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PREFACE.

IN recent years investigations of the torsional vibration
characteristics of shaft systems transmitting pulsating
torques have become an important part of the designer’s
responsibility.

Indeed,. satisfactory operation of high-duty trans-
mission systems may be said to depend to a large extent
on successful handling of the vibration problem.

‘Whilst many failures of shafting have been traced
to abmormal vibration at critical speeds, satisfactory
operation implies more than freedom from actual me-
chanical breakdown. The ideal system should exhibit
no perceptible vibratory disturbance throughout the
normal operating speed range, a requirement which
is now an important consideration in the design of
automobile transmission systems.

The rapid development of the internal combustion
engine for marine propulsion is another factor which
has brought the torsional vibration problem into such
prominence that a definite guarantee of a smooth
operating speed range is becoming a feature of many
high-class marine specifications.

In electrical engineering practice, the heavy rotating
masses necessary for satisfactory electrical operation of
generating sets direct-coupled to internal combustion
engines render this type of installation particularly
susceptible to disturbing vibrations, and it is necessary
to make sure that no critical or disturbing amplitude
occurs near the operating speed.
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In this book an attempt has been made to set down
the principles and computation details of the subject
in a manner suitable for everyday reference. The
selection and arrangement of the subject-matter is
based on several years’ practical experience in carrying
out torsional vibration investigations on many different
types of installation ; and the methods which are de-
veloped have been found reliable in practice.

It is hoped that the reader in search of specific
information will be able to select data appropriate to
his particular problem, and from this build up a set of
standard forms suitable for rapid reference.

Acknowledgment is due to the reference works listed
in the Bibliography; and to the firms whose names
appear in the text for permission to reproduce diagrams
of their specialities.

W.K. W.

SUNDERLAND,
October, 1g34.

PREFACE TO SECOND EDITION.

A REVIEW of engineering progress during the past four
or five years reveals in no small measure the tonic
influence of applied vibration study with the out-
standing importance of torsional vibration phenomena
well established.

This period has been notable for a steady accumula-
tion of contributions to the literature dealing with both
practical and theoretical aspects of the subject, whilst
at the present time there is undoubtedly an increasing
tendency towards regarding vibration study as a neces-
sary accompaniment of sound fundamental design.
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The particularly insidious nature of torsional vibra-
tion is due to a capacity for destructive action without
displaying the external symptoms which are usually
very mnoticeable with other forms of vibration. In
addition, torsional critical zomes invariably occupy
lower positions in the speed range than those corre-
sponding to flexural modes, since the moduli of rigidity
of most structural materials are less than one-half the
moduli of elasticity.

Furthermore, the fatigue limits for alternating tor-
sion are invariably about one-half the fatigue limits
for alternating flexure ; torsional excitations are more
numerous ; and, finally, whereas flexural excitations
can in many cases be neutralised by simple means such
as halance weights, torsional excitations usually require
a change of fundamental design to bring about even
partial cancellation.

In reviewing the progress made since the first edition
of this book was published the following items are of
special interest.

More general application of the art of tuning oscil-
lating systems so that severe critical zones do mot
occur in the operating speed ranges. For example, the
use of stiff connecting shafts where it is expedient to
place the severe critical zones above the operating range
or the use of very flexible shafts or couplings when the
better solution is to place these zones below the operating
range. There are indications that the trend towards
higher operating speeds is exhausting the possibilities
of high-frequency tuning as a method of solving tor-
sional vibration problems, and on this account there
is considerable interest in the future development of
couplings employing rubber spring elements.
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Considerable progress has been made in accumulating
data relating to fatigue phemomena with particular
reference to the influence of structural discontinuities
in causing zones of high-stress concentration. The
valuable work carried out at the Imstitution of Auio-
mobile Engineers Research Laboratories in this country,
and at the German Institute for Aeronautical Research,
on full-scale crankshaft elements to determine the
influence of crank form and material deserves special
attention.

There appears to be a general tendency to employ
vibration absorbers instead of emergy destroying
dampers where a completely satisfactory solution can-
not be obtained by tuning methods alone. Outstanding
achievements in this direction are detuning flywheels
and couplings, and the rotating pendulum absorber.

The rotating pendulum absorber was first used in
quantity on radial aero-engines, and in a paper read at
a meeting of the Imstitute of Aeronautical Sciemces in
1936, Mr. Arthur Nutt, Vice-President of Engineering
of the Wright Aeronautical Corporation, said that without
question the development of the rotating pendulum
absorber was one of the most valuable contributions to
aircraft engine design in many years.

Since the installation of these absorbers service
experience over extended periods shows an appreciable
reduction in wear not only of engine parts but also of
the operating mechanism of variable pitch air-screws.
In the latest engines the absorbers have permitted
a higher take-off speed with an actual decrease of air-
screw stress due to reduction of torsiomal vibration.
This latter point indicates that a satisfactory solution
of the torsional vibration problem may also be bene-
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ficial throughout the power plant. Indeed, recognition
of the possibility of sympathetic response of all parts
of an oscillating system to appropriate excitations has
explained certain apparent discrepancies between prac-
tical results and theoretical predictions in cases where
the theoretical treatment did not take into account the
influence of all parts of the system.
Aero-Engine/Air-screw installations are particularly
important examples of this aspect of the torsional
vibration problem. Until quite recently it was cus-
tomary to carry out a torsional vibration analysis by
regarding the air-screw as a rigid flywheel having the
same polar moment of inertia and then treating the
simplified system as a normal multi-mass system capable
of oscillating in various modes of torsional vibration,
i.e. the influence of air-screw blade flexibility was
neglected. It is now known, however, that this par-
titioning of the engine and air-screw assemblies is
liable to yield gravely misleading results, and that a
true solution can only be obtained by methods which
take into account the characteristics of the combined
engine and air-screw systems simultaneously. Un-
fortunately oscillating systems which contain com-
plicated structural elements, such as air-screw blades,
do not yield easily to mathematical treatment alone,
although this method of attack provides a useful
physical conception of the dynamic principles involved.
This difficulty has been overcome by the development
of suitable experimentalmethods, and these are described
in an Appendix to Volume I of the present edition.
The introduction of flexible mountings for engines
is another factor which has complicated the study of
torsional vibration phenomena, especially in geared

e
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engines where there is a particularly strong coupling
between crankshaft and crankcase motions, whilst
in a recent paper entitled “ Strength of Marine Engine
Shafting " (N.E. Coast Instn. of Engs. & Shipbuilders,
1939), Dr. Dorey has drawn attention to the possibility
of crankshaft failure through axial or longitudinal
vibration probably initiated by torsional excitations.
The existence of a relationship between axial and tor-
sional modes has not yet been definitely established,
however, and is one of the items for future investigation.

Damping of torsional vibrations, especially in engine
systems, has received considerable attention during
the period under review, without however disclosing
any better method for assessing the probable vibratory
amplitudes and stresses in resonant zones than the
empirical or semi-empirical formule commonly em-
ployed for this purpose. This work has served to
emphasise the complex nature of engine damping, and
has drawn attention to its non-linear character which is
undoubtedly a powerful check on the growth of vibra-
tory amplitudes. The rapid increase of hysteresis
damping at stresses in the neighbourhood of the fatigue
limit of the material, for example, probably accounts
for absence of trouble in many an otherwise risky
adventure in crankshaft design.

The assessment of torsional vibration stresses in
Tesonance remains, therefore, a matter for establishing
reliable empirical formule based on test results. This
has paturally led to the development of accurate in-
struments for measuring torsional vibration frequencies
and amplitudes. Apparatus is now available for all
classes of installation, including high-speed automobile
and aero-engine systems.
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In preparing this edition an attempt has been made
to bring the text and illustrations thoroughly up-to-date,
This has necessitated re-writing a considerable part of
the original text and the introduction of several new
chapters. Inaddition to theinclusion of a large amount
of new practical design data and a more comprehensive
treatment of high-speed engine systems, the following
important changes will be found :—

More comprehensive treatment of flexible
couplings, including the use of rubber as a struc-
tural material with special reference to rubber-in-
shear couplings.

The addition of material relating to the choice
of crank sequence and firing order of various engine
aggregates, including single and multi-row radial
engines with articulated connected rods, and Vee-
type in-line engines.

Considerable additions to the subject-matter
relating to geared systems, including the treatment
of geared engines supported on flexible mountings.

The material relating to vibration measuring
instruments has been - brought up-to-date and
includes the latest types of electrical measuring
instruments and a full discussion of instrument
theory and calibration.

The subject-matter relating to engine damping
has been completely revised.

Comprehensive treatment of the properties of
materials used in transmission systems, including
astudy of fatigue phenomena with special reference
to the influence of discontinuities in causing stress
concentrations.
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The material relating to damping devices has
been brought up-to-date and includes a separate
chapter dealing with the rotating pendulum vibra-
tion absorber.

The inclusion of a simple practical treatment of
air-screw blade vibration and its influence on the
vibration characteristics of aircraft power plants.

The Bibliography has been expanded consider-
ably, and a list of British Patents relating to tor-
sional vibration has been added in Volume I

In conclusion the author desires once again to make
acknowledgment to the reference works listed in the
Bibliography and to the Firms whose names appear in
the text. In addition, grateful thanks are due to many
readers for helpful criticism and encouragement and to
those of the author’s colleagues who cheerfully under-
took the task of checking portions of the manuscript.
Special acknowledgment is due to Mr. R. Clink for his
careful checking of proofs and ‘for many valuable
suggestions.

W. K. W.

Loxpox,
Jume, 1940.
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CHAPTER 1.
TORSIONAL VIBRATION.

Introduction.—Since no material is perfectly rigid, the
effect of applying an external force or load to a body is to
produce a change of size or of shape or of both. These changes
are termed strains. The internal equal and opposite reactions
which are the result of the external force or load, and which
resist deformation, are termed sresses. ’

That property of matter which enables it to resist deforma-
tion is termed elasticity, and in a perfectly elastic material the
strain disappears after removal of the stress, i.e. the body then
returns to its original configuration. Whilst no material is
perfectly elastic, metals are almost perfectly elastic within
certain limits of loading.

Within those limits the strain is proportional to the stress
producing it. Beyond those limits the deformation is partly
elastic or temporary, and partly plastic or permanent.

The point beyond which stress and strain cease to be pro-
portional is commonly called the elastic limt of the material,
although the modern tendency is to term it the Zimaf of pro-
portionality, since the metal still possesses some elasticity after
this limit is passed.

The laws governing the elastic deformation of a shaft when
an externally applied twisting moment or couple is transmitted
from one end to the other are well known, and are contained
in the following expression :—

M 2./, G.f ‘
=71 - - W

VOL. IL.—1



2 TORSIONAL VIBRATION PROBLEMS

where = the external couple in lbs.-ins.,
= the polar moment of inertia of the cross- -section
of the shaft in inches? units
=T &
=g
d = the diameter of the shaft in inches,
fo = the shear stress in Ibs. per sq. in.,
G == the modulus of rigidity in-1bs. per sq. in.
= 12,000,000 for steel,
# = angular deflection or twist of shaft in radians,
L = length of shaft in inches.

This expression shows that the strain or angular deflection
is directly proportional to the stress, provided the limit of
proportionality is not exceeded.

Elastic Vibrations.—When a shaft, fixed at one end, is
twisted by applying an external couple at the free end, the
work donme against the internal elastic forces which resist
deformation is termed strain energy, and in common with other
elastic bodies the shaft possesses the property of restoring this
energy when the couple is removed.

This property is termed resilience.

In a perfectly elastic material the whole of the strain energy
is restored when the load is removed, but in the case of a shaft
twisted by an external couple a proportion of the work done is
absorbed in overcoming internal molecular friction, and appears
as heat in the material strained.

A similar amount of energy is absorbed by frictional resist-
ances when the shaft returns to its original configuration after
the load is removed.

Within the limit of proportionality, however, only a very
small proportion of the strain energy is absorbed in this way,
the greater proportion being stored in the shaft. This stored
energy is termed potential energy of strain or vesilience, and very
nearly the whole of it is restored when the load on the shaft is
removed.

Beyond the limit of proportionality a progressively greater
proportion of the strain energy is expended in overcoming the
internal friction of the material to produce permanent defor-
mation.
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Fig. 1 shows a simple torsional pendulum, consisting of a
length of shafting fixed at one end and carrying a heavy disc
at the free end.

If the disc is disturbed from its position of equilibrium by
the application of an external couple, strain energy is imparted
to the shaft, and this energy is available for expenditure when
the load is removed, assuming that the material is not stressed
beyond the limit of proportionality.

The lower portion of Fig. 1 shows the disc and shaft dia-
grammatically. In this diagram + @ represents the circum-

Fic. 1.—One-mass system.

ferential distance an imaginary point on the surface of the
shaft at end B moves when the external couple is applied.

The corresponding angular deflection in radians is 6 = 2.4
and since Equation (1) shows that the deflection at any other
position along the shaft is directly proportional to the distance
from the fixed end, the elastic deflection curve AD is a straight
line of constant slope. The stress induced in the shaft which
is proportional to §/L (Equation 1) is the same at all positions
between A and B. .

When the external couple is removed the shaft commences
to untwist. During this process a small proportion of the
potential energy of strain is absorbed by frictional resistances,
the greater proportion being expended in imparting motion to
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the disc. This energy of motion is termed kinetic encrgy. The
kinetic energy imparted to the disc attains a maximum value
when the whole of the available potential energy is absorbed,
ig. when the shaft is completely untwisted and the system
has regained its original configuration. At this instant the
kinetic energy of the disc is equal to the potential energy of
strain diminished by the small amount of energy’absorbed by
frictional resistances. The disc therefore continues to move
beyond the original unstrained position of the system until a
strain nearly equal to the original strain, but in the opposite
direction, is induced in the shaft. At this instant the potential
energy of strain is once more equal to the maximum kinetic
energy acquired by the disc diminished by a small amount of
energy absorbed in frictional resistances, and the disc comes to
rest.

It is evident that in passing from one extreme position
towards the other the disc gradually acquires kinetic energy
until it reaches the original position of equilibrium, now the
central position of its movement, and thereafter gradually
loses kinetic energy. If the energy dissipated in doing work
against friction during the motion of the disc is neglected,
the kinetic energy of the disc at the instant it reaches the
central position must be equal to the potential energy of strain
at each extreme position of its movement. At any intermediate
position the sum of the kinetic and potential energies must be
constant, and this constant quantity of energy is termed the
energy of the vibration.

In this example the energy of the vibration is equal to the
strain energy imparted to the system by the initial displacement
of the disc.

If none of this energy is absorbed in doing work against
friction, the vibratory motion of the disc would continue
indefinitely, the motion being shown diagrammatically in
Fig. 1 by the lines AC and AD, with maximum displacements
of 4-a and — 2 at the free end of the shaft, or, in circular

measure, + 6 and — 6, where 8 = %.
In practice, however, there is always a gradual dissipation
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of energy by work done against internal and external resistances
which oppose the vibration. In consequence the system
gradually loses its energy of vibration, until finally the whole
has been absorbed and the disc comes to rest at its original
position of equilibrium.

Vibration may therefore be regarded as the process whereby
an elastic system dissipates the potential energy of strain
imparted to it when its equilibrium is disturbed.

The process can easily be verified experimentally by attach-
ing a fairly heavy disc to one end of a fairly long piece of
wire. If one end of the wire is held rigidly, with the disc
suspended below, and the latter is given a twist and then re-
leased, it will vibrate through gradually decreasing angles until
finally it comes to rest at its original position of equilibrium.

Simple Harmonic Motien.—This is the simplest type of
periodic motion.

In Fig. 22, O is a fixed point, and OC is a radius rotating
with uniform angular velocity round O. ABis any diameter of
the circular path described by C, and CQ is the perpendicular
from C to AB for any instantaneous position of the radius OC.
As the point C rotates round O with uniform angular velocity
the point Q vibrates along the diameter AB about the centre
O with simple harmonic motion. A single vibration is com-
pleted when the point C has moved once round the circle, Le.
when the motion of Q is the same as it was at the commence-
ment of the cycle. Thus, if the cycle is assumed to commence
at point D in the circular path of C or at point O in the path of
Q, and the rotation of C is assumed to be counter-clockwise,
then the initial movement of Q is upwards towards B. At B
point Q comes to rest, its motion along AB is reversed, and
it travels downwards from B to A. At A it comes to rest
again, its motion is once more reversed, and it travels upwards
towards O.

When it reaches O it has the same motion as at the com-
mencement of the cycle, i.e. upwards towards B, and the cycle
is therefore completed. '

The time required to complete one cycle is termed the
periodic time of the vibration, and the reciprocal of the periodic
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time is termed the frequency of the vibration, since it is the
number of complete cycles which are executed in unit time.

Let P = periodic time in seconds,
F = frequency of vibration in cycles per second,
o = the uniform angular velocity of point C (usually
termed the phase velocity of the vibration) in
radians per second.

(a) Displacement Diagram.

“ B
YT i o
4 +2 .
l < \D X [1) %rr 7 37| 2w
o0 1 !
S NI
A ) No_t_e-‘.-_t‘--%secs,-
() Velocity Diagram.
lvl
3
(©) Acceleration Diagram.
r T 3r 2r
2 2
o

F16. 2.—Simple harmonic motion.

Then, since each cycle is completed in one revolution of G, ie.
when the angular movement of OCis 2. = radians,
p2-7_ 6283
o T "

ECS

]
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or F= IE’ = z‘"——-ﬂ = 0-I50I . w vibs./sec.

= 955 . @ vibs. fmin.
From the geometry of Fig. 24,
y=asno.t, . (2)

where y == OQ = the displacement of Q from the centre of
vibration O,
a = OC = the radius of the circle described by C,
¢ = w./=the angular displacement of C from the
' initial position D,
t = the time in seconds, assumed to be measured
from the instant C is at D.

The motion of Q can be shown conveniently by the ordinates of
a displacement diagram on a time base (Fig. 24). The maximum
displacements of Q from the centre of vibration O are 4  and
— @, and @ is termed the amplitude of the vibration. The curve
of displacement is a true sine curve when the point is executing
simple harmonic vibrations.

In Fig. 24 the radius OC = a may be regarded as the dis-
placement vector ; the displacement diagram being obtained by
projecting the successive instantaneous positions of C on to the
corresponding ordinates in the displacement diagram.

The velocity of Q is greatest at the instant Q passes through
O in either direction, being then equal to the uniform velocity
0f C, viz. w . @. At A and B, Qs at rest.

At any intermediate position, therefore, the velocity of Q is
equal to the velocity of C resolved along AB, and from the
geometry of Fig. 28,

Y=w.acosw .t . Lo (3)

where v = the velocity of Q along AB.

In Fig. 25, OV = .a may be regarded as the velocity
vector for vibration of Q along AB, and the velocity diagram is
obtained by projecting the successive instantaneous positions
of V on to the corresponding ordinates in the velocity diagram.
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The velocity vector is a quarter of a cycle, or =/2 radians
ahead of the displacement vector.

The acceleration of Q along AB can be obtained from the
acceleration of C, since the latter is merely the acceleration of
a point moving in a circle with uniform angular velocity, viz.
w?. @, acting always along the radius OC towards O.

The acceleration of Q along AB is then the acceleration of
C resclved along AB, and from the geometry of Fig. 2c,

S=—w.asinw.f, . . . @)

where S = the acceleration of Q along AB, which is seen to
be proportional to the displacement of Q from the centre of
vibration Q.

The negative sign indicates that this acceleration is always
directed towards the centre of vibration O.

In Fig. 2¢, 0S = w?. @ may be regarded as the acceleration
vector for vibration of Q along AB, and the acceleration
diagram is obtained by projecting the successive instantaneous
positions of S on to the corresponding ordinates in the accelera-
tion diagram.

Since force = mass X acceleration, equation (4) shows
that the force under which a mass will execute simple harmonic
vibrations must vary proportionally to the displacement from
the centre of vibration, and must always be directed towards
the centre of vibration.

The acceleration at any instant is

S=—w'asinw.t . . - (@
and the corresponding displacement is
' y=asihw.? . . . (2)
Hence, S=—w.y,
but * wz%{r:z_,,.F’
ie. S=41‘>:2._'y-—«4.1r'.F“.y,

or periodic time, P=2z, "\/g secs.
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Frequency of vibration, F = ZI—_” \/% vibs. /sec.

I [acceleration
T . ()

2. w Vdisplacement” °

Since the acceleration is directly propoertional to the dis-
placement, the frequency is independent of the amplitude of
the vibration, and depends only on the strength of the restoring
force, i.e. the restoring force per unit displacement.

The phase of a vibration is the fraction of a cycle which
has elapsed since the vibrating point last passed through its
middle position in the positive direction. Thus the phase of a
vibration measures the particular point of the cycle, where the
vibrating body happens to be, at some chosen instant. In
Fig. 2a the angle ¢ = w . ¢ is termed the phase angle. Two
vibrations are said to be in phase when they are at correspond-
ing points of their cycles at the same instant. w is termed the
phase velocity, since it is the rate of change of the phase angle.

Free or Natural Torsional Vibration.—Equation (1)
shows that when the disc in Fig. 1 is given an angular dis-
placement a restoring moment is induced in the shaft which is
proportional to the displacement, and which tends to return
the disc to the equilibrium position. This establishes the
important fact that when the disc is released it will execute
rotary vibrations of the simple harmonic type until it is brought+
to rest by frictional resistances.

