous cases these relationships are automatically obtained
by applying the tabulation method, whilst the rolling and twist
amplitudes can be obtained independently by applying the
analytical method.

Fig. 104 shows a three-mass system which is of interest
because it serves to illustrate the principle of the dynamic
vibration absorber.

If masses J, and J, are regarded as forming a separate two-
mass system, the natural frequency of this separate system is
given by

= Cy(J2 + Ja)/(Jz - Js) = 4000.
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Assuming that the forcing torque acts at mass J,, if a third
mass, J,, is attached to J, by a shaft of torsional rigidity C,,
such that the natural frequency of this added mass on its
shaft, regarded as fixed at mass J,, is equal to the natural
frequency of the original system, then it will be found that

Jy=2000 J

J3=2000

— 2-Node Normal
+1:000 h i mEanc curve
I GI6 wl = 2535

Nodes _1-365 wéa= 9464

1-Node Normal
Elashc (urve

- i ’ 00076
1- Node Tuisk i v é ———"

P . &l=40:00284

2rode it |, _aEOF | o se0-000
;== 0-00208 - ] U

Rolling. 4 .

g = ~ 000208 - = !

I_Forced p
%J@u—. Torali | XfFp=0 | Ogy=0

XFp==-Q-00624 —

By_Tabulafion i~ w?= 4000

Al 8 c D E F 6 H I
J1 [2000{800000010-00625|-50000 | —  |<50,000 |§000,000]-0-00624]
J2 |2000l8000000] O 0 |50000 0 |4000000| O
/3 |2000]8 009000 O 4 4 4] - -~

Fie. ro4.—Forced vibration amplitudes. . Three-mass system.

when the system vibrates at the original natural frequency the
forcing torque is completely absorbed by the added mass, so
that the original system remains quiet. The mass J; on its
shaft C, forms an undamped vibration absorber for the system
composed of masses J, and J, on shaft C,, with the forcing
torque M acting at mass J,.
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This action can be investigated by the methods already
discussed, as follows i—

The natural frequencies of the three-mass system shown in
Fig. 104 can be obtained from Equation (19) and are as
follows :—

For the one-node mode, w 1 = 2530.
For the two-node mode, w,,? = 9464.

The corresponding normal elastic curves, assuming unit
amplitude at mass J,, are shown in the topmost diagram of
Fig. ro4.

Assuming that the forcing torque is applied to mass J,
with a frequency corresponding to w?* = 4000, the forced vibra-
tion amplitudes are obtained by the analytical method as
follows :—

Rolling Amplitude: M = — w?. ag . (Z]),
. _ 50000 . .
ie. o = ~ oo % Gooo = —© 00208 radian.
One-Node Twist Amplitudes.

ey . T,.A.R.Za
Equilibrium amplitude = 6, = wf 2. a0

In this case, T,.A.R = 50,000, whilst Jz is 0366 at
mass J, where the forcing torque is applied. The one-node
phase velocity is w,? = 2536, and the value of J(J.a?) is
6000,

50000 X 0366

ie. ), =2

2536 X 6000 — 0-0012 radian.

The dynamic magnifier is —
I—

govo = 17

2536

Hence the twist amplitudes are
ay, = — I'73 X 0:0012 = — 000208 radian,
ay, = 0:3660y, = — 000076 radian,
ay, = — I'36bay, = 0-00284 radian.
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Two-Node Twist Amplitudes.—For this mode,
Zg = — 1366 ; w?=09464; and (] .a? = 6000,
which happens to be the same as for the one-node mode,

50000 X 1:366

Le. 0, = — 00012 radian.

9464 X 6000
The dynamic magnifier is 4000 = I%3.
9464
Hence the twist amplitudes are
o'y, = — I73 X 0:00I2 = — 000208 radian,
o'y, = — 1-366«’y, = 0-00284 radian,
o'y, = 0°366a'y, = — 0°00076 radian.

Forced Vibration Amplitudes.—By algebraical addition of
the rolling and twist amplitudes the followmg values are
obtained :—

o, = (— 0°00208 — 0-00208 — 0-00208)

= — 0-00024 radian at J,,

g, = (— 000208 — 0°00076 4 0-00284) = 0 at J,,
oy, = (— 0°00208 + 000284 — 0-00076) = 0 at J,.

The curves of twist, rolling and forced vibration amplitude
are shown in Fig. 104, together with the values of the forced
vibration amplitude obtained by applying the tabulation
method. It is seen that the two methods are in complete
agreement.

Multi-Mass Systems.—The tabulation method can be
used for obtaining the resultant forced vibration amplitudes
for 