Since these vibrations are executed without any external
exciting force acting on the system, and since the frictional
resisting forces are usually very small, the motion is termed
free or natural torsional vibration.

The expressions for angular displacement, angular velocity,
and angular acceleration are the same as those already deter-
mined for linear simple harmonic motion.

In Fig. 3 the displacement diagram corresponds to the
displacement diagram shown in Fig. 2 at («), and represents
linear displacements of the weight W along the circumference
of a circle of radius R.



I0 TORSIONAL VIBRATION PROBLEMS

The linear amplitude is 4 « and the corresponding angular
amplitude is + a = 4 «/R radians.

Fixed End
P
Vector Diogram’

) /}%Jﬁn iide
24 Eg/\iéﬁég ‘ lﬁzlvg/am

.
! ~~— o-Ldl
] &Qg

Fic. 3—Relationship between linear and angular motion.

From Equation (2) the linear displacement of W along the
circumference at radius R is
y=oasinw.t

Hence the corresponding angular displacement is

o . .
9—§smw‘t—asmw.t‘

Similarly, the angular velocity is
Q=w.acosw.i

and the angular acceleration is

p=—0l.asihw.i
ie. f=asinw.f, . . - . (2a)
Q=w.acsw.t, . . . (3@)
=—owl.asinw.t, . . . {(4a)

where

6§ = angular displacement of the disc from the equilibrium
or mean position in radsans,
@ = amplitude of vibration of disc in radians,
@ = angular velocity of disc in radians/second,
¢ = angular acceleration of disc in radians[second?,
t = time in seconds, .
o = phase velocity of the vibration in radians/second.
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It is important to distinguish between @, the angular velocity
of the disc at any instant, and w = 2.#.F, the constant
angular velocity from which the vibration is derived, the latter
is termed the phase velocity of the vibration.

The frequency of natural torsional vibration of the disc is
determined as follows :—

At either extremity of the motion of the disc the potential
energy of strain and the resisting moment due to elastic forces
have their maximum values,

i.e. maximum restoring torque exerted by the elastic forces,
from Equation (1), .
I,.G.
M, =27 3

The torque required to produce the acceleration ?.a at
the position of maximum displacement of Q is

*M,, = moment of inertia X angular acceleration
=]J.w?. a
This result can be deduced from a consideration of the
linear motion of the weight W shown in Fig. 3.

The linear acceleration of W along the circumiference of
a circle of radius R is

S=—o. asinw.t . . @

Assuming that the masses of the comnnecting arm and of
the shaft are negligible, and that the mass of the bob-weight
is concentrated at its centre of gravity, which is at radius R
from the axis of oscillation, the tangential force due to vibra-
tion of W is

Force = mass X linear acceleration,

ie. P=~%V w2, xsin .t

* Throughout this work ts of inertia of oscillating masses are

WEK*
expressed in Ibs.-ins. sec.? or lbs.-ft. sec.? units. ie. J = ——, where WK*
is defined as the “* fiywheel effect ”” of the mass, not its moment of inertia.
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Hence the torque on the shaft due to this force is

M=P.R=——V?V.R.m*.ocsinw.t,

but c=a.R,

ie.

Now {%V .

=—%].R"wi.asinw.t.

Rﬂ} is the polar moment of inertia of a mass

i concentrated at radius R

Let
then

w
=2 R,
T=%

=—J. 0 asinw.i,

or torque = moment of inertia X angular acceleration.
At the position of maximum displacement,

M,=].0%.a

Since there is no external exciting torque acting on the

system and the frictional resistances are assumed to be
negligible,
M = M,
Le. I—’—{’i:_].w’.a,
or m“:(z.w.F)“:IIf'?':.
s 0. G

__ fan
Hence, FNZ.WVJ’—.f’ . . . . . (6)
where F = natural frequency of torsional vibration

in vibrations per second,
I, = polar moment of inertia of cross-section
of shaft in inches* units

= 512 . @, for a solid circular shaft,

d = diameter of shaft in inches,
G = modulus of rigidity in 1bs. per sq. inch
= I2,000,000 for steel,
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J = moment of inertia of disc
W.K?

ra

W = weight of disc in Ibs.,

K = radius of gyration of disc in inches,
£ = 386 ins./sec.?,

L = length of shaft in inches.

From Equation (1) it is seen that the quantity (I"I:G) in

Equation (6) is the torque per radian of twist.
This quantity is termed the forsional rigidity of the system.

Let C= I,.G _ torsional rigidity of the system in Ibs.-ins.

L per radian *

1 [C_.
Then F = 5——-‘”\/ 7 vibs. [sec.

=9‘55«/§ vibs./min. . . . . G

Equation (7) can also be derived directly from Equation (5)

as follows :—

_ 1 [ acceleration

= 2. Y displacement’ (5)
restoring torque
moment of inertia
acceleration __ restoring torque per radian
displacement moment of inertia

Now acceleration =

and

C

T

Hence F=-1 \/9 vibs./sec., as before.
’ 2. J

Equation (6) shows that the frequency is independent of
the amplitude of vibration, and that an increase of the moment
of inertia of the disc, or of the length of the shaft, or a reduction

M
* Note.— 8, = ©
where 8, = angular twist produced by torque M applied statically.
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in the diameter of the shaft, will reduce the natural frequency
of the system. Thus, a heavy disc carried by a long slender
shaft will execute natural vibrations of much lower frequency
than a comparatively light disc carried by a short stiff shaft.
This can be verified experimentally by suspending a disc by
means of a fairly long length of wire. As ti\"”; length of the
wire is shortened the natural frequency of the disc increases,
and vice versa. - :

Equation (7) is based on the assumptions that the connect-
ing shaft has no mass, and that there are no exciting or resist-
ing forces acting on the system.

The dirictional resistances which oppose vibration are
termed damping forces, and are usually assumed to be pro-
portional to the velocity, since this assumption appears to be
reasonably correct for practical purposes. The effect of a
damping force proportional to the velocity and a restoring
force proportional to the displacement is to reduce both the
natural frequency of the vibration and the amplitudes of
successive cycles.

In practice, since the amplitudes and therefore the velocities
of natural torsional vibrations are small, the effect on the
frequency of vibration of a damping force proportional to the
velocity is unimportant (see Chapter 7).

Correction for Mass of Shaft.—If the mass of the
shaft is not negligible, but is small compared with that of the
disc, the amplitude of vibration at any section of the shaft
between A and B (Fig. 1) is proportional to the distance from
the fixed end A.

Let this distance be 2, and let J, be the moment of inertia
of the shaft, V its angular velocity at the free end, and v its
angular velocity at distance  from the fixed end.

V.l
Then V= T

The kinetic energy of an element of length 8I, distant / from

the fixed end, is
Jo. 802  J,.VELRL§L
z. L~ 2,18
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and the total kinetic energy of the shaft is
Lo u=p3.0.v

ie. the moment of inertia of the shaft is dynamically equivalent
to one-third of the same amount at the free end of the shaft,
and may be taken into account if necessary by adding one-
third of J, to the moment of inertia of the disc.

In cases where the mass of the shaft is not negligible the
system must be treated as a heavy shaft system. The solution
for a two-mass heavy shaft system is given in Chapter 8,
Equation (402}, Vol. IL

P

ExampLE r.—Calculate the natural frequency of torsional
vibration of the system shown in Fig. 1, assuming the
following dimensions :—

Weight of disc = 16,500 1bs.
Diameter of disc = 204 ins.
Length of shaft = 830 ins.
Diameter of shaft = 16 ins.

Also calculate the maximum torque, the maximum stress,
and the strain energy of the vibration, assuming that a point on
the surface of the shaft at the centre line of the disc vibrates
with an amplitude of + % inch.

(i) Natural Frequency of Torsional Vibration.
C _. .
F=gs55 \/; vibs./min, . . . (9)

C= & il” Ibs.-ins. per radian,

where G = modulus of rigidity = 12,000,000 Ibs. per
sq. in. for steel,
I, = polar momient of inertia of cross-section of
shaft

=’1§”i d = dia. of shaft = 16 ins.

_ 31416 X 16% — 6434 ins 4,

= length of shaft = 830 ins.,
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ie. C — 12000000 X 6434 _ 93,020,000 Ibs.-ins.
830
per radian,
J = moment of inertia of disc
W.K?

i

W= weigght of disc = 16,500 lbs.,
K2 = (radius of gyration of disc)?
= Tx for a solid circular disc, where D is the
diameter
= 2—0;’: = 5202 ins.?,
£ = 386 ins. per sec: per sec.,
_ 16500 X 5202

s P .

ie. J . = 222,400 Ibs.-ins. sec.2,
=0 93020000 _ 1 x.g vi i

Hence, finally, F = 935 «/ 292400 1953 vibs. /min.

Effect of Mass of Shafi—The mass of the shaft may be
taken into account by adding one-third of the moment of
inertia of the shaft to the moment of inertia of the disc.

. 2
Weight of shaft — &M
0-283 X 07854 X 162 X 830
47,250 1bs.

K?of shaft = & = 20 sainss,

It

*i.e. moment ofinertia of shaft = ], = ‘lvé—Kf = 17‘253??‘"‘532
; = 3920 Ibs.-ins. sec.2.
/ Hence, the equivalent moment of inertia of the disc is
L=J+%—’=222,400+39—3—z°
‘( = 223,707 Ibs.-ins, sec.?,
[ @ad the natural frequency of torsional vibration becomes

93020000
223707

‘=955 = 194-8 vibs./min.
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This is a difference of only } per cent. As a general rule
the mass of the shaft can be neglected if the product of the
length of the shaft in feet multiplied by the frequency in
vibrations per second does not exceed 1000. In the present
example this product is only 225, a frequency of 867 vibs./min.
‘being required to make the product 1000. The moment of
inertia of the disc corresponding to a frequency of 867 vibs./
min. is 11,280 Ibs.-ins. sec.?, whilst the correction for the
mass of the shaft lowers this frequency to 820 vibs./min., a
difference of 5 per cent. The value obtained by applying
the method given in Chapter 8 is 823 vibs./min.

(i) Maximum Torque.
The amplitude of vibration at surface of shaft, radius
8 ins, is + 3 in.
ie. angular amplitude = =+ 0-25/8
= "4 003125 radian.

Now M=i9'_‘£:ie. e

12000000 X 0:03E25 X 6434
=+ 830

= 4 2,070,000 lbs.-ins.

Alternatively  torque = moment of inertia X acen.
M=4+] w.a
where w = phase velocity of vibration

_2.n.F di

= 60 Ta anspersec.
_ 2 X 377416 X 105

- 60

= 205 radians per sec.,
ie. M = 3 222,400 X 20-5? X 003125
= =+ 2,930,000 Ibs.-ins.
(i) Maximum Stress.
M.d

fi=+ Fye N . . . . . ()
_ ., 2970000 X 16 et
=+ X6 = = 3620 1bs.-ins.2

VOL. I.—2
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(iv) Strain Energy.
This is equal to the maximum potential energy of strain at
either extreme position of the movement of the disc,
ie. strain energy = § . M .a = } X 2910000 X 0-03123
= 45,500 ins.-lbs.
Alternatively, it is equal to the maximum Kkinetic energy of the
disc at the mean position of the vibration, viz. . —
strain energy =4 .J . (w . 4)?
=} X 222400 X 20-5? X 0:03125%
= 45,500 ins.-lbs.

Note that the strain energy is directly proportional to the
square of the amplitude and to the square of the frequency.

Special One-Mass Systems.—The following special
arrangements are occasionally found in practice, and can be
handled by the elementary relationship :—

F = 9:554/C/J vibs./min.,
where F = natural frequency in vibs./min.,
C = restoring torque per radian deflection,
J = moment of inertia of oscillating system about
axis of oscillation.

It is important to take care that the correct units are used
throughout the calculations. If C is expressed in Ibs.-ins.
per radian, J must be expressed in lbs-ins. sec.?; if C is ex-
pressed in Ibs.-ft. per radian, J must be expressed in lbs.-it.
sec.?

Also, when 1bs., in., and sec. units are employed the value
of the gravitational constant g is 386 ins. per sec.?, ie.
J =W .K?386 lbs.-ins. sec.? When lbs., ft., and sec. units
are employed g = 322 ft.jsec.?, ie. J =W .K?32:2 lbs.-ft.
sec.

In Fig. 4(a) the system consists of a shaft fixed at each
end, with a disc of moment of inertia J attached at a point
where the torsional rigidity of the right-hand and left-hand
portions of the shaft are C, and C, respectively. The two-
node frequency of a geared radial aero-engine can be estimated
from a system of this type.
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Since C, = torque per radian for left-hand portion of shaft,
C, = torque per radian for right-hand portion of shaft.
Total restoring torque for one radian deflection of mass

= (C; + Cy).

F1e. 4—Special one-mass systems.

Hence, F= 9-55\/(:—! +G vibs./min. . . ]
Also, if = frequency of J on C, = 955 v/C,/J,

F2 = frequency of J on C, = 955 v CyfJ,
them  F= (F2-F. . . ©)

Fig. 4(8) shows a system consisting of a disc of moment of
inertia J, mounted freely, for example, on ball bearings. A
weight W is attached to the disc at radius R by a flexible cord,
and the motion of the disc is controlled by a spring of inch
rate k acting at radius 7.
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In this case % = load to extend spring T inch,
ie. for a small circumferential deflection e, the spring
force is k., and the torque due to the spring
force is A. a.7.
The corresponding angular deflection is «/r.
Hence, C = restoring torque per radian displacement

7
=k a.7.-=k."
o

The moment of inertia of the weight, W about the axis of
oscillation of the disc is W. Rz,
ie. effective moment of inertia of system = J + W . R2/g.

Hence, _953\/ J +W Rz/ - vibs. /min. . . (10)

If the mass of the spring is not negligible, an approximate
correction is to add one-third of the moment of inertia of the
spring about the axis of oscillation to the effective moment of
inertia of the system,

i.e. effective moment of inertia of system

w . 12

4

where w = weight of spring.

Fig. 4(c) shows a system consisting of a light lever hinged
at one end and carrying a heavy weight' W at the other end.
The motion of the weight is controlled by a spring of -inch
rate & attached to the lever at radius 7.

In this case, restoring torque for a linear displacement « at
radius 7 is k. « .7,
ie. C = restoring torque per radian = % . 7%

Moment of inertia of weight W about axis of oscillation
=W.R¥g.

kr? k.8
F=9os\yqp = 9% Vv - ()

Note that the actual values of » and R are not required,
provided the ratio #/R is known, and that the frequency

Hence,
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increases as the point of attachment of the spring is moved
towards the weight.

If a second spring is attached to the lever as indicated by
the dotted lines in Fig. 4(c), and if the initial tensions of the
two springs are adjusted so that there is always some tension
in the springs even when the lever is at either extremity of
its motion, the restoring force for a linear displacement o is
2k. a.

The frequency equation is then

F=g35. 5" vibs./min. . . (12)

If the masses of the lever and springs are not negligible,
an approximate correction is to add the moment of inertia of
the lever plus one-third the moment of inertia of the springs
about the axis of oscillation to the moment of inertia of the
weight, W, about the axis of oscillation.

ExaMPLE 2.—Obtain an expression for the natural frequency
of torsional vibration of the system shown in Fig. 4(a)
in terms of the total shaft stiffness between the fixed ends
and the ratio of the stiffnesses of the. portions of shaft on
either side of the flywheel.

Let C = total shaft stiffness,
R = ratio of stiffnesses = C,/C,.

If a torque T is applied at one end of a shaft of torsional
rigidity (i.e. stiffness), C, the resulting twist is

6 = T/C radians,
or 8, =T/C,, and 8, = T/C,,
but 6 =(0; +0,).
C,.C
Hence, 1/C = (1/C; + 1/Cy), or C = C11+ éz,
and since C,=R.Cy,
_ R.C, . _(x+RC
C-—{T_{_—),l.eAC,-— R

From Equation (8), F= 9-55\/(-:—%'—9-” = 9-55\/93(—13—-')'12),
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or, by inserting the above value for C, in terms of C, and re-

arranging,
F = gs5(1 + R)«/R;J vibs./min.

If the fiywheel is placed at the middle of a plain shaft, ie.
if C, = C, or R = 1, the frequency equation becomes

F = 1914/C[J vibs./min.

g This is the lowest
J2 fiequency which can be
E obtained by altering the

T

position of the flywheel
in Fig. 4(a), and is twice
the frequency of the sys-
tem shown in Fig. 1,
where the flywheel is
fixed to the free end of
a shaft which is secured
against rotation at the
other end.

If the flywheel in
Fig. 4(a¢) is moved in
either direction from the
mean position the fre-
quency increases, as
shown by the above
equation.

Two-Mass -Sys-
tems.—Fig. 5 shows a
simple two-mass system
consisting of a length of
shafting with a heavy

F16. 5.—Two-mass system. disc at each end.

In this case, if the shaft is supported in frictionless bearings
which permit rotary motion and the discs are given small
angular twists in opposite directions and then released, the
system will be put into a state of torsional vibration.

@ A

1| .
-
o
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At any instant when the disc at end A is moving in a clock-
wise direction, the disc at B is moving in a counter-clockwise
direction so that the node or point where there is no vibratory
disturbance is situated somewhere between the two discs.

The system can therefore be reduced to two simple one-
mass systems, as shown at (¢) in Fig. 5.

In the case of a shaft transmitting power, provided the
applied and resisting torques are perfectly uniform, and the
attached masses have a constant moment of inertia about the
axis of rotation, the only effect of the elasticity of the shaft is
to cause the end from which power is taken to lag behind the
end at which power is applied. Under these conditions there
is nothing to excite vibration once the shaft has taken up the
initial torsional deflection corresponding to the torque trans-
mitted, and as soon as any initial vibrations caused by setting
the system in motion have been damped out the motion becomes
uniform.

It does not, however, require a very high degree of torque
variation, either at the driving end or at the driven end of the
shaft to set up and sustain torsional vibration, particularly at
speeds where the frequency of the periodic torque variations
coincides with the natural frequency of torsional vibration of
the system. These vibrations are quite independent of the
steady rotation of the shaft, and for practical purposes the shaft
may be assumed to be at rest and the system to be oscillating
about the node.

Referring to Fig. 5, let
- J1 = moment of inertia of disc at end A.

J» = moment of inertia of disc at end B.
L = length of shaft.
4 = diameter of shaft.
L, = distance from end A to node.
L, = distance from end B to node.

Then, natural frequency of one-mass system to left of node,
from Equation (6),

_ 1 [I,.G.
=i Ly T - 3)
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Natural frequency of one-mass system to right of node, from
Equation (6),

e (9
The natural frequency of the whole system is therefore
F=F=F,.
Hence, L.G M,
! z.7 Jl L, 2.7aV],. L,
and since =, I, and G are constants,
= % . . . . (15)

i.e. the node divides the length of the shaft L inversely as the
moments of inertia of the discs.

Also L={L+1)=L[r+%]

_ 7 J..L
o L=[555)
Hence, finally, from Equation (13),
o LG+ L)

F Tz.a Ji-Je. L
=5 ﬂ«/ ¢ J‘ + J’ vibs. [sec.
= Q55 M vibs. /min., . . (16)
Ji-Ja
where C= G L_ torsional rigidity of shaft.

It should be noted that if the moment of inertia of one of
the discs is very large compared with that of the other disc,
the node is situated very close to the larger disc, and when the
moment of inertia of the larger disc can be considered as infinite
compared with that of the other disc, the node is situated at the
larger disc. The system shown in Fig. 5 then reduces to the
simple one-mass system shown in Fig. 1.
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A practical example of a system of this type is a light
radial aeroplane engine direct-coupled to a very heavy airscrew.

When the moments of inertia of the two discs are identical,
the node is situated mid-way between them, and the frequency
equation reduces to

F= 9-55\/2;? vibs./min. . . (1)

where J is the polar moment of inertia of each disc.

Comparing this with Equation (7), it is seen that the effect
of replacing the single heavy disc shown in Fig. 1 by two equal
discs, each having the same moment of inertia as the single
disc, one situated at each ‘end of the shaft, is to increase the
natural frequency of the system to

F=+vz.F,
where F’ == natural frequency of system with single heavy
disc,
, F = natural frequency of system with two equal
! discs.

I the total moment of inertia remains unaltered, i.e. if the
moment of inertia of each of the two end discs is one-half the
moment of inertia of the single disc shown in Fig. 1, the
natural frequency of the system is doubled, assuming that the
shaft stiffness is unaltered.

To obtain the same frequency, the moment of inertia of
each of the two end discs in Fig. 5 must be twice the moment
of inertia of the single disc shown in Fig. I, with the same

. shaft stiffness.

Alternatively, the shaft stiffness must be halved if the
moment of inertia of each end disc in Fig. 5 is the same as the
moment of inertia of the single disc shown in Fig. 1.

Correction for Mass of Shaft.—The mass of the shaft
may be taken into account in the case of the system shown
in Fig. 5 by adding one-third of the moment of inertia of
-the length L, between the node and end A to the moment of
inertia of the disc at end A; and one-third of the moment of
inertia of the length L, between the node and end B to the
moment of inertia of the disc at end B.
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ExampieE 3.—Calculate the natural frequency of torsional
vibration of the system shown in Fig. 5, assuming the
following dimensions :—

Moment of inertia of disc at A, J, = 22,400 lbs.-ins. sec.2.
Moment of inertia of disc at B, J, = 728 lbs.-ins. sec.2
Length of shaft L = 45 ins.
Diameter of shaft & = 7} ins.

(i) Assuming that the moment of inertia of the disc at end
A is infinitely latge compared with that of the disc at end B.
From Equation (7),

C
F= 9'55‘/1_2’
where C= G.1, Ibs.-ins. per radian,

G = 12,000,000 Ibs. per sq. in.,
I, = polar moment of inertia of cross-section of shaft
_7- d* 31416 X 725t

32 32
= 2#T ins.4,
ie. C= W‘——(;—X—ZE = 72,300,0001bs.-ins. per radian.
= g-g54]72300000
Hence, F = 955J 728
= 3010 vibs./min.

(i) Assuming a two-mass system.,
From Equation (16),

sl G

—gss 72300000(22400 -+ 728)
9 22400 X 728
= 3060 vibs./min.
The error involved in the assumption of a one-mass system
is therefore only about 1} per cent. in this example.
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Special Two-Mass Systems.—The following special two-
mass systems are occasionally found in practice and can be
handled by the torque summation method.

Fig. 6(a) shows 2 two-mass system consisting of a shaft
fixed at one end and carrying two masses of moments of inertia
J: and J,. The torsional rigidity of the portion of shaft
between the fixed end and J, is C,, whilst between masses J,
and J, it is C,.

The frequency equation is obtained as follows :—

Torque to left of mass J; = M, = o,
Angle of twist at mass J, = a,,
Torque to right of mass J, = M,,

where M, = M, + torque to accelerate mass J,
=0+ Jw?. a,
and w = phase velocity of the vibrations in radians per
second
=2z2.7.F,
F = frequency of vibrations in vibs./sec.

From Equation (1),

2
Angle of twist between J; and J, = M,/C, = J‘—'E"—al.
1
2
Hence, angle of twist at mass J, = 4, = @, — J—‘-‘é’—a‘

1
Torque to right of mass J,

= M; = M, + torque to accelerate mass J,
Lw?.a
=J;. .00+ ], 2<aleJ‘—C1-—-‘),

Angle of twist between mass J, and fixed end

_Jieetiay  Jeeet  Ji.0f.ag
= (@ o )

Hence, angle of twist at fixed end = a; where

Ji.ota Jiea Jo.otr o Jiowt.ay
41 1_J1 - 1 . \al C‘ >’

Ay = @y



28 TORSIONAL VIBRATION PROBLEMS

but twist at fixed end = 0, i.e. ag=0; ie. equating the above
expression for a, to zero, dividing throughout by ,, and
rearranging terms, the following frequency equation is
obtained :—

J1~Jz'°’4_
AR e oule

Normal Elastic Curve
locle

-

Normal Elastic (urve
2-Node

Jz Normal Elastic Curve
1- Node

Normal Elastic Curve
® 2- Node

Fic. 6—Special two-mass systems.

This equation has two roots, indicating two possible modes
of vibration. Note that if J; = o, the above expression reduces
to

I—w.J/Co=0, or w?®=C,y/J,

Similarly, if J, = o, the above expression reduces to

C,+C 1/ C.C
—w? bt S ) R CR 12
I— o 'Jl(Cl.C, 0, Or J1(Cx+cz .

The last two expressions are the frequency equations for
a simple torsional pendulum. '

Also, if J;=]J,=7], and C;= C;=C, Equation (18)
becomes

3Jéw’+J“.w‘=O,

T (0
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and the roots of this equation are
w?=0382.C/] or 2:618.C]).
Fig. 6(b) shows a two-mass system in which a shaft is fixed
“at both ends and two masses of moments of inertia, Jiand Jo,
are attached at positions which divide the shaft into three
portions of torsional ngxdmes, C,, Cp, and C,.
The frequency equation is obtained as follows :—
Torque to left of mass J, = — M,, where — M, is the fixing
couple at the left-hand end of the shaft.

Angle of twist at mass J, = %’ (since angle of twist at
1

fixed end is zero).

Torque to right of mass J, = — M, +Jl ot My

Angle of twist between masses J; and J,
_ M, J.et M,
I A o e
) M, ]\_I_,,__Jl.w‘.M,,
Angle of twist at mass J, = G + (o R ou
Torque to right of mass J,

— g, D oM, M, Jy 2 M)

=g gyl e - Bt

Angle of twist between mass J, and right-hand end of
sha.ft

J, . 0t M,

u, Lot ot
=-&t oG e :

R P oo

Angle of twist at right-hand end of shaft
J1~w'-Mo I"L:_Jlo“’g-Ma
c1 - FoN Por Pl s S N
Lot Mo ] et I
C G "Gy C,.C, J
But angle of twist at end of shaft is zero, hence the f_re~
quency equation is obtained by equating the above expression
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to zero. Dividing through by the common facter M,, and
rearranging terms, the frequency equation becomes

Gréra el { ol
{cl""cﬁcs} "’[ Ton c2 (o
Jo 0t _
+3 GGG
This equation has two roots, indicating that there are two
possible modes of vibration

Note thatif J, =0, and + C— =z (where Cis the torsional

rigidity of the portion of sha.ft between the left-hand end and
mass J,), then the frequency equation reduces_to

ferel-llsl-o
ctey

2
which is the same form as Equation (8).
Also,if C; = Cy = Cy =C,and J, = J, = J, the frequency
equation becomes

n ITRa\

or w? =

4] ot J et

st o

The roots of this equation are
2o oo 3
ot =5 or T

The foregoing methods can be applied to systems having
more than two masses, but-the resulting frequency equations
are very cumbersome, and their solution is tedious. It is
preferable to deal with multi-mass systems by the tabulation
method described later.

Three-Mass Systems.—Fig. 7 shows a simple three-mass
system consisting of three heavy discs of moments of inertia
Ju Je and J, connected together by two lengths of elastic
shafting of torsional rigidity C, and C,.

The mass of the shafts is assumed to be negligible compared
with that of the discs.



TORSIONAL VIBRATION 3t

Let w = phase velocity of the vibrations in radians per
second
=2.7. F
F= frequency of vibration in vibs. fsec.,
@, = maximum amplitude of vibration at mass J, in
radians.

(@)Simple 3-Mass System,

(3) Deflection Diagram.
( One-Node Vibration.)

(c) Deﬂec’mon Diagram.
(Two-Node Vlbétmn)

Frc. 7.—Three-mass system.

For equilibrium at the instant when the system is at the

position of maximum displacement the elastic resisting torques
due to twisting the shafts must exactly balance the torques
due to the movements of the masses, since when a system is
performing free torsional vibrations no external torques are
required to keep it in motion,

torque to left of mass J; =M, =o,
angle of twist at mass J, = a,,
torque to right of mass J, = M,,
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where M, =M, + maximum torque to accelerate mass J,
=0+ ], 02 a.
From Equation (1),

Angle of twist between J, and J, = %— = J.l.c_al.
1

L0t a
b,

Hence, ' angle of twist at mass J, = @, —
Torque to right of mass J, = M,,
where M, = M, 4 maximum torque to accelerate mass J,
=J.0t. a4+ J,. o l:a -Il__u!]
1- 1 2> 1 C
=0 (J,. 41+ Jz- @) — cu_________J,_ Ji- 0
Angle of twist at mass Js,
J1~m2-al_[w’(lx-u1+1z-d) S

Gy =a, —

1
R W P La1 Js-a o] T, Ly
e ke i Tl B
Torque to right of mass J g == M;,
where
M, = M, 4 maximum torque to accelerate mass J;

=], 4+ Js- a)_“’___JL.L*_“_l_;_Js w?ay
w.[Jl Js- a1+J1 Js ﬂ1+J5 Js ’11:|
ws Ji-Jo-Js- “1

12
and, since there are no external torques acting on the system,
My=o,

ie. @ aJy+Ja+ Ja)
_04’%[J1 Jl_'_Jl Ja+J1 J3+Js Js]

+‘° @1 Ja-Js- Js=

1+
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Divide through by w?. g,,

Gt Jot 30 —of el dey Dudey JoJo]

. w'_»%_::i-__h: o, (19)

Cy
and Cy=S1y
2

G.1,

where C,=

1
G = modulus of rigidity,
I, = polar moment of inertia of cross-section of
shaft = w.dt
32
d = diameter of shaft,
L, and L, = lengths of shaft between masses.

3

It should be noted that if any one of the masses is assumed
to have zero moment of imertia, Equation (19) reduces to
the expression already determined for a two-mass system,
Equation (16).

Thus, if
Ti=o, ‘= Cn(Ja‘;Js),
e e =T

2
i Ja=o, ‘= CiCo(Ja+Js) _ C{:+Ta)
N ! B (C1+CZ)J1‘J3 JI'JS ’
where -(C—’_I_—C— = C, the torsional rigidity of the whole
N d of the shafting between masses J,
and J;.

Equation (1g) has two real roots, so that there are two
principal modes of vibration of a simple three-mass system.

The first or fundamental mode of vibration occurs when
one of the end masses moves in one direction whilst the other
two masses move in the opposite direction, i.e. there is a node
somewhere between one of the end masses and the other two
masses. The fundamental mode of vibration may therefore
be defined as vibration with one node.

VOL. I.—3
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The second mode of vibration occurs when the two end
masses move in one direction whilst the centre mass moves in
the opposite direction, i.e. there are two nodes, one between
each end mass and the centre mass. This second mode of
vibration may therefore be defined as vibration with two nodes.

The positions of the nodal points can be determined from
the expression for the angles of twist at the masses.

Thus

:—::r——l%:)—i ... . (20)
and :%"I [Jl‘f‘L‘f'h]-l-w NE L - (o)

Since the mass of the shafting was assumed to be negligible,
the deflection curve consists of straight lines, as shown in
Fig. 7, so that the positions of the nodes can be obtained by
assuming unit amplitude at mass J; and setting down the values
of 4, and a, given by Equations (20) and (21) at masses J, and
J 5 respectively. The nodes are situated at the points where
the deflection curve crosses the axis of the shaft.

A special case arises when the three discs have equal moments
of inertia, and the torsional rigidities of the two sections of

shafting are also equal.
In this case the frequency equation reduces to
' C 3.C
2= or =i,
v 73 J

where J=Ji=Ja=Js dnd C=C,=0C,
i.e. for the fundamental or one-node frequency

F= 6 =9 55\/‘ vibs. /min.

This is the same as Equatmn ), mdmatmg that the node
is situated at mass J,.
For the two-node vibration

F=g935 vibs. /min.,
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i.e. the two-node frequency is 4/3 times the one-node frequency
in this case.

The amplitudes of vibration, assuming unit amplitude at
mass J,, are
.C

—

At mass J,, 43 = I — X~ =0, i.e. the node is at mass J,
J for the one-node fre-
quency,
or Gy =1— 3—’—(% = —2 for the two-node
frequency.
.J.C 2.C?
At mass Js, 43=I_3CJ.-J +%%
= — I for the one-node frequency,
.J.C LJE.CR
or Gg==1— 'TJ—J— + 9—(:‘217

= 1 for the two-node frequency.

ExaMpLE 4.—Calculate the natural frequencies of torsional
vibration of a system consisting of three flywheels A, B,
and C (Fig. 7), weighing 2000 Ibs., 1000 Ibs., and 1500 lbs.
respectively. The radius of gyration.of each fiywheel is
20 ins., and the shaft connecting A to B is 3 ins, diameter
and 2o ins. long, whilst the shaft connecting B to C is
3 ins. diameter and 30 ins. long.

Also calculate the relative amplitudes of vibration at
each flywheel for the two principal modes of vibration.
In this example

I

2 2
= W.K® 2000 X 20° == 2073 Ibs.-ins. sec.?,

g 386
1000 X 202 . .
Ja 38 = 1036 Ibs.-ins. sec.?,
_ 1500 X 20% r )
Is =% = 1554 lbs.-ins. sec.?,
G. 1.

C=
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where G = 12,000,000 Ibs. per sq. in. for steel,
I, =7L3—214-u—4—;—2—x—§-——7-95ms‘
= length of shaft in inches,
ie. Ci= —Iﬂ)—q‘:—le—gs = 4,770,000 Ibs.-ins. per radian,
Cy= m———og%fﬂé = 3,180,000 Ibs.-ins. per radian.

The natural frequencies are obtained from Equation (19),

Jy+Ja+Ta) _w[Jl Js_I_Jl Js+J1 Js Ja. Ja]
4
e w
ie. (2073 4 1036 4 1554)
_2[2073X 1036 | 2073 XX354 , 2073 X1554 & 1036 XI554
et [ 47790000 + 4770000 * 3180000 + 3180000 :|
w* X 2073 X 1036 X I554
4770000 X 3180000

=0,

+
or 4663 — 2:6471 X w? 4 0°00022 X w* = 0,
Now, the roots of the expression
a.m+b.m+c=o0

"m =

—~bL VP —4.a.c
2.a ’

andin this case #m = w2

26471 £ V264712 — 4 X 4663 X 0-00022
2 X 000022 -
= 2140-for (QIO,s4 2140
@ = 46+4 or 9g-5 radians per sec.,
60 X @
F=X2Xa
2X#

Hence, w? =

= 443 oT 947 vibs. min.
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Relative Amplitudes.
At mass J, (Equation 20),

4y __ Ji. 0?
P I - . . (20)
i.e. for one-node vibration,
@ _ . __2073X2140 _
= I -———-4770000 = 0'070 ;
Jor two-node vibration,
Gy 2073 X 9910 .
a; I 4770000 3307-

At mass Ja .(Equa:tion 21),

Byl dry iy Jo] . et Ju
P [cl et 2x)
i.e. for one-node vibration,
a4y _ 2073 2073 1036
ay T 2140 4770000 + 83180000 + 31800006
4580000 X 2073 X 1036 _ . .
+ 4770000 X 3180000 3723
Jfor two-node vibration,
as_ . _ 2073 2073 1036
ay 1 9910[4770000_: 3180000 + 3180000]6
i 210000 X 2073 X 1036 _ oo,

4770000 X 3180000

The deflection curves are shown in Fig. 7 for both one- and
two-node modes of vibration.

The positions of the nodes can be obtained from the relative
amplitudes as follows :—

(i) For the One-node Mode of Vibration (Fig. 7b).

The node is between mass B and mass C.

Let L, = length of shaft between B and C,.

L, = distance of node from C, and assume that
a,=1
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=L % ] _ 30X1372
Then L= L’[a, = a:,] = 0070 + 17372
= 2854 ins.

(ii) For the Two-node Mode of Vibration (Fig. 7¢).

Let L, = length of shaft between A and B,
L, = distance of one of the nodes from A, and assume

that ¢, = 1.
_ @y _20XTI o
Then L= L1|:a———1 — aa:l =¥ 464 ins,
Let Ly = distance of the other node from C.
[ ] 30X g
Then Li= L"[ag = ﬂa] =330 Fogi 653 ins.

\/ Multi-Mass Systems.—The method just described can be
extended to systems having four or more masses, but the
frequency equations which are obtained are very cumbersome,
and their solution is extremely tedious.

The tabulation method of dealing with multi-mass systems
described in the next chapter is therefore a better practical
way of carrying out the frequency calculations, and moreover
is a convenient method for obtaining the relative amplitudes of
vibration at the various masses.

In certain cases, especially where the masses form a sym-
metrical arrangement, a good approximation to the funda-
mental or one-node frequency of torsional vibration of multi-
mass systems can be obtained by reducing the actual system
to an equivalent two- or three-mass system.

Fig. 8 shows a seven-mass system treated in this way, the
actual system being shown at (), and the approximately
equivalent three- and two-mass systems at (§) and (c) respec-
tively. This arrangement is typical of marine installations,
where the closely grouped engine masses Jy, Ja, Js Ja J5» and
Js are separated from the propeller mass J, by a long length of
intermediate shafting.
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Exaupis 3.—In Fig. 8, let
Jo=Js = Ja= Jo = 44,000 Ibs.-ins. sec.2,

J.=17s = 22,000 lbs.-ins. sec.?,

2 = 53,000 Ibs.-ins. sec. “
Li=L,=L;=Ls=  4oins,
Ly=L, = 45 1115;
= 4200 ins.,

diameter of shaft = d = 16§ ins. throughout.
Then, Equivalent Three-Mass System (Fig. 8b),
Ja=Js=(J:.+J2+Ja) = (J¢+Js+16)

=110,000 lbs.-ins. sec.?,
J» = 53,0001bs.-ins. sec.?,
(Lz‘l‘La +L¢+Ls)—170ms:
Ly = (Lg + L;) = 7240 ins,

Equivalent Two-Mass System (Fig. 8¢),

Jwo= (Je + J») = 220,000 Ibs.-ins. sec.?,
53,000 Ibs.-ins. sec.?,

L= Lot3.Le)= 73251ns.
Natural Frequencies of Torsional Vibration.
(i) Two-Mass System (Fig. 8c).

In this case, from Equation (16),

F=o055 CoolJ1o + Ja) vibs. /min.,
G I JIO . J1
h Cio= 2
where w="T_%
" 1, = polar moment of inertia of cross-section of
shaft
a* 1416 X 16-75% .
= —3—5— = §_4_32__7i = 7750 ins.t
ie Cyp= 12000000 X 7750 12,700,000 Ibs.-ins. per

7325
radian.
12700000 (220000 -+ 53000)
955‘/ 220000 X 53000
= 165 vibs. /mm

Hence,
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Position of Node (Fig. 8).
From Equation (x3),
J: Lo _ 53000 X 7325
T Ur+ 7w (33000 F 220000
= I420 ins.
Also, if amplitude at J,, = 1, the amplitude at J, is
o= IX (Lio— %) _ 1 X (7325 — 1420)
1= A 1420
= — 4I5.
(ii) Three-Mass System (Fig. 85).
In this case, from Equation (19),

Tt o+ T —afdide g e B Jey Jo Jr]
“" Js - Js J1

R oA
_G.I, 12000000 X 7750__
where Cy = T, T me 547,500,0001bs.~
ins. per radian.
C = G.I, __ 12000000 X 7750 _ 10 850,000 Ibs.-

ins, per radian.
Hence,

110000 X ITI0000
(110000 -+ 110000 + 53000) — w“l:———————

547500000
. TX0000 X 53000 | 110000 X 53000 | II0000 X 53000:,
547500000 12850000 12850000
n w?! X _II0000 X II0000 X 53000
547500000 X 12850000 -
ie. 273000 — 940 X @? - 00912 X wi = 0,
ot MO 10407 — 4 X 0°0912 X 2773000
2 X 00912

= 300 Or 10000,
o = 17-32 or roo radians per sec.,

60 X w . .
F = T = 1655 or 955 vibs.[min.
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Relative Amplitudes and Positions of Nodes (Fig. 89).
Let
= amplitude at Js,
@, = amplitude at J,,
a, = amplitude at J,.

Then from Equation (20),

@ =1 — :]-_8_'__(1_’__2
ag [oN

For one-node vibrations : ? = 300,
ay 110000 X 300 _

2~ T 347500000 019395

For two-node vibrations : w? = 10,000,

ag II0000 X I0000
- /= - ——————— = — I‘01.
ag 547500000

From Equation (21),

[ S <Js+ _I_Js‘) +w JSCSJQ

ag
For one-node vibrations : w? = 300,
<7

110000 II0000 110000
e 300[547500000 12850000 + 12850000]
3002 X IXI0000 X II0000
547500000 X 12850000
" =1 — (300 X 0:0173) + (300% X 0-00000172)
= — 4:035.

For two-node vibrations : w? = 10000,

a
Zzlz I — I0000 X 0-0I%3 -+ I00002 X 000000172
8

= 0.

This value of g—’ indicates that there is a node at mass J,
8

which is not correct. The actual value of ;ﬁ obtained by the
8
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tabulation method described in the next chapter is 0-02x. The
degree of accuracy necessary for obtaining the true value of
this ratio when using the three-mass method cannot be obtained
with the ordinary slide rule or four-figure logarithms.
Positions of Nodes (Fig. 8b).
Assuming that @ = 1, then
@y = 0-9305 for one-node vibrations
= — 1-0I for two-node vibrations,
@, = — 4-035 for one-node vibrations.
For one-node vibrations, node at A in Fig. 85,
Ly X a, 7240 X 0'9395 ;
= = = 1365 ins.
= =) ~ oozgs  ao3s) 18
For two-node vibrations, nodes at B and C in Fig. 85,
Ly X ag _ IjoXTI
(as—ag)  (r + 1701)
15 cannot be obtained accurately by the three-mass method
using the ordinary slide rule or four-figure logarithms.

L=

= 845 ins.

SUMMARY.
Natural Frequency (Vibs./Min.).
Method. &
One-Node. Two-Node.
Two-mass . 1650 —
Three-mass . 165'5 955
Tabulation . 1655 1041

The above summary shows that in this case both the two-
mass and the three-mass methods give close approximations to
the value of the fundamental or one-node frequency of torsional
vibration.

The two-node frequency cannot be calculated by the two-
mass method ; but an approximate value can be obtained by
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using the three-mass method, the error in the present example
being nearly I0 per cent.

In multi-mass systems there are as many principal modes
of vibration as there are spaces between the masses, ie.
in the example shown in Fig. 8 there are seven masses, and
therefore six principal modes of vibration. The natural

Jg Js Jg Jg Ja
U G -
{:Lyi:-szﬁ-La*eL‘,-»t-QjeL;!—.—-L7
5 . Nodel Node.
(@) = i e
Node
-qL- <+ 4}- -+ -4} 4
\ ,
Jg' Jz %
]
———T R I
® ) gy —
Jo Jg
Lg
|~ Node
© ¥

* *

Fre. 9.—Multi-mass system.

frequencies corresponding to vibrations with three and more
nodes cannot be calculated by the three-mass method.

The arrangement shown in Fig. 9 is similar to that shown
in Fig. 8, except that there are eight masses instead of seven.
This arrangement is typical of a marine installation having six
closely grouped cylinder masses J; to Je; a heavy fiywheel
J, immediately after the last cylinder mass Je; and the

propeller mass J,.
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The equivalent two-mass and three-mass systems are
obtained as already described, care being taken to allow for the
difference in the moments of inertia of J, and J, in determining
the equivalent length L, for the two-mass system.

Thus, in Fig. gb—three-mass system,

Js=(J1+J2+Js+L+J5+Ja):
Ly=@3Ly+L,+L;+ L.

In Fig. gc—two-mass system,
Ju={Js+ J7)y

- Ls-Jo
S A )

The approximate values of the one- and two-node natural
frequencies of torsional vibration ; the relative amplitudes of
vibration at the various masses ; and the positions of the nodes
are then determined from the equivalent two- and three-mass
systemns exactly as already described.

The arrangement shown in Fig. 10 differs from that shown
in Fig. 8, since there is only a short length of shafting between
masses Jsand J,.

This arrangement is typical of multi-cylinder oil engines
direct-coupled to electrical generators where the flywheel effect
necessary for satisfactory electrical operation is either incor-
porated in the rotating parts of the dynamo itself or where an
auxiliary flywheel is so rigidly connected to the dynamo arma-
ture that the two can be regarded as one large mass.

ExampLE 6—In Fig. roa, let
JTi=l=Tli=Ji=]s=Js= 1651bs.ins. sec?,
Jz = 23,500 Ibs.-ins. sec.?,
Li=L=Ly=L,=L,=z27ins,
Ly = 32ins.,
diameter of shaft d = 8% ins. throughout.

Jp 415
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(i) Equivalent Three-Mass System (Fig. 10D).

Jo=1 9—(J1+Jz+13)—(J4+Js+J) (165+165+I65)
=403 [bs.-ns. sec.?,

J = 23,500 bs.-ins. sec. 2,
=L+ Ls+ Ly =(27+27 +27)="81 ins.,
= (Ls + Lo = (27 + 32) = 59 ins.

L, A U ~'.7

gy Jdp
- _j» 4+ 4+ +
L, 4—L1«><-L3-><—L4 ST
= + Nodes
(@) et
Node i\ —
PETEE T l
Y i
] : Js
Ly s
®) N Nede Nodles,
LIy . g L3
4 e e
Jm‘ i/
L,
¥ ™ Node
()

r‘ 1g—

Fie. 10.—Multi-mass system (close-coupled).

mo G =%

where G = 12000000 Ibs. per sq. in.,
m.d¢ 31416 X 8-25* :
_3 j_gz__i — 455 ins.

L=",
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ie. C, = Izoooog_ﬁ:x_‘;@ = 67400000 lbs.-ins. per
radian,
Ce= G.L_ 12000000 X 455 _ 92500000 Ibs.-ins.
L 39
per radian.

Then, from equation (1),
ot Jot 3o —e Bele s Jode Jode g Tu i)

‘"“-Js~Jan1=0
C,.Cq ’
(495 + 495 + 23500)
_w?[495%495 | 495X23300 | 495X 23500 , 495X 23500]
67400000 '~ 67400000 92500000 92500000
! X 495 X 495 X 23500 __
67400000 X 92500000
or 24490 — 04275 X w? 4+ 0°00000024 X w = 0,
w2 4275 £ /01830 — 0-0905
0000001848
= 67000 or 396000,
w = 2585 or 629 radians/sec.,

F= 620—': = 2470 or 6000 vibs./min,

»

Relative Amplitudes.
From Equation (20),

i.e. for one-node vibrations,

2 495 X 67000 _ e
@~ 17 o000 T 1T 040 =0510;
for two-node vibrations,

@ _ _ _ 495 X 396000

ay 67400000 1~ ¥9r0=— I'9L
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From Equation (21),

a To Jo Jo] o Js-Jo
R R IR bt R oy o

ag 8

For one-node vibrations,
Gy _ 495 495 495
3 ' 66800[67400000 + 92500000 + 92500000]
66800% X 495 X 495
67400000 X 923500000

668002
=1 — (66800 X 0-00001805) + 73430000600
= I — I'2050 4 0-I750 = — 0-0300.
For two-node vibrations,
a : 3060002
= I — 396000 X 0-00001805 + 2——————5450000000

=1 —415+ 615 = 0.

The actual value of 22 is 00096 (obtained by the tabulation

method described in the next chapter), but the accuracy neces-
sary for obtaining the true value of this ratio cannot be obtained
with the three-mass method when using the ordinary slide rule
or four-figure logarithms.

Positions of Nodes (Fig. 10b).
Assume that a3 = 1, then for one-node vibrations,

_LgXa _ _s9xos10 .
h= @ —a) — (0510  00300) — 203 1ns-
For two-node vibrations,
L, X a, 81 X I
I, = 2 s 8IXI e
Tm—w e U

I3 cannot be obtained accurately by the three-mass method,
using the ordinary slide rule or four-figure logarithms.
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(ii) Equivalent Two-Mass System (Fig. roc).

49

Jio = (Js + Jo) = (495 + 495) = 990 lbs.-ins. sec.?,

J, == 23500 lbs.-ins. sec.?
= (Lo + IL;) = (59 + 40°5) = gg-siins.,
and C, _ G-I, _ 12000000 X 455
L, .99'5
= 54850000 lbs.-ins. per radian.
Then from Equation (16),

syl

BT T (T T
= 935 \/54 50000 (990 + 23300)
990 X 23500
= 2290 vibs. fmin.
Position of Node (Fig. 1oc).

— _Ji-Le _ 23500X 995

(B + JID) (23500 -+ 990)
= 955 ins.,

and if amplitude at mass J;y = 1,

(995 —

amplitude at mass J, =1 X £ =1 X

@y — L)
Iy
= 0:042.

SUMMARY.

Natural Frequency (Vibs,/Min.).
Method.

One-Node. Two-Node,

Two-mass . 2290 —
Three-mass . 2470 6000

Tabulation . 2520 7325

95°5)
95'5

This summary shows that in this example the approximate
values of the one- and two-node natural frequencies of torsional
vibration determined by the two- and three-mass methods are

VOL. I.—4
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not so close to the actual values as in the case of the arrange-
ment shown in Fig. 8.

In systems of this type, where there are several equally
spaced minor masses direct-coupled to one large major mass, a
closer approximation to the fundamental or one-node frequency
can be obtained by means of the following correcting factor :—

Let F, =F[K,
where F = one-node frequency calculated by the two-mass

method,

F, = corrected one-node frequency,

K = correcting factor which depends on the number of
minor masses as follows :—

I ‘Number of Minor Masses, 1. 2. 3. 4 5 6. oc.

X . . . .| 1700 | 093 | ogz| o9r| ogr| ogr| o-go

In the present example
F = 2290 vibs. /min.
The number of minor masses is 6, hence K = 0-g1,

ie. F, = 2290 2520 vibs./min.

09I
(see also Table 6).

The corrected value therefore agrees with the value obtained
by the tabulation method.

In general, if the transmission shaft between a multi-
cylinder engine and the driven machine is very much more
flexible than the engine crankshaft, the crankshaft masses can
be replaced by a single mass equal in magnitude to the sum of
the crankshaft masses and located at the centre of the engine
as shown in Fig. 8. The fundamental or one-node natural
frequency of torsional vibration can then be calculated from
Equation (16) without much error.

The transmission system of a marine installation where the
propeller is separated from the engine by a long length of inter-
mediate shafting is an example of an arranigement of this type.
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When the stiffness of the transmission shaft is increased so
that it is comparable with the stifiness of the crankshaft, as in
the case of multi-cylinder engines direct-coupled to electrical
generators (Fig. 10), the error introduced by reducing the system
to a simple two-mass arrangement is considerable.

This error can be minimised by introducing a correcting
factor, the value of which depends on the number of engine
cylinders and the relative stiffness of the crankshaft and the
transmission shaft.

The value of the natural frequency of torsional vibration
with two nodes cannot be obtained by the two-mass method,
but an approximate value can be obtained by the three-mass
method.

Since, however, the stifiness of the engine crankshaft, and
the disposition of the crankshaft masses have considerable
influence on the value of the two-node natural frequency, it is
necessary to consider the whole of the crankshaft masses acting
at their respective points in order to obtain a more exact
solution.

The tabulation method described in the next chapter is a
convenient way of carrying out the more exact calculation.

This method enables the natural frequencies of torsional
vibration with one, two, or more nodes to be obtained for
any given system, as well as the relative amplitudes of vibration
at the different masses and the specific vibration stresses at
different points in the shaft system.

The calculations can be carried out on a ro-inch slide
rule with sufficient accuracy, and by adopting a standard form
for the tabulation the work becomes automatic, which is an
advantage from the point of view of drawing office routine.

Incidentally the data contained in the frequency tabula-
tion is also required for the determination of vibration
amplitudes and stresses.
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CHAPIER 2.
NATURAL FREQUENCY CALCULATIONS.

It has already been shown that a shaft carrying a series of
masses may have several modes of free vibration, which are
usually distinguished by degree numbers, ie. vibration with
one node is referred to as of the first degree ; vibration with
two nodes as of the second degree, and so on.

In general, when there ate several attached masses there
are as many principal modes of vibration as there are spaces
between the masses.

The number of free vibrations per minute increases pro-
gressively with the number of nodes, and in practice only the
first two principal modes of vibration are usually investigated
since the serious critical speeds associated with vibrations with
three and more nodes are well above the operating speed range
of the engine in all normal installations.

Fig. 11 shows the normal elastic curves corresponding to the
four principal modes of torsional vibration of a typical five-mass
system. Since there is only one mass on the right-hand side
of the node nearest to the right-hand end of the equivalent
system, the natural frequencies are inversely proportional to the
square roots of the nodal distances L;, L,, Lg, and L. -

Frequency Tabulation.—This method is based upon the
work of Giimbel and others, and depends upon the following
theoretical considerations.

Referring to Fig. 12, consider a length of plain circular
shafting AB, free at the ends A and B, and with a line #-# on
the surface parallel to the axis when the shaft is unstrained.

‘When executing simple harmonic torsional vibrations, the
shape of the line m-n at the instant of rest at the extreme
positions of vibration is shown by the dotted line m,-n
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Fi6. 11.—Principal modes of
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Consider a small section of the line #,-n, of length 4L, and
let the angle of twist in length dL be 46 radians.

Then the circumferential movement of one end of line of
length 1 with respect to the other end is

de=R.db,

and the shear strain at surface is Rj#
da _g %

or I= T

da. G
=i

Hence, shear stress, f=

W Wy Wy Wy

n

Heanfd
\
\
\
\

| PR P lz__,*é_Lé__J
F1G. 12.—Torsional vibration.

But from Equation 1,

or =gXGxXgp - . . (22)

where M = torque and I, = polar moment of inertia of
cross-section of shaft.

Now consider a weight W Ibs. on the surface of the shaft,
radius R, executing simple harmonic torsional vibrations of
linear amplitude , and frequency F =2—(i— where o is the

. T

]

phase velocity of the vibration in radians per second. Then,
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maximum linear acceleration of W at the extreme positions
of the oscillations = w? X ¢, ft.[sec.?,

ie. force on W = % X w? X a lbs.
and torque on shaft M = Yg—v X w? X & X RIbsft.

_ L da
=g X G X T
Now, assume that the shaft is reduced to an equivalent length
of uniform diameter divided into sections, and that the
weights of the shaft and its attachments are concentrated at
these sections. If the weights are Wy, W,, Wy, etc, and are
assumed to act at a common radius R, then
Maximum torque to right of W,
due to oscillation of W,
Maximum torque to right of W, W£
due to oscillation of W, XX e X R
Maximum torque to right of W, wn R
and W, due to oscillation of W, = Z(Wy.a; + W, . a9).
and W,
For the whole length of the shaft, the torque to the right
of the last weight, i.e. at B, due to the oscillation of all the
masses is

vzlxwxalxR,

2 B
M= BZAW. a (23)

Since the natural frequency of torsional oscillation corre-
sponds to a condition of equilibrium between the elastic forces
available from the deflection of the shaft, and the forces gener-
ated by the oscillating masses, the torques at the ends of the
shaft, i.e. at A and at B, must be zero.

It has already been shown that

I,.G _ da
M="p Xz -« - . (2)
) da _MxR
or SPE=TTLXxG

at surface of shaft, i.e. the torque is zero when the slope is zero.



36 TORSIONAL VIBRATION PROBLEMS

At the end of the shaft
da w?. R?
E_I,_G.ngW'“‘ PR . (24)
There are two unknowns in this equation, @ and w. Since
@ appears on both sides of the equation, its absolute value is
immaterial, and may be assumed of any convenient magnitude.
 must be chosen by trial and error, so that there is zero
torque at the end of the shaft,
R o? R B
i.e. so that mzAW .a=o0. . . . (25
When this condition is fulfilled, the selected value of o
corresponds to one of the natural frequencies of torsiomal
vibration and the frequency is

60 X w

F=2X1r

vibs. per min. . . (26)

2
In the foregoing equations WR is the moment of inertia

of the masses about the axis of the shaft assumed concentrated
at each section of the shaft.

It - WR
g
then slope at any section C is
da @ v
i I—W.GZ‘JAa, . . . (29)
and for zero slope, and hence zero torque at the end of the shaft
reeJe=o . . . (@)

The trial and error process of determining the natural
frequencies of torsional vibration is best carried out by tabula-
tion.

In Equation (27) ¢ is the amplitude at the surface of the
shaft, i.e. it is a linear amplitude.
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Now 6 = angular amplitude = 4/R,
or z=R.6,

ie. Equation (27) can be written

da R €
K—mZAJ.wz.&

From Equation (22)

_ _L.G da
M = torque = R I
Hence, M=F37T.et.8,
and for zero torque at the end of the shaft,
B
2. J.oet =0 . . . (29)

This is the form which is used in the frequency tables.

Tables 1 to 4 are typical examples of the tabulation method
applied to two different types of installation.

Tables 1 and 2 are the one- and two-node frequency calcu-
lations for the seven-mass system shown in Fig. 1o. This
arrangement is equivalent to a six-cylinder oil engine -direct-
coupled to an electrical generator in which the actual masses
have been reduced to seven exact masses connected by sections
of weightless shafting. The moments of inertia of the seven
exact masses and the elasticities of the connecting shaft
sections have been obtained by the methods to be explained in
Chapter 3 so as to reproduce the dynamic and elastic properties
of the actual system as closely as possible.

The following dimensions were assumed in building up
Tables 1 and 2 :—

" Dimensions of engine: 6 cylinders, 4-stroke cycle, single-
acting, x34-in. bore X 18-in. stroke, 310 r.p.m., direct-coupled
to a 275 kw. direct-current generator. The equivalent system
is shown in Fig. 13.

Tables 1 and 2 are built up as follows : all calculations being
made on an ordinary To-inch slide-rule, using Ibs., ins., seconds,
units throughout.
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Column A ~This column gives a description of the various
masses of the equivalent system (see Fig. 13).

Column B.~This column contains the diameters of the
sections of shafting between the masses. In cases where the
diameter of the shafting is not uniform throughout the system,
it is usual to replace the actual lengths of shafting between
each pair of \masses by an equivalent length of shafting of
some standard diameter such as the diameter of the crank-
shaft journals, as explained in Chapter 3.

i Sener:
165 I 765 165 2400

| I -‘-!—Lbs ns. Secz-|—"
e

Normal Elastic Curve
One Node Vibns.

NodeZt
| I

Dla
I
M’dgr I‘Iorvnall ElaszlcC‘u'Ne , -
waNade Vm’i P

i-<—27—>|-<—z7—>{<—27—>|<—27—-l<-—27——l-—32——-—1

Fie. 13.—Equivalent syst: di

Columm C.—This column contains the eqmvalent lengths of
the different sections of the shaft system, i.e. the lengths of
standard diameter shafting having the same torsional rigidity
as the corresponding lengths in the actual system (see Chapter 3).

Column D.—This column contains the moments of inertia of
the various masses in lbs.-ins. sec.? unmits, calculated by the
methods explained in Chapter 3.

Colummn E.—This column contains the products of the
moments of inertia of the respective masses, and the square of
the phase velocity of the vibration in radians/sec., ie. the
torque per unit deflection at each mass,
ie. M=J.w?.8Ibs.-ins.

= J . o? when 0 = 1 radian,
or (column E) = (column D X w?),
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where o = phase velocity of the vibration in radians /sec.
_2.n.F

T 60
F = natural frequency in vibs./min.

The value of w is assumed in the first instance until by trial
and error a value is found which makes the last torque summa-
tion in column H zero. This value corresponds to one of the
possible modes of free torsional vibration.

The final tables only need be recorded, i.e. Table 1 is the
final table for the one-node frequency, and Table 2 that for the
two-node frequency.

Colwmn F.—This column contains the deflection at each
mass starting with an assumed deflection of one radian at No. ©
mass, i.e. at the forward or free end of the crankshaft.

The deflections at other masses are obtained as the calcula-
tion proceeds by subtracting the change in deflection tabulated
in column J from the corresponding value in column F, as
follows - —

Deflection at No. 1 cyl. . = 10000 (line 1, col. F).
Change in defin. between cyls I & 2 = 0-0570 (line 1, col. J).

Deflection at No. 2 cyl. . . =09430

This value is entered in line 2, column F.

Deflection at No. 2 cyl. . . = 09430 (line 2, col. F).
Change in defln. between cyls. 2 & 3 = o-1r05 (line 2, col. J).

Deflection at No. 3 cyl. . . =038325

This value is entered in line 3, column F, and so on.
Column G.—This column contains the torques due to the
oscillation of each mass, i.e. the products of columns E and F,

ie. M=7J.0?.6 lbs-ins,
or (column G) = (column E) x (column F).
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Column H.—This column contains the total torque up to
the next following mass, i.e. the algebraic sums of the torques
tabulated in column G,

ie. (line 2, col. H) = (line 1, col. H) -+ (line 2, col. G)
' = I'I500 X 107 4 r-0850 X 107
= 22350 X 10".
(line 3, col. H) = (line 2, col. H) + (line 3, col. G)
= 22350 X 107 4 09575 X 107
= 3:1925 X 10", and so on.

The final value of the total torque is zero when the selected
value of the angular velocity w corresponds to one of the
natural frequencies of torsional vibration.

Colwmn I —This column contains the torsional rigidities
of the respective sections of the shaft system, calculated as
follows :—

Since ¥_G.0
I, L’
or M= G i; I
the torsional rigidity, i.e. the torque per unit deflection, is
_G.I,
C= i

where G = modulus of rigidity in lbs. per sq. in.,
I, = polar moment of inertia of the cross-section of
the shaft, in ins.# units
7. @

=
d = equivalent diameter of shaft in inches (column

»

L= equix;alent Jength of shaft in inches (column C).
In the present example,

G = 12,000,000 Ibs. per sq. in., for mild steel,
4 = 8% ins. throughout,
I, = 455 ins%
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6 X 107
Hence, €= 1200001:)[? X 455 _ 54 I>_,< i

i.e. between cyls. 1 and 2, where L = 27 ins,,
C= 546—;;—1—27 == 20'2 X 107 Ibs.-ins. /radian.

This value is entered in line 1, column 1.

Column J~This column contains the change in deflection
up to the next following mass, and is obtained by dividing the
values in column H by the corresponding values in column I,

. @ J.o
e A6
_J.erdl ],
or dﬁ——m;—__c
__column H
" column I

EXAMPLE—
Total torque between cyls. T and 2
== 11500 X 107 (line I, col. H).
Torsional rigidity between cyls. 1 and 2
=202 X 107 (line 1, col. I).
. N II500 X 107
Change in deflection between cyls.1& 2 = o X 10T
= 00570 radian.
This value is entered in line 1, column J.

Columm K —This colurn contains the stress at each section
of the shaft system for one-degree deflection at No. 1 cylinder,
ie. at end A in Fig. 13. Column K is completed after the
natural frequency has been determined and the final values
have been inserted in the frequency table. .

The values contained in this column show the relative
magnitudes of the vibration stresses at various sections of the
shaft system, the diagrammatic representation of this specific
stress variation being illustrated by Fig. 14.

The maximum vibration stresses occur at the nodes where
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the slope of the normal elastic deflection curve is a maximum,
and for the system shown in Fig. 13 the maximum values are
= 7600 and -+ 23,350 lbs. per sq. in. per one-degree amplitude
at No. 1 cylinder for the one-node and two-node modes of
vibration respectively, based on a shaft diameter of 8} ins.

<

) Q

. > = P > 4 3 H
3 5 S o g o g g
s = S 2 S g g $
& < g 3 g = “ e
§ s |
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One-Node Vibrations.

~Lbs.perSy.

240001
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8000
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Vibration Stress
&
8
Q

.

|7 P 7
~ < Normal 1 3StIc CUN.F o d{

Two-Node Vibrations,

Fie. 14.—Vibration stresses per 1° deflection at No. 1 cylinder—
direct-coupled generator.

The values in column K are obtained as follows —

. M _of
Since T=7 (Eqn. 1),
hence, f= LELI per sq. in.,

2.1,
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where M = torque in lbs.-ins.,
d == diameter of shaft in inches,
I, = polar moment of inertia of shaft cross-section
in ins.* units
7. d*
32’
16. M
1.e. f = m

The total torque acting in any given section of the shaft
system is tabulated in column H in Ibs.-ins. per radian deflection
at No. 1 cylinder, and since I radian = 57-3 degrees, the total
torque per I-degree amplitude is

(values in column H)

M= ’
+ 573
_, 16 X (column H)
o f= e X g
_, {column H)
T T rres X a4f

In this equation 4, is the actual diameter of the shaft at the
respective sections of the shaft system, which may differ
materially from the equivalent diameter used in setting down
the equivalent system shown in Fig. 13.

Marine Installation.—Tables 3 and 4 contain the one-
node and two-node frequency calculations for the marine
installation shown in Fig. 15.

The engine dimensions are: 6 cylinders, 620 mm. bore X
1300 mm. stroke, rated at 2750 B.H.P. and 138 r.p.m.

These tables are similar to Tables 1 and 2, except that the
units are tons, feet, and seconds instead of Ibs., ins., and seconds.
It is generally preferable to work with the larger units in the
case of large installations in order to obtain figures which are
easily handled.

The following points should be noted in connection with
Tables 3 and 4 —

Column B.—Enter shaft diameters in feez.

Column C.—Enter equivalent lengths of shaft in feet.
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Column D.—Enter moments of inertia of masses in fons-f.
sec.2, )

Column I.—The torsional rigidity C must be expressed in
tons-ft. per radian,

ie. C= G]"I” tons-ft. per radian,
where G = modulus of rigidity in fous per sq. ft.,
1, = polar moment of inertia of the cross-section
of the shaft in feef* units
. dt
=5

d = equivalent diameter of shaft in feef (column
B),
L = equivalent length of shaft in feef (column C).

In the present Example
G = 772,000 tons per sq. ft., for mild steel,
4 = 1-3958 ft. throughout,
I,=o0-3731ft4

__ 772000 X 0373 _ 288000
Hence, C= B S

Between cylinders 1 and 2, where L = 33333 ft.,
__ 288000
T 33333
This value is entered in line 1, column 1.
Column K.—Since the total torques in column H are
expressed in tons-feet, the expression for the stress per degree
is

= 86,500 tons-ft. per radian,

f~(valuesi11 column H) X 2240 X 12 X 16
7 X 57:3 X d;® X 1728
= Eﬂ_(goxl._‘“nﬂl{_) Ibs. per sq. in.,
1 . .
where  dy = actual diameter of the shaft in fees.

Fig. 16 shows the relative magnitudes of the ﬁbraﬁon
stresses at various sections of the shaft system, plotted from



TABLE 3,
Faequecy Tapuiation: OE-Nooe Vismerons,
F= 1655 Vil Min; o= 1792 Rdions(Sen; b= 300 RedhanstfSe,

F 3 T A S A I ] 4
) Yy S
5 150wl T e . i
Bl || | | O |
_,17 7658 Dty MU:;o Vel | Vs, Torque, | Stifaes, Defcin, p
1 |ged | s, Yiso.,
s, g
il ol g L || C=GLL camodi] sy ca g
e | Bt o ] B0 e | Mot | T g | R 3me.]#
Noxoph | a8 | gy 1630 | 40 | oo | g0 | g0 | Bgw | ooy | £ 66
Nozopl v | 33y odus | ui oo | at | T | Bsm | owds £ 1000
Nosgl | raos8| psoon YGsso | 40 | o0fSB | 4 | mib | g | oy +16%
No.goyl rsos8 | 3a333 v6as0 | 490 | o9gdr | 468 | XG5 | B6se0 | oungs 1230
Nosolivsgsd) gygsy obus | o | oo | | w5 | Bgw |owm | s
No.bojh | ragsd Goooog 1ésso | a0 | oy | oa e | 4l | g | xpf
Propdler| ~— | ~— | wvomo | sor |goob |- | o | —~ ~ ~
TABLE 4.
Fruqueney Tasuiarion: Two-Nove VisRarions,
= 1041 VibsMi; = 1091 Radians[Se.t of = 11,910 RodiansSee.
sl 0 | 3| F E G ‘ B I ] X
Noxggh| vags8| samg rbaso | g0 | voooo| rodbo | oxgibo | B0 | oomm i £ofle
Nosol | 8| g3z o8 | osio | o7b| o | 2w | W | ooy | iige
Nogepl 13958 | 7so00f 16350 o4l | odfab| o010 | 3030 | 30 | oo + 1870
Nouopl 3958 | 53z visso | wdbo [~outfy |- oo | o0 | Hsoo | o3 | 10
Nogoyl| 1958 | g3 odus | gmo —ofbsy |- B0 | wio | S5 | ombo | o
NoiGopl| 13938 fooooool 1350 | xoabo |-veoky [-xgbes | ~ 43 | 4o |-vos | 4390
Propellr! = | — | roo | zabo | oomo| 4 0] - - -

SNOILVINDIVO ADNIAONDEIMSL TVIONLVIN

£o



68 TORSIONAL VIBRATION PROBLEMS

the values contained in column K of the frequency tables.
The maximum vibration stresses occur at the nodes, where the
slope of the normal elastic curve is greatest. For the system
shown in Fig. 15 the greatest vibration stress occurs in :the
intermediate shaft for one-node vibrations, and in the crank-
shaft for two-node vibrations. The values in column K of
Table 3 are therefore based on the intermediate shaft diameter

%
£
/

!

!

7 !

E % % / |
s %2747 7 B S |
B -

N ! Normal Elastic Curve. AN Wodle

Two-Node Vibrations.
Fi1e. 16.~Vibration stresses per 1° deflection at No. x cylinder—
marine installation.
of 12 ins., whilst the values in column K of Table 4 are based
on the crankshaft diameter of 16§ ins.
The actual value of the stress per degree at a particular
point in the shaft system is
e
Fei(3).
where d = diameter used for calculating the stress values, f
given in column K of the frequency table and
+ plotted in Fig. 16,
d, = actual diameter at the point under consideration,

4
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In this example, therefore, the stresses in the 16-73-in.
diameter crankshaft for the one-node mode of vibration are
(12/16+75)® = 0-37 of the values given for the crankshaft
sections in column K of Table 3. Hence the maximum specific
stress in the crankshaft due to one-node vibration is

+ (2645 X 0:37) = = 980 Ibs. per sq. in. per 1°, »

which is small compared with the specific stress in the inter-
mediate shaft, namely, + 3260 lbs. per sq. in. per 1°

In the case of two-node vibrations the specific stress in the
intermediate shaft is (16:75/12)% = 2-7 times the value given
in column K of Table 4, i.e. + (250 X 2-7) = + 675 Ibs. per
sq. in. per 1°, compared with a specific stress of = 18,270 lbs.
per sq. in. per 1° in the crankshaft.

The two-node stress in the intermediate shaft is therefore
negligible compared with that in the crankshaft, even when
allowance is made for the reduced size of the intermediate shaft.

General Remarks—In building up the frequency tables,
it should be noted that columns A, B, C, D, E and I can be
completed at the start, the remaining columns being filled in as
the calculation proceeds.

The labour involved in the trial and error process can be
minimised by plotting the last torque summations in column H
of the frequency tables in the form of a curve on a base of
assumed frequencies, as shown in Fig. 17. The points where
this curve crosses the axis are the required natural frequencies
of torsional vibration. Fig. 17 shows the curve completed to
just beyond the two-node frequency, but in practice it is
unnecessary to draw the complete diagram. One or two spots
above and below each frequency value are sufficient to establish
the correct values of the matural frequencies and enable the
final frequency table to be completed.

The shape of the curve shown in Fig. 17 is a useful guide in
carrying out the frequency calculations.

For one-node vibrations, if the residual torque in column H
of the frequency tables is positive, the assumed frequency is
too low ; if this torque is negative the assumed frequency is

too high.
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For two-node vibrations, a positive residual torque indicates
that the assumed frequency is too high, whilst a negative
value indicates that the assumed frequency is too low.
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Fia. 17.~Curve showing variation of residual torque with frequency of

vibration:

A knowledge of the torsional vibration characteristics of
an individual type of engine is also a very useful aid in reducing
the labour of building up the frequency tables, since the natural
frequency of the installation can usually be surmised beforehand.

N
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Another useful method of searching for the frequency of a
given system by the tabulation method is to assume a value
for the frequency, and complete the frequency table down to the
last mass. Then adjust the moment of inertia of the last mass
so that the final torque summation in column H is zero. This
process is repeated for two or three different frequencies, the
values obtained being plotted to give a graph showing the
relationship between frequency and moment of inertia of the
last mass. The required frequency, i.e. the frequency corre-
sponding to the actual value of the moment of inertia of the last
mass, is then read from the graph.

Normal Elastic Curve.—The values tabulated in column
F of the frequency tables represent the torsional deflections
at the respective masses for unit deflection at No. T mass when
the system is executing free torsional vibrations of the corre-
sponding normal mode, i.e. they are the relative amplitudes of
vibration at various points in the system.

If these values are plotted as shown in Figs. 13 and 15, a
curve of specific deflections is obtained, and this will be referred
to as the mormal elastic curve for the various modes of free
vibration. The normal elastic curve is also called the swinging
Jorm of the vibration.

Since the masses have been assumed concentrated at
definite points in the system, connected by weightless lengths
of shaft, the normal elastic curve consists of a series of straight
lines. The points where the curve crosses the shaft axis are
the nodes.

Fig. 18 shows the normal elastic curves corresponding to
four typical engine aggregates, viz. two types of direct-coupled
generator, Fig. 18 #and b ; and two types of marine installation,
Fig. 18 c and d.

Direct-Coupled Generating Sets.—The one- and two-
node normal elastic curves for two typical direct-coupled
generator arrangements are shown at ¢ and b in Fig. 18. In
arrangement « the generator mass is separated from the flywheel
mass so that an intermediate bearing can be introduced between
the flywheel and the dynamo.

For fundamental or first degree vibrations, the node is
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situated in the shaft section between the flywheel ‘a.nd ‘the
dynamo, whilst one of the nodes of the second degree vibrations
is also situated at this point.
Cylinders. Flywheel.
d Generator.
> 4 4 4

] s
> 9 & & -

, Combined Flywheel
Cylinders. ¥ and ’&energtor.
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Fie. 18 —Types of normal elastic curves.

In the arrangement shown at b (Fig. 18) the bearing between
the flywheel and the generator has been eliminated, so that the
flywheel and generator masses can be regarded as a single large
mass in setting down the equivalent system, i.e. the system
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reduces to one having only a single major mass. An alternative
method of altering arrangement a would be to place the
generator between the engine and the flywheel.

The node for first degree vibrations and one of the nodes for
second degree vibrations are situated very close to the major
mass.

Arrangement 5 is preferable to arrangement a for the
following reasons :—

(i) The fundamental frequency is higher for arrangement
b due to the closer grouping of the masses, and the
ratio between the one- and two-node frequencies is
also greater for arrangement 5.

Itisan advantage to have as high a value as possible
for the natural frequency, with the object of placing
all serious critical speeds above the normal operating
speed.

(i) A comparison of the normal elastic curves for one-node
vibrations shows that the slope at the node is very
much greater in arrangement . This implies a
greater vibration stress in the section of shafting
between the flywheel and the dynamo, and many
failures of dynamo shafts at this point, due to nmning
the engine in the neighbourhood of a serious critical
speed, are on record.

(iii) Theratio between the first and second degree vibrations
is greater for arrangement &, e.g. in the case of a six-
cylinder standard Diesel engine direct-coupled to a
275 kw. generator, the one-and two-node frequencies
for arrangement & were 1450 vibs./min. and 1830
vibs. /min. respectively, whilst the corresponding values
for arrangement b were 2520 and 7325 vibs./min.
respectively.

The very high two-node frequency associated with
arrangement b ensures that only critical speeds cor-
responding to very high order harmonic components
of the engine torque curve will be present in the operat-
ing speed range, so that critical speeds of the two-node
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frequency can be neglected, as explained in Chapters
6 and 7.

In arrangement &, however, the two-node frequency
is not very far above the one-node frequency, so that
it is possible for two-node criticals of appreciable
magnitude to occur within the operating speed range.

(iv) Since the nodes are situated very close to the combined
generator and flywheel mass in arrangement b, the
actual magnitude of this mass does not appreciably
affect the values of the natural frequencies. This is
especially important in the case of engines direct-
coupled to alternators, where a very large flywheel
effect is required to ensure satisfactory parallel
operation.

In general, therefore, the oscillating system o.f a direct-
coupled generator should be designed to have as high a value
for the one-node frequency of torsional vibration as possible,
by grouping the cylinders as closely together as possible so
as to obtain maximum stiffness in the shaft connections, and
by making the crankshaft masses as light as possible, The
arrangement shown at & in Fig. 18 should be adopted so as to
obtain a favourable shape for the normal elastic curve and the
highest possible value for the two-node natural frequency.

No difficulty should then be experienced in placing all
serious one-node criticals above the normal operating speed ;
whilst for engines having up to six cylinders two-node criticals
can be neglected. For engines having more than six cylinders
it is advisable to imvestigate two-node as well as one-node
vibrations.

The flywheel effect necessary for satisfactory operation of
electrical generators is very much greater than that required
for marine installations, but in the case of alternators running
in parallel it is generally possible to incorporate the whole of
the required flywheel effect in the revolving mass of the alter-
nator itself. In the case of direct-current machines where an
auxiliary flywheel is usually required, this fiywheel should be
Pplaced as close to the generator as possible, and the coupling be
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made so rigid that the generator and fiywheel masses may be
regarded as one.

This requirement can be met by avoiding the use of an
intermediate bearing between the flywheel and generator, and
by making the connecting shaft of generous dimensions. The
omission of an intermediate bearing makes it a little more
difficult to check the alignment of the engine and generator,
but this difficulty can be overcome by testing with a special
lining-up mandril before adding the weight of the fiywheel.

An intermediate bearing is sometimes desirable in engines
with few cylinders to help in supporting the weight of the
relatively heavy flywheels necessary for satisfactory electrical
operation. In such cases, however, the natural frequencies of
torsional vibration are so high, due to the small number of
cylinders, that no critical speed of practical importance occurs
near the operating speed.

Methods of calculating the dimensions of flywheels for A.C.
and D.C. generators are given in Chapter 12.

The following table contains approximate values of the
natural frequencies of first degree or one-node torsional vibra-
tions for direct-coupled generating sets of the four-stroke cycle,
single-acting type arrangement as shown at b in Fig. 18 :—

TABLE 3.
No. of 10-in. Bore, 20-in. Bore. 30-in. Bore.
Cylinders. 15-in. Stroke. | 30-in.Stroke. | 43-in. Stroke,
3 4200 2100 1400
4 3600 1800 1200
5 3200 1600 1100
6 2900 1500 000
7 2700 1400 900
8 2600 1300 850
Vibs. /Min,

A preliminary approximate calculation of the one-node
frequency can be made by reducing the system to a simple
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two-mass system, as shown in Fig. 10, using Equation (x6),

viz, —
C . .
F= 9-55«/%%2—) vibs. jmin.,
where C= GLI” Ibs.-ins. per radian,

G = modulus of rigidity
= 12,000,000 lbs. per sq. in. for mild steel,
4

Ip =TI 3
32
d = equivalent diameter of shaft in inches,
L = equivalent length of shaft from combined

fiywheel and generator mass to centre of
cylinder group, in inches,

J. = total moment of inertia of crankshaft masses
in Ibs.-ins. sec.? units

=un.J,
J = moment of inertia of crankshaft masses per
~ cylinder,

7 = number of cylinders,

J. = moment of inertia of combined generator and
flywheel mass in Ibs.-ins. sec.? units.

A closer approximation is obtained by applying the following
correcting factors :—

TABLE 6.
Number of Cylinders. x. 2. 3. 4o 5. I 6. Inf.
X 1-00 | 0-93 | 092 | 09I | 09T | 09T | ©-90
ie. corrected frequency F; = e vibs. /min.

See also Chapter 1. .
The difficulty of placing all serious criticals above the
operating speed increases with the number of cylinders, par-
ticularly in the case of four-stroke cycle, single-acting engines,
where half-order as well as whole order harmonic components
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of the engine torque curve must be avoided; although it
should usually be possible to avoid having any serious major
harmonic below the running speed in the case of four-stroke
cycle, single-acting engines with six or less cylinders.

For a given size of cylinder, any increase in the number of
cylinders not only lowers the natural frequency slightly, but
also increases the number and range of critical speeds in the
vicinity of the running speed. The congestion of one-node
criticals is also liable to be augmented in the case of an engine
having a large number of cylinders by the appearance of
two-node criticals capable of causing vibrations of disturbing
amplitude, and in all such cases it is necessary to investigate
two-node as well as one-node vibrations.

In investigating the torsional vibration characteristics of
a range of engines of given cylinder dimensions, therefore, the
principal dimensions, bore, stroke, shaft diameter, and revolu-
tions per minute should be selected to eliminate disturbing
criticals in the engine having the largest number of cylinders.

‘Where a preliminary examination shows that some altera-
tion of natural frequency is desirable, the following relationships,
deduced from the shape of the normal elastic curve and Equa-
tion (16), should be kept in mind :—

(@) Since the nodes are very close to the combined flywheel
and generator mass in Fig. 18b, an alteration in the
moraat of inertia of the flywheel will not appreciably
alter the natural frequencies.

(8) Assuming that the masses are already as closely grouped
as possible, and that the cylinder masses are as light
as possible, the only effective means of raising the
natural frequency is by increasing the size of the
crankshaft.

The crankshaft stiffness is best increased by
enlarging the journals, or by widening the webs,
because this provides increased stiffness without an
appreciable increase of the polar moment of inertia
of the rotating masses.

The amount of stiffening which can be obtained
in this way and its effect on the natural frequency of
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the system are matters which can only be determined
by trial. If, however, only the crankshaft journals
are increased in diameter the one-node frequency is
approximately proportional to the square of the
journal diameter within reasonable limits.

The increase in stiffness due to alterations of
crankpin diameter is generally offset by the increased
weight and polar moment of inertia of the crankpin
and rotating part of the connecting rod. For this
reason it is possible for an increase of crankpin
diameter to lower the natural frequency in extreme
cases. In general, it is inadvisable to increase the
crankpin diameter with the object of increasing the
natural frequency, unless it is possible to retain the
original weight of the crankpin and the rotating part
of the connecting rod, for example, by reducing the

"length of the pin and increasing the size of the hole
bored through it.

(¢) In cases where the frequency cannot be altered suffi-
ciently to remove a troublesome critical away from
the operating speed, the amplitude of disturbing
minor criticals can often be reduced to negligible
proportions by changing the firing order, as explained
in Chapters 6 and 10.

Alternatively, the same result caipsometimes be
achieved by altering the positions of the major masses,
e.g. by placing the auxiliary flywheel at the opposite
end of the crankshaft to the generator ; by distributing
part of the required flywheel effect in the form of
counterweights attached to the crankwebs ; by placing
a generator at each end of the crankshaft; or by
placing the gemerator in the ceptre of the engine.
These methods, however, are unorthodox, and in the
majority of cases a well-designed nofihal arrangement
of engine and generator will yield a perfectly satis-
factory solution to the torsional vibration problem.

(@) Insimilar engines, i.e. in engines having the same stroke/
bore ratio and of similar design, the natural frequencies
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are inversely proportional to the bores of the cylinders
and inversely proportional to the square roots of the
numbers of cylinders.

Incidentally, if two similar engines having the
same number of cylinders are running under equiva-
lent conditions, i.e. piston speeds equal and indicator
cards identical, the natural frequencies are directly
proportional to the revolutions per minute. Hence,
if the disposition of criticals is satisfactory for one
engine it will also be satisfactory for the other.

In a given engine the natural frequency is approxi-
mately inversely proportional to the stroke, other
dimensions remaining unaltered, i.e. the critical speeds
occur at constant piston speeds.

For example, if an engine has a stroke of 3-75 ins.
and a critical speed at 3500 r.p.m., the effect of
reducing the stroke to 3+5 ins. is to raise the critical
speed to about 3750 r.p.m., the piston speed being
2187 ft. per minute in each case.

If the mean effective pressure is unaltered there-
fore, this implies that alterations in engine stroke do
not alter the positions occupied by the critical speeds
on the power curve. Thus if a critical occurs at
full power with the original stroke it will occur at
full power when the stroke is altered provided the
mean effective pressure remains unaltered. This
conclusion. should, however, be used with caution.

It should also be noted that if two engines are
geometrically similar but of different sizes the natural
frequencies are inversely proportional to their lengths.
Also, if each throw of a crankshaft is fitted with
balance weights which completely balance the rotating
parts and only one-half of the reciprocating parts,
then the polar moment of inertia of each crank mass
is doubled and the natural frequency is reduced to
I/V" 2 or o707 of the frequency with an unbalanced
shaft.
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ExaMpLE 7.—The one-node natural frequency of a six-
cylinder engine, 133-in. bore X 18-in. stroke, direct-
coupled to a dynamo is 2520 vibs./min. The crank-
shaft journal diameter is 8} ins. Estimate the
probable natural frequencies, (i) when the crankshaft
journal diameter is increased to g ins.; (ii) when the
stroke is altered to 20% ins.

(i) Since frequency is directly proportional to the
square of the crankshaft journal diameter,

Estimated frequency with g-in. __ 972
shaft = 2520 X [@]
= 3000 vibs. [min.

(ii) Since frequency is inversely proportional to stroke,

Estimated frequency with 20}~ 87 .
in. stroke = 2520 X [2—0;]
== 2240 vibs.[min.

Exampre 8—The one-node frequency of a six-cylinder
engine, 133-in. bore X 20}-in. stroke, direct-coupled to
a dynamo is 2240 vibs./min. Estimate the probable
natural frequency of a similar engine having eight
cylinders, 15-in. bore.

Since frequency is inversely proportional to bore,

= 2240 X [%J
= 2015 vibs. jmin.

Estimated frequency of 15-in.
bore, six-cylinder engine

Since frequency is inversely proportional to the
square root of the number of cylinders,
Estimated frequency of 15-in. 6
bore, eight-cylinderengine — 2°%5 X \/ 3
= I745 vibs. min.
Marine Installations.—The one- and two-node mormal

elastic curves for two typical marine installations are shown at
¢ and 4 in Fig. 18.
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In both these arrangements the node for one-node vibrations
is situated in the intermediate shafting between the engine and
the propeller, and the shape of the normal elastic curves shows
that the cylinder masses vibrate with approximately equal
amplitudes whilst the amplitude of vibration at the propeller is
much larger. In normal marine installations, therefore, a very
close approximation to the one-node frequency can be obtained
by reducing the system to a simple two-mass system, as shown
in Figs. 8 and 9, and using Equation (16), viz.,

F= 9-55«/%1:% Vibs. min.

In dealing with marine installations, it is usually preferable
to work with foot, ton, second units,
ie. C== GI'JI”

tons-ft. per radian,

G = modulus of rigidity in tons per sq. ft.
= 472,000 tons per sq. ft. for mild steel,
7 .dt

P 4
@ = equivalent diameter of shaft in feet,
L = equivalent length of shaft from propeller to centre
of cylinder group in feet,
J1 = total moment of inertia of crankshaft and flywheel
masses in tons-ft. sec.?,
Jo = moment of inertia of propeller in tons-ft. sec.2

In this case no correcting factor is required.
An examination of the one-node normal elastic curve and
Equation (16) shows that—

(@) The one-node frequency of marine installations is not
appreciably altered by alterations in the moment of
inertia of the flywheel, since the flywheel mass is not
a very large proportion of the total engine masses.

(%) The one-node frequency is also not appreciably altered
by alterations of crankshaft stiffness, since the crank-
shaft is considerably more rigid than the intermediate
shafting between the engine and the propeller.

VOL. L.—6
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(¢) The one-node frequency can be altered appreciably by
altering the diameter of the intermediate shafting;
being directly proportional to the square of the inter-
mediate shaft diameter.

(d) Any alteration in the moment of inertia of the propeller
will also appreciably alter the one-node frequency.

(¢) The one-node frequency is inversely proportional to the
square root of the length of the intermediate shafting
if all other dimensions remain unaltered.

ExaupLE g.—The one-node frequency of a marine installation
having 160 ft. of T2-in. diameter intermediate shafting is
1655 vibs./min. Estimate: (i) The one-node frequency
when the length of intermediate shafting is reduced to
50 ft. (i) The diameter of 50 ft. of intermediate shafting
for a fréquency of 400 vibs./min.

(i) Since the one-node frequency is inversely proportional to
the square root of the length of the intermediate
shafting,

Estimated one-node frequency with \/1'6_0_

50 feet of shafting, 12-in. diameter = 1655 30
= 296 vibs.[min.

(ii) Since the one-node frequency is directly proportional to
the square of the diameter of the intermediate shafting,

F,=F X [%]ﬁ,

where F, = one-node frequency corresponding to dia. d,,
F = one-node frequency corresponding to dia. 4.

In this example F = 296 vibs. /min. when 4 = 12 ins.

Hence, for F; = 400 vibs. /min.,
4,72
400 = 296[5 ,
ie. d, = 139 ins.

So far as one-node frequencies are concerned, there is not
much difference between arrangements ¢ and 4 in Fig. 18,
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since the normal elastic curves for one-node vibrations are
similar in shape, and the magnitude of the flywheel mass does
not appreciably influence the value of the one-node frequency.

The one-node frequency of marine installations varies from
150 to 200 vibs./min. when the engine is installed amidships ;
and from 300 to 400 vibs. /min. when the engine is installed aft.

The problem of avoiding serious one-node criticals in a
normal marine installation is not usually very difficult. There
is usually only one serious critical speed to be considered, and
this is generally well below the operating speed range in amid-
ships installations, and well above it in after-end installations.
Any adjustment of natural frequency which may be necessary
can be made by an appropriate alteration of intermediate shaft
diameter (see also Chapter r0).

In marine practice it is usually the two-node frequency
which is the crux of the torsional vibration problem, mainly
because critical speeds of the second degree (two-node) are
more numerous than those of the first degree (one-node), and
because the vibration stresses in the engine crankshaft at
certain of the two-node critical speeds can be very severe.

Fig. 18 shows that the normal elastic curves for two-node
vibrations differ according to the characteristics of the crank-
shaft masses. At ¢ (Fig. 18) there is a heavy flywheel at the
after-end of the engine and one of the nodes of the two-node
mode of vibration is situated between the flywheel and the
aftermost cylinder. The other node is situated close to the
propeller. The amplitude of vibration is different for each
cylinder, and is very small at the propeller.

At 4 (Fig. 18) there is no separate flywheel, the required
flywheel effect being distributed along the crankshaft in the
form of counterweights attached to the crankwebs.

In this case the crankshaft node has been shifted to a position
very close to the centre of the cylinder group, whilst the other
node has been moved closer to the propeller.

The shape of the normal elastic curve is very nearly sym-
metrical for the cylinder group, i.e. the crankshaft node divides
the crankshaft into two parts; the amplitudes of vibration at
the cylinders situated on one side of the node being nearly
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equal in magnitude but of opposite sign to those of correspond-
ing cylinders on the other side of the node. This is an advan-
tage, since it will be shown later that it implies almost cornplete
cancellation of the major and some of the minor two-node
criticals. The amplitude of vibration at the propeller is very
small.

As a general rule the flywheel effect incorporated in marine
installations should be the minimum necessary for satisfactory
starting and manceuvring, so as to provide as high a value as
possible for the two-node frequency. The actual flywheel effect
to be adopted in any specific installation should be adjusted to
keep all important critical speeds clear of the normal running
speed.

The size of flywheel necessary for satisfactory starting and
manceuvring of a marine oil engine installation may be deter-
mined by the method given in Chapter 12.

Approximate methods of calculating the two-node fre-
quencies can be deduced from the shapes of the normal elastic
curves.

(i) Engine with Flywheel (Fig. 18c).

If the moment of inertia of the flywheel is large compared
with that of the crankshaft masses, the node will be situated
close to the flywheel, ie. the shape of the two-node normal
elastic curve for the cylinder group in arrangement ¢ is similar
to that of the one-node curve in arrangement 4. The two-node
frequency for arrangement ¢ can therefore be estimated by the
method employed for estimating the one-node frequency of
arrangement b, viz.,

F =955 “/C%II.-‘-TP vibs. fmin.,

where
_G.I,
C=%x
G = 772,000 tons per sq. ft. for mild steel,
_m.a.
I,= 3 ft.4,

4 = equivalent diameter of shaft in feet,
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L = equivalent length of shaft from flywheel to
centre of cylinder group in feet,
J1 = total moment of inertia of crankshaft masses in
tons-ft. sec.?,
Ja = moment of inertia of flywheel in tons-ft. sec.2
The frequency calculated by the above expression should be
corrected by means of the correcting factors already given
(Table 6).

(ii) Engine without Flywheel (Fig.18d).

In this case the two-node frequency can be estimated by
assuming that the node is situated at the centre of the cylinder
group and applying Equation (7), viz.,

F=ogs33 \/ }3 vibs./min.,

_G.I,
where C= T
G = 472,000 tons per sq. ft. for mild steel,
L="" a*
=g

d = equivalent diameter of shaft in feet,

L = equivalent length of shaft from node to
centre of cylinders on left-hand side of
node,

J = total moment of inertia of crankshaft
masses on left-hand side of node, in tons-
ft. sec.2.

The calculated frequency should be corrected by means of
the correcting factor corresponding to the number of cylinders
on the left-hand side of the node.

ExAMPLE ga.—Estimate the two-node frequency for the marine
installation shown in Fig. 15.
=X 1-3958¢
2T 32
754 . —
L= [ 5 T3 3333:| 70833 ft.,

In this case = 0373 ft.4,
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ie. C= 17290 X 0373 0,700 tons-ft. per
e 70833 407 radig.n,

J = (1635 + 0-8175 + 1-635)
= 408735 tons-ft. sec.®

Hence, F =955 0573
== 098 vibs. /min.
Since there are three cylinders on the left-hand side of the
node, the correcting factor is 0-9z,

ie. Corrected frequency = 998/0-92
= 1085 vibs.[min.

This is 4 per cent. higher than the value obtained by the
tabulation method, and is a much closer estimate than that
obtained by the more elaborate three-mass approximation.

The estimated value would have been closer to the true
value if the three masses on the left-hand side of the node had
been of equal magnitude.

Since the margin between the normal operating speed and
one of the two-node criticals is often very small, it is necessary
to calculate the value of the two-node frequency as accurately
as possible, and the tabulation method should always be
employed for the final calculations.

An inspection of the normal elastic curves in Fig. 18, ¢ and
d, and the foregoing approximate expressions for two-node
frequency, reveals the following characteristics of marine in-
stallations :—

(@) Since the amplitude of vibration at the propeller is
small, and the rigidity of the crankshaft is very large
compared with that of the intermediate shafting,
alterations in the moment of inertia of the propeller
or in the diameter of the intermediate shafting do .
not appreciably alter the two-node frequency.

(6) The two-node frequency is appreciably altered by altera~
tions in the diameter of the crankshaft or in the dis-
position of the crankshaft masses.
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(¢) Within reasonable limits the two-node frequency of
marine installations is directly proportional to the
square of the crankshaft journal diameter.

(@) In similar engines the two-node natural frequencies are
inversely proportional to the bores of the cylinders.

The two-node frequency of marine installations usually
varies from 500 to 1500 vibs./min., according to the dimensions
and number of cylinders, and the disposition of the major
masses. An average value for installations of moderate power
is 1000 vibs./min,

The two-node frequency for a given engine does not vary
appreciably with the position of the engine in the ship, since
the influence of the intermediate shafting is very slight ; whilst
the increase of frequency as the number of cylinders is reduced
is not as much as might be anticipated due to the relatively
heavier flywheels which are required to ensure satisfactory
starting and manceuvring in engines having a small number of
cylinders.

In general, the arrangement shown in Fig. 184 is preferable
because—

(i) There is an appreciable increase in the value of the two-
node frequency compared with arrangement ¢, and
this generally enables all serious two-node criticals to
be placed above the normal operating speed ranges.

(ii) The symmetrical shape of the normal elastic curve

‘implies that the major and certain of the minor
critical speeds are eliminated. This considerably
lessens the congestion of criticals in the lower speed
range.

The shape of normal elastic curve shown in Fig. 184 is
obtained when the engine masses are uniformly or symmetrically
distributed along the crankshaft. This implies that the fly-
wheel effect necessary to emsure satisfactory starting and
manceuvring must be secured by a system of counterweights
attached to the crankwebs. In multi-cylinder engines this
method of incorporating flywheel effect has the additional
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advantage of improving the internal balance of the engine by
providing partial primary balance of the individual cylinders.

In the case of opposed-piston marine engines having four or
more cylinders, the revolving and reciprocating parts of the
engine are sufficient to provide all the flywheel effect necessary
for satisfactory running without an auxiliary flywheel or crank-
shaft counterweights.

The symmetrical two-node normal elastic curve shown in
Fig. 184 is also obtained when an auxiliary flywheel is placed
at the forward end of the crankshaft.

The diameter of the intermediate shafting and the moment
of inertia of the flywheel, whether concentrated at one point or
distributed along the crankshaft, provide means for adjusting
the values of the one- and two-node frequencies respectively,
ie. an alteration in the diameter of the intermediate shafting
alters the one-node frequency without appreciably affecting the
two-node frequency ; whilst an alteration in the moment of
inertia of the flywheel alters the two-node frequency without
appreciably affecting the one-node frequency.

The procedure recommended for dealing with marine in-
stallations is therefore to determine from previous experience
the probable value of the two-node frequency. The two-node
frequency tabulation can then be completed down to the fly-
wheel, leaving only the last two lines to be filled in by adjusting
the moment of inertia of the fiywheel to the value which makes
the last torque summation in column H, zero.

In installations of the type shown in Fig. 184, ie. where
the flywheel effect is obtained by counterweights on the crank-
webs, a light turning wheel is still necessary at the after-end of
the engine, so that small adjustments can be made by altering
the moment of inertia of this wheel.

The one-node tabulation can then be taken in hand. This
is a less sensitive calculation, and if necessary small adjustments
can be made by altering the diameter of the intermediate shaft-
ing without seriously affecting the value already determined
for the two-node frequency.

Automobile Transmission Systems.—Fig. 19 shows a
typical automobile transmission system in which the major
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masses are the engine crankshaft with its attached rotating
and reciprocating masses, the engine flywheel, and the road-
wheels. :

An approximate calculation of the natural frequencies of
this system can be made by replacing the actual system by
the equivalent three-mass system shown in Fig. 19. In this
equivalent system J, is the total moment of inertia of the
crank masses about the axis of rotation, J, is the moment of
inertia of the flywheel and its attachments, and J, is the moment
of inertia of the road-wheels reduced to crankshaft speed by
the methods described in connection with geared drives in
Chapter 5. C, is the torsional rigidity of the crankshaft, i.e.
the torque required to twist this portion of the system through
1 radian, and C, is the combined torsional rigidity of the pro-
peller and axle shafts.

Since the road-wheels cannot oscillate without causing a
corresponding oscillation of the chassis, the value of J, is not
strictly that of the moment of inertia of the road-wheels only.
Actually, the correct assessment of road-wheel inertia is very
complex. It involves questions of tyre and road-spring
flexibility, the influence of tyre inflation pressure, and the
coefficient of friction between the wheels and the ground.
Fortunately, however, the road-wheels have a negligible effect
on the value of the natural frequency of the crankshaft system,
and it is therefore not necessary to assess their inertia with
any- great degree of accuracy.

The natural frequencies of the three-mass system shown in
Fig. 19 can be calculated by Equation (19), viz. :—

Tot ot J) - Veden Bacde s Bodoy Jo Ty

As a general rule the value of C, is very much larger than
Cs, so that a further simplification can be used for preliminary
estimates of the natural frequencies of the system, ie. the
actual system can be assumed to be composed of two simple
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two-mass systems, the crankshaft system and the propeller
shaft system, as shown in the bottom diagram in Fig. 19.

The natural frequencies of these systems are found by
applying Equation (16).

For Engine Cramkshaft System,
Fe 9A55x/9%-'-‘§2—m vibsjmin. . . (30)

The node is situated in the crankshaft, usually close to the
flywheel. -

For Propeller Siifi System,

e T D e 69

The node is sitnated in the axle shafts, as a general rule.
ExaMPLE 10.—The following values may be taken as fairly
representative of light car practice :—
=05 Ib.-in. sec.?; J,=251bs.-ins. sec.?; Jy=50 Ibs.-ins. sec.?;
C,=1,200,000 Ibs.-ins. per radian ; C,=4000 lbs.-ins. per radian.
For the three-mass system shown in Fig. 19 the frequency
equation becomes
0015625 w* — 45026 w? 4 63600000 = 0,
whence w? = 2880256 or 1408,
or F = 16200 or 358 vibs./min.
For the separate systems shown at the bottom of Fig. 19,
(i) Crankshaft system from Equation (30)—
_ 1200000(0-5 4 2°5)
9 55\/ 05 X 25
i.e. F = 16,200 vibs./min., which agrees with the value ob-
tained from the three-mass system.
(ii) Propeller shaft system from Equation (31)—
4000(0°5 + 2°5 + 50)
F = g554) T 3T 227,
TSN o5 F 2350

)
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ie. F = 358 vibs./min., which also agrees with the value ob-
tained from the three-mass system.

Since the moment of inertia of the road-wheels, Js, cannot
be calculated with any great degree of accuracy, it is interesting
to notice that large changes in this quantity do not produce
much change in the value of the natural frequency of the
propeller-shaft system. For example, if, in the above example,
the value of J, is reduced to 25 1bs.-ins. sec.?, the frequency
becomes 368 vibs./min., i.e. an ncrease of only 3 per cent. for
a 50 per cent. reduction in the moment of inertia of the road-
wheels.

Conversely, when J, becomes very large, Equation (31)

reduces to
-_— . Cz
F=9NT 7

ie. the frequency of the propeller-shaft system when the
inertia of the road-wheels is increased towards infinity becomes

) 4000 . .
F=9 55\/—————0.5 T2 348 vibs./min.
This is only 3 per cent. reduction in frequency for an infinite
increase in the moment of inertia of the road-wheels.

The important practical significance of the foregoing results
is that in any system where the torsional rigidity of one section
is very much larger than that of another, close agreement with
the actual frequencies is obtained by treating each part of
the system separately. This confirms that in an automobile
transmission system the general practice of neglecting the
influence of all parts to the rear of the fiywheel in calculating
crankshaft frequencies is unlikely to cause serious error. Tt
also indicates that alterations in the characteristics of the
propeller shaft part of the system are not likely to effect the
frequencies of the crankshaft system appreciably.

In the case of the propeller-shaft system, since the moment
of inertia of the road-wheels is very large compared with that
of the fiywheel and clutch, large errors in estimating road-wheel
inertia do not make any appreciable difference to the value
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obtained for the natural frequency of the propeller-shaft
system.

It should also be noted that large alterations in the inertia
of the flywheel, J,, do not produce correspondingly large
changes in the value of the crankshaft frequency. For example,
if, in the foregoing example, J, is reduced to 1-25 Ibs.-ins. sec.?,
the frequency becomes 17,500 vibs./min., an increase of only
8 per cent. in frequency for a 50 per cent. reduction of flywheel
inertia.

Conversely, if the moment of inertia of the flywheel is very
large, Equation (30) becomes

F= 9~55«/§—: vibs. /min.

Thus, in the foregoing example for very large values of
flywheel inertia, the frequency of the crankshaft system becomes
14,800 vibs./min., a reduction of only 8 per cent. in frequency
for an infinite increase of the moment of inertia of the flywheel.

The principal characteristics of a typical automobile trans-
mission system are therefore—

(i) A low-frequency vibration which is below the frequency
of engine impulses for all normal operating conditions.
In a four-cylinder four-stroke engine, for example, the
dominating impulse frequency is two impulses per
revolution, so that the synchronous condition arises
at an engine speed of not more than about 200 r.p.m.
In six- and eight-cylinder engines, where the dominat-
ing impulse frequencies are three and four per re-
volution respectively, the conditions are even more
favourable, because the critical speeds will then occur
at not more than 130 r.p.m. for the six-cylinder engine
and 100 r.p.m. for the eight-cylinder engine.

These engine speeds are sufficiently far below the
normal operating speed range to render a more
detailed investigation of this mode of vibration
UNNECESSary.

This low-frequency vibration is the one-node mode
of vibration for the system as a whole, the node being
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situated in the propeller shaft or rear axles. Large
alterations in the moment of inertia of the road-wheels,
or in the torsional rigidity of the crankshaft, do not
appreciably alter this frequency, but alterations in
the moments of inertia of the flywheel or engine, or
alterations in the torsional rigidity of the propeller
and axle shafts have an important influence.

(i) A high-frequency vibration which can be calculated
with sufficient accuracy by neglecting all parts of the
oscillating system to the rear of the flywheel. This
vibration is a two-node mode of vibration for the
system as a whole, with one node situated in the
crankshaft near the flywheel, and the other in the
propeller or axle shaft. Alterations in the moment of
inertia of the flywheel or in all parts to the rear of the
flywheel do not produce any appreciable change in
the natural frequency of this mode of vibration, but
alterations in the moment of inertia of the crankshaft
masses, or in the torsional rigidity of the crankshaft,
have an important influence. For example, a reduc-
tion in the number of main bearings and the consequent
reduction in the length of the crankshaft produces an
appreciable increase of the natural frequenicy.

The calculation of this mode of vibration and the
evaliiation of the corresponding torsional vibration
stresses is the crux of the torsional vibration problem
of automobile engine crankshafts.

The procedure recommended, therefore, for calculating the
natural frequency of the crankshaft system of an automobile
engine is to obtain the equivalent oscillating system for the
crankshaft masses and flywheel, by the methods described in
Chapter 3, neglecting all masses to the rear of the fiywheel.
The tabulation method is then applied to this system to obtain
the value of the natural frequency, the normal elastic curve,
and the specific vibration torques acting in each section of the
crankshaft,

The main characteristics revealed by applying the tabulation
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method to an automobile crankshaft system are similar to those
already described for direct-coupled generator sets, and the
same remarks apply to both types of installation. Asa general
rule the higher modes of vibration of an automobile crankshaft
system are mot of practical interest, because only high order
criticals of small amplitude occur within the running range in
the case of these higher modes.

Typical values for the natural frequencies of the funda-
mental mode of crankshaft vibration of automobile engines are
17,000 to 24,000 vibs./min. for four-cylinder engines; 12,000
to 17,000 vibs./min. for six-cylinder engines; and gooo to
13,000 vibs./min. for eight-cylinder engines.

Aero Engine Crankshaft and Air-screw Systems.—
From the point of view of torsional vibration aero engines can
be divided into two main classes, namely, radial and in-line
engines.

The simplest type of radial engine is the single-row arrange-
ment in which the cylinders are all in one transverse plane,
the lines of stroke being equally spaced round a single crankpin,
as shown in Fig. zo.

The simplest type of in-line engine is the single-bank type,
in which the cylinders occupy different transverse planes and
there is a crankpin in each line of stroke, as shown in Fig. 21.

Radial engines are not, however, confined to the single-row
type. Two-row, and three-row radials have been developed
for the higher power outputs. In multi-row radials there is a
crankpin to each row. For the purpose of calculating natural
frequencies, therefore, a multi-row radial engine can be regarded
as an in-line engine with as many cranks as there are rows of
cylinders, the moment of inertia at each crank being the sum
of the moments of inertia of the reciprocating and revolving
masses of all the cylinders, connecting rods, etc., in each row.

Similarly, in-line engines are not confined to a single bank
of cylinders; engines with two-, three-, and four-banks of
cylinders in ‘ Horizontally Opposed,” ““ V,” *“ Fan,” *“ X,”” and
“H ” formations having been developed for the higher powers.
For the purpose of calculating natural frequencies, the effect
of adding banks of cylinders to an in-line engine is merely to



96 TORSIONAL VIBRATION PROBLEMS

increase the moment of inertia of the oscillating mass at each
crankpin.

There is thus a tendency for the two classes to merge,
although the majority of present-day radial engines are of the
single-row or two-row types, and the majority of present-day
in-line engines are of the single-bank or two-bank (V-formation)
types.

The air-screw is driven either directly from the engine
crankshaft or through reduction gearing, but the present
discussion will be limited to ungeared engines. Geared aero
engines are dealt with in Chapter 5.

Radial Engines—Fig. 20 shows a typical ungeared single-
row radial engine/air-screw combination.

The equivalent system is shown at the bottom of the diagram
and consists of two major masses, the moment of inertia of the
air-screw being very much larger than that of the engine
rotating and reciprocating parts.*

The natural frequency of this system is given by Equation
(16), viz.,

B = 9,55\/(%’% vibs./min.,

where C = torsional rigidity of shaft between engine and
air-screw in lbs.-ins. per radian,
J» = moment of inertia of air-screw in Ibs.-ins. sec.?,
J. = moment of inertia of engine in Ibs.-ins. sec.2.

The moment of inertia of the air-screw is large compared
with the moment of inertia of the engine masses, so that
alterations in the moment of inertia of the air-screw do not
appreciably change the natural frequency of the system.

Hence, a first approximation to the natural frequency is
obtained by neglecting J, in the numerator of the foregoing
equation,
ie. F = 9-35 4/C/J, vibs./min.

* It is shown in the Appendix to Volume I that air-screw blade flexibility
can have an important influence on the torsiomal vibration characteristics of

aero-enginefair-screw combinations. In this chapter, however, the air-screw
blades are regarded as rigid.
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An alteration in the torsional rigidity of the connecting
shaft, C, or in the moment of inertia of the engine masses, J,,
however, can producea considerable change of natural frequency.

The shape of the
normal elastic curve
is shown in the
bottom diagram of
Fig. 20. Due to the
large air-screw inertia
the node is very close
to the air-screw and,
as already explained,
it is usually suffi-
ciently accurate to
assume that the in-
stallation reduces to
.a one-mass system
with the engine
masses swinging
about a node at the
air-screw.

ExaMpPLE 11.—In the
system shown in
Fig. 20, J, =750
lbs.-ins. sec.?;
Je=35 Ibs-ins.
sec.2; and C=
4,000,000  lbs.-
ins. per radian.
Calculate the
natural fre-
quency of vibra-
tion and the

Airscrew
.

Jp Je

Normal Elashc Curve

Equvalenl
Node | Jystem

i

Fi1G. 20—Radial aero-engine/air-screw system.

effect of the following alterations on the characteristics of
the oscillating system :—

(i) Increasing J, to roo lbs.-ins. sec.2.
(if) Reducing J, to 25 Ibs.-ins. sec.
Ed

VOL. 1.—7
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(iii) Increasing J,. to 6 Ibs.-ins. sec.®
(iv) Reducing C to 3,000,000 lbs.-ins. per radian.

The natural frequency of the system is obtained from the

equation
C
—gss «/ J,, + J )

ie = ¢-55 \/4000000 0+ 5) = 8950 vibs./min.
e 9 = X3 )

@) If J, = oo, F = 8750 vibs./min.

M) If [, = 25, T = 9350 vibs./min.

(i) If Jo=6. F = 8250 vibs./min.

(iv) If C = 3,000,000, F = 7730 vibs./min.

The foregoing calculations show that the effect of doubling
the moment of inertia of the air-screw is to reduce the natural
frequency by only 2-3 per cent., whilst the effect of halving
the moment of inertia of the air-screw is to increase the natural
frequency by only 4-5 per cent.

This result is important from the practical point of view
because it implies that an appreciable error in estimating the
moment of inertia of the air-screw does not make any appreciable
difference in the frequency calculation.

The calculations also show that an increase of 2o per cent.
in the moment of inertia of the engine masses causes an 8 per
cent. reduction of natural frequency ; whilst a reduction of
25 per cent. in the torsional rigidity of the connecting shaft
causes a 13-5 per cent. reduction of natural frequency.

In general, therefore, changes in air-screw inertia, within
practical limitations, do not appreciably alter the natural
frequency of the oscillating systems of these engines, and the
only effective methods of changing the frequency are either to
alter the inertia of the engine masses or the stiffness of the
shafts connecting the engine to the air-screw.

Ii the system is treated as a simple ome-mass system
swinging about a node at the air-screw, the following results
are obtained :—
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F =935 W/m vibs. /min,

When C = 4,000,000 and J, =5,
F = ¢55/4000000/5 = 8550 vibs./min.

When C = 4,000,000 and J, = 6, F = 7800 vibs./min.

When C = 3,000,000 and J, = 5, F = 7400 vibs, /min.

N, By

These values are only from 2-5 to 5 per cent. less than the
values obtained by using the two-mass method.

The oscillating systems of multi-row radial engines are
preferably dealt with by similar methods to those employed
for in-line engines.

In-Line Engines—Fig. 21 shows a typical single-bank
in-line engine air-screw combination.

The equivalent system is shown at the bottom of the dia-
gram and consists of a series of comparatively small fiywheels,
representing the moments of inertia of the engine masses,
connected to one large flywheel representing the moment of
inertia of the air-screw. The moment of inertia of the air-
screw is large compared with that of the engine masses, and
the torsional rigidity of the air-screw shaft is usually smaller
than the torsional rigidity of the crankshaft sections between
each line of parts.

The general characteristics of the system shown in Fig. 21
are similar to those of the direct-coupled generating sets already
discussed in this chapter.

The fundamental or one-node frequency can be calculated
with a good degree of accuracy by means of the simple two-
mass system shown at the bottom of Fig. 21, where

J = total moment of inertia of engine masses
= N. J, Ibs.-ins. sec.?,
N == number of cylinders,
J. = moment of inertia of one line of parts,
J, = moment of inertia of air-screw, in Ibs.-ins. sec.?,

C = torsional rigidity of equivalent shaft between air-screw
and combined engine masses, assuming the engine
masses are concentrated at the middle of the engine
aggregate, in Ibs.-ins, per radian.
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Fic. 21.—In-line aero-engine/air-screw system.
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The value of C is obtained as follows :—
1_x , (N-—1
c=ct e,
2.C,.C,
Le. C= 2.CF (N=1C, . (32)
Hence, the fundamental or one-node frequency of the
system is given by the usual equation for a two-mass system,

F =935 ot D) ivsjmin, . . (33)
R
where K is a correcting factor which depends on the number
of cylinders as shown in Table 6.
Also, ifC,/C, = A, and J»/Jp =3B,
2.A.C;? 7 2.A.C,
2.C,+N—-1)AC, 2z+AN-1)
and the frequency equation becomes
95%/ 2. AB+N) C,
AN —ON.B T, G
For a four-cylinder engine K = o-gr and N = 4.

Hence, F =105 Z—-c‘]‘;—((]:—————_m gvﬂ)s/mm. . (35)

For a sis-cylinder engine K = 0-91 and N = 6.

. B+6 C,
Hence, F=10 3\/3—-—-——]3(2 AT vibs./min. . (36)‘
As a general rule J, is very large compared with J,, so
that the ratio J,/J, is also very large. This implies that N
in the numerator of Equation (34) is practically negligible
compared with B.
Hence Equation (34) reduces to

_955 2. A .
=K VN +AN T TS -7

then C=
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i.e. when the air-screw moment of inertia is very large compared
with the moment of inertia of one line of cylinder masses, large
changes in air-screw inertia do not have any appreciable
influence on the value of the fundamental frequency of the
system. The frequency is, however, altered appreciably by
changes of shaft stiffness, or changes in the moment of inertia of
the cylinder masses.
For a four-cylinder engine, Equation (37) becomes
A C,

“105J2(2+3‘A)'Je' . . (38)

For a six-cylinder engine, Equation (37) becomes

- A
F= Io-sx/m T . . (39)

ExaMPLE 12.—Calculate the fundamental or one-node fre-
quency of torsional vibration of the system shown in
Fig. 22.

This is a six-cylinder aero-enginefair-screw combination,
where
N =6, J,=o0151b-in. sec?; J, = 250 Ibs--ins. sec.?
C, = 2,800,000 lbs.-ins./radian ;
Cp = 2,020,000 Ibs.-ins./radian.

Hence, A=C,/C,=0y2; B=],/],=167.
From Equation (36),
— 0'72(167 + 6) 2800000

3X 167(2+5%x 0%2)° 0I5
= 9570 vibs. [min.

Alternative solution, using Equation (39),
F= Io-gn/ 072 2800000
3(z+s5x072)" oxs
= 9400 vibs./min., which is about 2 per cent.
less than the more accurate value.
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ExaMpLE 13.—Calculate the fundamental frequency of the
system shown in Fig. 22 when the following alterations
are made :—

250 o o5 015 015 015 0
Moment of Inertia in Lbs. Ins. Sec?

Airscrew

%g////% * Torsion
e

7al Rq‘;ijitg in Lb;]ni/-l?adrhp
—»-I-(—-»-<— —44-
2009009 SN ’/‘/_H
/

2,800,000

Normal Elastic Curve

1- Node Mode ' Vs
F= 9550~/Min. "
e [P
e L
\hode ] ‘ /ml\Node i
\ s ‘
\ Normal Elastic (urve
\ ! / . 2- Node Mode
\\ /' F= 28000 ~/Min.
~ |- l

Fic. 22.—Equivalent system : six-cylinders in-line aero-engine/air-screw
syste:

(@) Moment of inertia of air-screw increased to 30 lbs.-ins.
sec.?

(b) Moment of inertia of each line of engine masses in-
creased to 0-30 Ib.-in. sec.®.

(¢) Torsional rigidity of air-screw shaft increased to 4,040,000
Ibs.-ins./radian.
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In each case the remaining characteristics of the system
are unaltered—
(@) When J,=1501bs-ins. sec.2; B=J,/J,=50/0-15=7334.
Hence, from Equation (36),
-10 072(334 + 6) 2800000
3 X 334(2 + 5 X 072) . 015
= 9430 vibs./min.
(6) When J,==0-30 Ib.-in. sec.?; B=J,/J,=25/030=834.
Hence, from Equation (36),
=105 0-72(83:4 +6) 2800000
3 X 83:4(z+5 X 072) * 030
== 6870 vibs./min.

(¢) When C, = 4,040,000,

_ __ 4040000 __
A=ClCe = Bon0m0 — T 44
Hence, from Equation (36),

1-44(167 -+ 6) 2800000
—105“/3><1672+5><144) 015
= 10,550 Vibs./min.

The foregoing calculations show that doubling the inertia
of the air-screw only reduces the frequency by about 2:5 per
cent., whereas doubling the inertia of the engine masses reduces
the frequency by 28 per cent., whilst increasing the stiffness
of the air-screw shaft increases the frequency by 10 per cent.

As a general rule the most effective method of altering the
fundamental or one-node frequency of systems of this type is
either to alter the moment of inertia of the masses furthest
from the node, i.e. furthest from the air-screw, or to alter the
stiffness of that section of the shaft mearest to the node, i.e.
the air-screw shaft. Alterations to masses near the node or
to shafts remote from the node do not make much alteration
in natural frequency. These are the basic rules to be observed
when frequency alterations are under consideration.
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There are other possible modes of vibration of the system
shown in Fig. 22 although it is usually the fundamental or
one-node mode which is the crux of the vibration problem in
installations of this type. .

The two-node mode of vibration can be evaluated approxi-
mately by the method described in Chapter 1 in connection
with the system shown in Fig. 1o, ie. the actual system is
reduced to an approximately equivalent three-mass system
from which both one-node and two-node frequencies can be
calculated, using Equation (19). The value obtained for
two-node frequency is, however, very approximate and should
only be used as a means' of judging whether there is likely
to be any troublesome two-node critical speeds in the operating
range of the installation. If an accurate value of the two-
node frequency is required the tabulation method should be
employed.

Normally, there are no troublesome two-node criticals in
the operating range of an in-line aero-engine fair-screw system,
because only high-order harmonics are present in the operating
range and these are comparatively feeble in intensity. Two-
node frequencies should therefore be of interest only in abnormal
cases, when the engine is very large or has a high normal
operating speed, or when there is a very flexible shaft or coupling
between the engine and the air-screw. In the laiter case,
however, the two-node frequency with a very flexible air-screw
shaft will have approximately the same value as the one-
node frequency with a comparatively rigid air-screw shaft.

In cases where both one-node and two-node vibrations
have to be considered it should be noted that the most effective
method of changing the two-node frequency is to alter the
moments of inertia of the masses remote from the nodal points,
or, alternatively, alter the torsional rigidities of the sections
of shafting in the vicinity of the nodal points.

Alterations in the moments of inertia of masses near to the
nodal points or in the torsional rigidities of shaft sections
remote from the nodal points do not alter the frequency
perceptibly.

Furthermore, an inspection of the normal elastic curve
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for the system shown in Fig. 22 shows that the one-node
frequency can be altered without appreciably altering the two-
node frequency by altering the moment of inertia of the crank
masses in the vicinity of the right-hand or crankshaft node in
the diagram at the bottom of Fig. 22. Alterations in the
moment of inertia of the mass at the left-hand nodes, i.e. the
air-screw, do not appreciably alter either one-node or two-
node frequencies.

When the approximate values of the one-node and two-node
frequencies have been determined by approximate methods,
the more accurate values should be calculated by the tabulation
method, especially if it is required to evaluate the vibration
stresses at critical speeds, because the frequency table contains
data which is necessary for the evaluation of stresses.

A typical frequency table for a six-cylinder in-line aero-
enginefair-screw system is given 'in Table 7. This table is
based on the system shown in Fig. 22, and its construction is
similar to that described in connection with Tables 1 and 2.

The stress for + 1° deflection at the free end of the crank-
shaft, column J in Table 7, is obtained by dividing the torque
summations in column F by the modulus Z of the shaft
section at which this torque acts

where Z="1 D?
16

- 7Dt — )
T 16.D
D = outside diameter of shaft in inches,
4 == inside diameter of shaft in inches.

ins.? for solid circular shafts

ins.? for hollow shafts,

The smallest value of Z in each section should be used.
In the case of crank elements this is usually the crankpin
section. The specific stresses given in column J of Table 7
are nominal stresses, i.e. no allowance should be made for stress
concentrations at fillets, splines, key-ways, etc. This is be- "
cause the damping factors which will be used for calculating
vibration stresses have been deduced from nominal specific
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stresses. The concentration factors are applied to the vibration
stresses themselves.
The natural frequencies of the fundamental or one-node
TABLE 7.

. FRrEQUENCY TABULATION: AERO-ENGINE SYSTEM.

(i) One-Node Mode: F = g550 Vibs.[Min.; of = 1,000,000,

4 B c D E F G H 1 J
Moment | T Dot | Torgue i chnage o0l B2
e | o | hlhne| rduelt | Total | Shasy |Chasee| of |rp
per Unit [inPlane| Plane of o : in- | Swction 3 285
Inertia, | Defiection. [of Mass.| Mass, | 107due. |Stifiess.| pog, |~ of D:{imn
Mass. shaft. | o a
g Joot g 2.0 | el G Ll 4 f
Lbs. | Tt gl | fpie? | F1ia? s g™ "c e
ns, Sec.t| Radian, |Rodian.| Lbslns. | Lbs-los. |"poci | podipe | Ins®. [Lbs/Ins2
INo. z ¢yl.| o015 150,000| 10000 150,000 150,000 | 2,800,000 |  0-0535 5 |t L5
No.zeyl| o1s 150000 09465\  Ti2,000|  202,000|2800000] 0202 | TS | 3400
[No.3 eyl.| o1s 150000 oB4a3| 16300|  418300(2800000( omes| TS | 4860
No. 4 cyl.| oxs 150,000 06928 104,000 322,300 | 2,800,000 0-1865 | 15 §070
No.seyl.| o015 350,000] 05063 76,000|  5908,300(2,800,000{ 02140 | T5 6,950
No.G eyl | o15 150,000/ 02023 43900  642,200{2,020000| o3180 [ 20 5,570
Alrsciew | 2500 | 25,000,000 [—00257| —642,200 o - - —_ —
(i) Teo-Node Modz : F = 28,000 Vil [Min. ; o = 8,580,000,
No.xesl.| o135 | 128%000| Toooo| 1,288000| 1,288,000 (2800000 o4beo| 5 [+z5,000
No, 2 ¢yl.| o015 1,283,000 ©5400 6p5,000| 1,983,000 |2,800,000( 07080 15 23,000
No. 3¢5l o5 1,288, Bt 216,500| 1,766,500 |2,800,000( 06300| 15 20,500
No. 4oyl o35 | a8 Bo| r025,000| 741,500 |2800000] 02645 3 | 8,620
No.scyl| o5 | 1,283,000|—vokos|~1,370000|~ 628,500 2,800,000 —caz4s| T3 | 7,300
No.6cyl| o015 | 1,283,000 |~08380|— 1,080,000 |~ 1,708,500 2,020,000 ~0B4b0| 20 | 850
Airsoraw | 25700 |214500,000| ocoBo] 108500 o - — | = =

mode of torsional vibration of aero-engine/air-screw combina-
tions varies from about 18,000 vibs./min. for small ungeared
four-cylinders in-line engines to about 4500 vibs./min. for
large six-cylinders in-line geared engines with two or more
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banks of cylinders. Average values for single-bank four-
cylinders in-line engines are 12,000 t0 14,000 vibs./min., and
for single-bank six-cylinders in-line engines from 10,000 to
12,000 vibs./min. The two-node frequency of these engines is
generally about three times the one-node frequency.

The natural frequencies of the fundamental mode of vibra-
tion of radial engines varies from about 8000 for small ungeared
single-row engines to 3000 vibs./min. for large two- and three-
row geared engines, average values being 4000 to 6000 vibs./min.
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CHAPTER 3.
EQUIVALENT OSCILLATING SYS‘[‘EMS.

THE oscillating systems of actual installations are usually much
more complex than the ideal systems discussed in the preceding
chapters.

To facilitate calculation it is necessary, therefore, to replace
the complex system by a simpler system, consisting of a series
of exact masses connected by sections of weightless shafting,
which retains as closely as possible the dynamic and elastic
characteristics of the original arrangement.

The accuracy with which the simplified system reproduces
the vibrational characteristics of the original system depends,
to some extent, upon experience and judgment, so that the
results of torsiograph investigations are a valuable aid in deter-
mining the allowances which should be made for each individual
type of installation (see Chapter 8).

In the case of vibrations of the second degree, or two-node
vibrations, of 2 multi-cylinder engine direct-coupled to a marine
propeller, for example, where the clear speed range between
two consecutive critical speeds is sometimes restricted to ten
revolutions per minute of the prime mover, an error in convert-
ing the actual into the equivalent system can easily result in
one or other of these criticals occurring so close to the
running speed that an alteration to the system after it has
been put into service is necessary for satisfactory operation.

Figs. 23 and 24 show the actual and equivalent systems for
a typical direct-coupled marine installation, and a typical
direct-coupled electrical generating set, respectively.

In Fig. 23 the actual system is reduced to an equivalent
system comsisting of eight exact masses connected by sections
of shafting of uniform diameter.
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In Fig. 24 the equivalent system consists of eight exact
masses, since the armature of the dynamo is so rigidly connected

NI NP3 2 N1 SeaviAlr

Cyl Gl Cul. Gyl Pump.Comp™
[a} 4 rfrf

Propeller.
v

-‘- b{m 0 &
Fi6. 23—~Equivalent system—~marine installation.

to the fiywheel that the two can be regarded as one mass without
much error.

N1 N2 N3 N4 N5 NeB

G O cQ[b ot l? ol oy

AipCom- 7
pressor | | | J&]. Flgwheel,
- ‘ﬁ} i H, Generd
- engrator:
i i) it | ,

=

|

k L7, Combined Flywhes!

&Generator Mass,

Fi6. z4.—Equivalent system—direct-coupled generator.

The problem of converting a complex system into a simpler
one can be divided into two main parts, viz.: I. Determination
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(i) Cramkpins (Fig. 25).
For Solid Crankpins,

W=Z—".Dg.B.S 1bs.,
K2 = 1_)82: + R? ins.?,
where D, = diameter of crankpin in inches,
B = length of crankpin in inches,

R = distance of centre of gravity of crankpin from
axis of rotation, in inches,

ie. W.R'=T.D2B. s[%}f +Re] bseins.,

- Dyt i
ad  J=.D2.B As[ 2+ R"] Ibs.ins. sec®  (45)
Forsteel S =0283,
. _ D2.B
e J="5s

I:D’ + Rﬂ] Ibs.-ins. sec.? . (46)

The foregoing expreésions also apply to any solid cylindrical
_ mass of uniform diameter, whose centre of gravity is situated
at a distance R from the axis of rotation, e.g. eccentric pulleys.

For Hollow Crankpins,
W= ";:(D,’ —dg).B.Slbs,

o [ L ] s

where d, = Diameter of hole through crankpin in inches,
: D,? + 4.
e 2= - B. 2 __ 4.2 2 2 2
i W.K'=T.B.SDs —ds ){[ :l + R}
1bs.-ins.2,
- o gD+ 4" .}
and J= ;% B.SOs d,){[ 1+r

lbs -ins. sec.®.  (47)
VOL. 1.—8
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For steel S = 0283,
2. 4.
T B (Dg? — dzi){]:DZ_';'_Z_] + Rz}

le.

T 1733
Ibs.-ins. sec.?.  (48)
(ax{BxR'i)
T
-4
4A|’=‘e§(ux8x/?a)d'l?

F1g. 26.—Moment of inertia of crankweb.

The foregoing expressions also apply to any hollow cylin-
drical mass of uniform cross-section, whose centre of gravity is
situated at a distance R from the axis of rotation, e.g. eccentric

sheaves.
4] e 12—

TR T T

0 o 20 30
(o xBxRY)>

Fre. 27.—M t of inertia of

(ili) Cranmkwebs (Figs. 26 and 27).
. Referring to Fig. 26, consider a small piece of the web of
width B feet, and thickness SR feet, at radius R feet, sub-
tending an angle « degrees at the centre of rotation,
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The moment of inertia of this piece relative to the axis of
rotation XX is
J_z.fr.R.B.af.S.R“.BR
= so.g
where S = specific weight of material in Ibs. per cu. foot,
g = 32-2 ft. per sec.2,
Then, for the whole crankweb,

_2.7.85¢ . 2 .

J 0.2 Z(e®. B . R%IR Ibs.-ft. sec.?

The quantity 3(a® . B . R%)SR is the area A under the curve
shown at the right-hand side of Fig. 26.

This curve is obtained by plotting values of («° . B . R3) at
different radii. Note that «® is 360° for all values of R less
than C in Fig. 26 ; also that when the radius R cuts the web
boundary in more than two places, as at «, o, and «; in Fig.
26, o°= (&% + o’y + a’y).

Let A = area under curve by planimeter in sq. ins.,

x = horizontal scale, ie. I in.=x units of
(2°.B.RY; R and B being measured in feet,
and « in degrees,

= vertical scale, i.e. T in. = y ft.

Ibs.~ft. sec.?,

Then the area scale is 2=%x.9,
ie. Isq.in.= x.y.units of («°.B. RYSR.
Hence, finally, moment of inertia of crankweb,
_2.7m.S.A.x.y )
J= 60,4 Ibs.-ft. sec.2 . (49)
For steel S = 490 Ibs. per cu. foot,
ie. J= Aéf;f Ibsft.sect . . . (50)

ExaMPLE 14.—Obtain the moment of inertia of the crankweb
shown in Fig. 27 by the method just described, and check
the result by direct calculation.

By the Graphical Method.
The values of (¢° . B. RY) at different radii are given in the
following table :—
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Inches,

124

These values were plotted using a horizontal scale of
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Feet.

0042
o125
0-208
0292
0375
0458
0°542
0625
0-708
0792
0875
0958
1-042

TABLE 8.
R3 B

TFeets, Feet.
0-000T 0333
00019 0'333
0-00g0 01333
0°0250 0333
0:0527 0333
0°0961 0333
0-1592 0333
0:2441 0333
03549 0333
04968 0333
06699 01333
08792 0333
11314 0333

Degrees.

& .B . R3,

0012
0228
1°080
3'000
5340
8-710
8-810
8-700
10650
13100
15-600
18-400
21850

Iin. = 5 units of («°. B.R¥,ie x=75; and a vertical scale
of 1 in. = 1/6th ft., ie. y = 01666 ft.

The area, measured by planimeter, was found to be 1275

sq. ins.

Hence,

J

377

= 2-82 Ibs.-ft. sec..

By Direct Calculation.

Weight of web W = 4 ins. X 171ins. X 12 ins, X 0283
= 231 lbs.,
K® = (17 4 127) + 4'5°
= 56-33 ins.?
= 0-301 ft.2

Hence,

W. K2=231 X 0301 = 905 lbs.-ft.%,

322

_A.x.y_ 1275 X5 X 01666
377

=95 _ 58 1bs.~ft. sec.®.

This value agrees with that obtained by the graphical method.
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(iv) Crankshaft Balance Weights.

These can be treated as forming part of the crankwebs to
which they are attached.

(v) Revolving Part of Runwing Gear.

The revolving parts of the crankshaft have already been
dealt with in the crankshaft calculations. There remains the
revolving part of each connecting rod which may be assumed
to be equivalent to three-fifths to two-thirds of the total weight
of the connecting rod, concentrated at crankpin radius.

This figure can be determined experimentally by suspending
the rod horizontally with the big end resting on the table of
a weighing machine. The weight registered is that of the
revolving part of the rod, ie. that portion of the total weight
below the centre of gravity. The reciprocating weight can be
determined in a similar manner, the rod being suspended hori-
zontally as before, but with the small end resting on the weighing
machine table. The result may be checked by adding together
the revolving and reciprocating weights. The sum should be
equal to the total weight of the rod.

This method is not strictly accurate for connecting rods of
normal design, since it neglects the effect of the oscillatory
motion of the rod, but it is quite accurate enough for practical
purposes (see Chapter 6).

Let W = total weight of connecting rod in Ibs.,

then revolving weight = LEE,

2
and moment of inertia | — 3 VR Ibs ft. sect, . (51)
where g = 322 ft. per sec.?,

R = crank radius in feet.

In the case of reciprocating steam engines, the revolving
part of the valve driving gear must also be taken into account.
The moment of inertia of the eccentrics and eccentric sheaves
can be calculated by the methods already given for solid and
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hollow crankpins, whilst the revolving part of the eccentric rod
may be assumed to be that portion of the rod which lies below
the centre of gravity.

(vi) Reciprocating Pari of Rummning Gear.

The reciprocating parts follow the crank movements at
mid-stroke, but remain practically stationary whilst the crank
is turning over top and bottom dead centres, i.e. the influence
of the reciprocating parts on small rotational vibrations is a
maximum when the crank is at the position corresponding to
mid-stroke, and disappears when the crank is on top or bottom
dead centres.

It is common practice to allow for this variation of the
inertia of the reciprocating parts throughout the stroke by
including only one-half of the weight of the reciprocating parts
with the weight of the revolving part of the connecting rod
to give an equivalent rotating mass concentrated at the
crankpin.

The average value of the moment of inertia of the reciprocat-
ing parts may, however, be determined as follows :—

Let v = linear velocity of the reciprocating parts at any
instant when the crank angle is o degrees,
measured from top dead centre,

w = angular velocity of the crankpin, assumed con-
stant,

R = crank radius,

L = length of connecting rod,

# = the ratio L/R.

Then an approximate expression for v at the crank angle « is

v=w.R<sina+_;1{—I_-‘.sh12u>.

Hence, the kinetic energy of the reciprocating parts at
crank angle «, assuming that their weight is W, is

K‘—W ot Rz(moﬁ—l— P smzu).



EQUIVALENT OSCILLATING SYSTEMS 119

Now K¢=J‘—2wg or J= :

2 .
Hence, - J= W.R (sin o -+ EEE .sin 2a>2. . . (52)

If the obliquity of the connecting rod is neglected, this
expression reduces to

W.R?

J= (sin o) = W ?2(1 —cosza). . (53)

. R?
2.8
independent of the crank angle o, and represents the average

value of the inertia of the reciprocating parts for one revolution.
(W.R2. cos za)

In the above expression the first term, viz. ,1is

The second term, viz. , may be regarded as

excess inertia of the second degree. The complete expression
gives the instantaneous value of the inertia of the reciprocating
parts corresponding to any crank angle «, and indicates that
this value is zero at dead centres, and a maximum when the
piston is at mid-stroke.

A more exact expression for the instantaneous value of the
inertia of the reciprocating parts at any crank angle « is
obtained by writing the equation for kinetic energy in the
form of an expansion in terms of multiples of cosines of «, thus :

2
K, = V—"{ﬁ—"—'—RZ(A0 + A;.cosa+ A, . cos 2,

2.8

+ A, cosso:—l—A. cos 4 + ... ),
(Ao—i—A1 cos o + Ay . cos za

+ A cossu+A4 cos 4o 4. . ). (54)

W.

ie. J=

The coefficients Ay, A;, A, A, etc., vary with the ratio
# = L/R as follows (see “ Balancing of Engines, Steam, Gas
and Petrol,” by Archibald Sharp, page 126) :—
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TABLE o.
I I
il R T +
x 1 15 _
Ay = z.n t5os tae.s T
-t R -
Ay = 2 32. 0%
= T -3 27
Ay = 2. 16.%° 256 . nb
s -t —
A= §nt 16. 0t
1 ! 15
Ag = 16 .23 +256.n“ +
I
Ay = 32.n4 +
-3 _  _
Ay = 256 . #°

The values of these coefficients for several different con-
necting rod/crank ratios are given in Table ro.

Table 10 may be checked by noting that when the crank is
on dead centres, i.e. when o« = o, the velocity and the kinetic
energy of the reciprocating parts are both zero, or, in other
words, the sum of the coefficients in Table ro must always be
zero, whatever the value of the connecting rod/crank ratio #.

It should also be noted that the values given in Table 10
confirm the approximate expression previously developed, and
show that a very close approximation to the instantaneous
value of the inertia of the reciprocating parts at any crank angle
o may be obtained by using the simple expression

2 B
= “; ? « (x — cos 2«) Ibs.-ft. sec.?, . . (53)
where W == weight of reéiprocatirig parts of one cylinder in
1bs.,

R = crank radius in feet,
g 32-2 ft. per sec.?, -
== crank angle measu.red from’ top dead centre.
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TABLE 10.

COEFFICIENTS FOR KINETIC ENERGY AND MOMENT OF INERTIA OF
RECIPROCATING PARTS.

# = Length of Connecting Rod/Crank Radius.
Coefficients.
4 5. 6 7 5.
Ay 05080 05051 0:5035 05026 05019
Ay 01270 01010 00839 0+0718 0'0627
A, —~0'5001 ~0r5001 —0°5000 —0°5000 —0°5000
Ag —o1280 —0'1016 —~0°0842 —0°0720 —0°0628
Ay —0°0081 —0'0051 ~—0-0035 —0+0026 —0'0019
Ag 00010 00005 00003 00002 00001
Ag 0-000L 0:000T 00000 00000 0°0000

The total moment of inertia of the reciprocating parts for
single-cylinder and multi-cylinder oil engines, neglecting the
obliquity of the connecting rod, can be calculated from the
simple expression

W.R?

J= 2.8

For Single-Cylinder Engines,
J = o, when « = 0 and 180°

2
w. R-, when « = go and 270°,

. (T — cos 24). <. (53)

R N . CRE L
i.e. the moment of inertia varies from o to w twice in

Rﬂ
every revolution,

This mean value is equivalent to assummg one-half of the
weight of the reciprocating parts to be concentrated at crankpin
radius.

For Two-Cylinder Engines.

Two Cranks at 180°.

Ji= Vk; ? (1 — cos z«) for No. I cylinder,
2
J,-—W2 Re . [ — cos 2(« + 180)] = W.R . (1 — coszx)

for No 2 cylinder,
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= (Ji+ J) = g (I — cos 2a) for the two cylinders
= 0, when « = 0 and 180°
=% VZ R , when a = go and 270°,

ie. the total moment of inertia varies from o to 2
i . .. W.R?
twice in every revolution, the mean value being ra

This mean value is equivalent to assuming one-half of the
weight of the reciprocating parts of each cylinder to be con-
centrated at crankpin radius.

Two Cranks at 9o°.
W.R?

Ji= =z (x — cos2a) for No. 1 cylinder,
J“—':\Z'? [ — cos 2(x + go)] = W—-B- . (1 + cos 20)
) for No. 2 cylinder,
W.R? .
J=0i+J)= z for the two cylinders,

i.e. the total moment of inertia is constant throughout a revolu-
tion, and is equivalent to assuming one-half the weight of the
reciprocating parts to be concentrated at crankpin radins.

For Three-Cylinder Engines.
Three Cranks af 120°.

Jl——“;‘f.(x—-cos 2a) for No. 1 cylinder,
W.R? W.R?
T = Y . [T — cos 2(e + 60)] = 72 i
. [1 + 4 (cos 2x + +/3 . sin 2a],
W.R2 W.R?
Js= 7.2 . [T — cos 2(a + 120)] = z 37

. [T+ (cos 2¢ — 4/3 . sin 24)],

J=Ui+ T+ J) = §M for the three cylinders,
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i.e. the total moment of inertia is constant throughout a revolu-
tion, and is equivalent to assuming one-half of the weight of
the reciprocating parts of each cylinder to be concentrated at
crankpin radius.

For Four-Cylinder Engines.

Cranks in Pairs at 180°.
By the foregoing method,
W.R?

J=Git Tt Dot gy =20
= 0, when « = 0 and 180°
_4.W.R

. (1 — cos 20)

, when « = go and 270°

2
i.e. the total mement of inertia varies from o to 4 W.R twice

2
in every revolution, the mean value being 2.W.R .
This mean value is equivalent to assuming one-half of the
weight of the reciprocating parts to be concentrated at crankpin
radius.

Cranks Equaily Spaced at go°.
. 2. W.R?
In this case J=(JI+JQ+JS+JG)=_g-:

i.e. the total moment of inertia is constant throughout a revolu-
tion, and is equivalent to assuming one-half of the weight of
the reciprocating parts of each cylinder to be concentrated at
crankpin radius.

In general, the total moment of inertia of the reciprocating
parts of multi-cylinder engines having more than two cylinders
with equally spaced cranks is constant throughout a revolution,
and is equivalent to assuming one-half of the weight of the
reciprocating parts of each cylinder to be concentrated at
crankpin radius, neglecting the obliquity of the connecting rod.

The effect of the obliquity of the connecting rod can be
taken into account by using the factors given in Table 10.

The total moment of inertia of the reciprocating masses
then consists of a constant term, calculated by using the appro-
priate value of the factor A, from Table 10, and one or more
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harmonically varying terms, calculated by using the appro-
priate values of the factors A,, A,, etc., from Table ro.

In single-cylinder engines harmonically varying terms of
all orders are present, but Table 10 shows that the first, second,
and third orders (factors A,, A,, and A;) are predominant.

In multi-cylinder engines with equally spaced cranks, the
only harmonically varying terms which are present are those
whose order numbers are integral multiples of the number of
equally spaced cranks, and the magnitude of any such order is
its magnitude for one cylinder multiplied by the number of
cylinders.

EXAMPLES.—
Two Cylinders with Cranks Equally Spaced at 180°.
2. W.R?
=%
Three Cylinders with Cranks Equally Spaced at 120°.
_3.W.R:
J —

Four Cylinders with Cramks in Pairs at 180° (Four-Cycle
Engine).

_4.W.R?
J g

Four Cylinders with Cranks Equally Spaced at 9o°.
_4.W.R?
J g

. (Aq+ Agcos za + A, cos 4a).

(Ag + A; cos 3 4 Ag cos ba).

. (Ay + Ay cosza + A, cos 4u).

. (Ap + A, cos 4a).
Six Cylinders with Cranks in Pairs at 120° (Four-Cycle
Engine).
6. W.R?
T=2t
Six Cylinders with Cranks Equally Spaced at 60°.

2
J= GWTR . (Ag + A4 cos bat).

(Ao + Ajcos 3¢ + Agcos ba).
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Eight Cylinders with Cranks in Pairs at 9o° (Four-Cycle

Engine).
8. W.R2
J==
Eight Cylinders with Cranks Equally Spaced ot 45°.
j= 8.W.R?

4
Effect of Variation of the Moment of Inertia of the Reciprocating
DMasses.

. (Ag+ Agcos4a -+ Agcos 8u).

. (Ag + Agcos 8a).

The variation of the moment of inertia of the reciprocating
masses during each revolution causes a periodic variation of the
natural frequency of torsional vibration. This is analogous to
the variation of the natural frequency of a railway bridge as
a locomotive moves from one end to the other.

This variation of natural frequency prevents the amplitude
of vibration from building up to the value which would be
obtained with a constant moment of inertia and comstant
natural frequency, and increases the speed range over which
resonant effects are experienced. The influence of the variation
of the moment of inertia of the reciprocating parts on the
magnitude of the damping factor which determines the ampli-
tude of torsional vibration of four-stroke cycle engines is fully
discussed in a paper by V. J. Kjaer, reprinted in Motorship,
August, 1930, page 233.*

The variation of natural frequency is larger in engines
where the reciprocating parts are larger in proportion to the
revolving parts, e.g. fast-running engines with solid forged
crankshafts as compared with engines having built-up shafts ;
whilst the resultant effect in multi-cylinder engines depends
also upon the shape of the normal elastic curve and the crank
sequence.

In the case of one-node vibrations of marine installations,
for example, where the amplitudes of vibration are very neaxly

* See also M. Mancy: “ Oscillations de torsion des arbres,”” Mécanigue,
No. 273, July-August, 1937. M. Scheuermeyer: * Einfluss-de Zindfolge
auf die D; i Reih toren,” Werft Reederei Hafen, 1st March,
1933, page 69. :
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the same for all cylinders, the moment of inertia of the recipro-
cating masses for the engine as a whole is very nearly constant
throughout a revolution, and is equivalent to one-half of the
total reciprocating weight concentrated at crankpin radius.

In the case of two-node vibrations of marine installations
and one-node vibrations of direct-coupled generators, however,
where the amplitudes of vibration are not the same at all
cylinders, the variation of natural frequency might be appreci-
able, e.g. in a six-cylinder, four-stroke cycle engine with cranks
arranged in pairs at 120° direct-coupled to an electrical
generator, the mean frequency was 760 vibrations per minute,
whilst the variation of frequency was 754 to 466 vibrations per
minute, i.e. a variation of nearly - 1 per cent.

In the case of crankshaft vibration of automobile engines,
" and one-node vibration of direct-coupled Diesel-generator sets
and aero-engine/air-screw combinations, the shape of the normal
elastic curve is such that the amplitudes of vibration are not
the same at all cylinders. Moreover, the heavy masses, i.e.
the flywheel and clutch of an automobile engine, the combined
flywheel and generator of a Diesel-generating set, and the
air-screw of an aero-engine/air-screw combination are situated
near the nodal point. These heavy masses, therefore, do not
vibrate with any appreciable amplitude, so that the frequency
of the system is mainly determined by the moment of inertia
of the crank masses. In such cases the influence of the re-
ciprocating parts, especially if they form an appreciable pro-
portion of the total oscillating mass of each cylinder, in causing
a cyclic variation of natural frequency might be appreciable.
For example, Dr. Geiger has calculated that for an eight-
cylinder engine of this type the apparent damping due to
imperfect resonance represented about 20 per cent. of the
total damping, notwithstanding the small cyclic irregularity
of this engine.

The variation of natural frequency throughout a revolution
can be obtained by calculating the moment of inertia of the
reciprocating parts of one cylinder for a number of different
positions of the crankshaft. It is then necessary to make a
separate frequency tabulation for each crankshaft position,
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taking care to insert the appropriate values of the moments of
inertia of the reciprocating parts in column D of the frequency
table.

In practical calculations, however, it is sufficient to make the
usual assumption that the reciprocating parts can be taken
into account by including one-half of their weight with, the
weight ‘of the revolving part of the connecting rod, all acting
at crankpin radius, The effect of any variation of frequency
which might be present can then be taken into account by
adjusting the damping factor employed for determining the
amplitude of vibration at the critical speed so that the calculated
amplitude agrees with the observed value.

The subject of apparent damping will, however, be dis-
cussed in more detail in Chapter 7.

The external vibration of the engine frame which accom-
panies torsional vibration of the shaft system is also due to the
varying moment of inertia of the reciprocating parts, and would
not be present if the parts in torsional vibration consisted
entirely of rotating masses with the centres of gravity all
situated on the axis of rotation. Due, however, to the recipro-
cating parts, a vertical force F, and a rocking moment M, are
imposed on the engine frame.

If, for example, the shaft is given a vibratory motion,
(# =bsinw .?), the maximum values of F and M are as
follows :—

F=~V?V.b.R.w21bs.

= — 000034 . W.b.R.N21Ibs,, . . (55)
M=% 5 Re.wt. Ibs-t,
= — 000034 . W.b.R2. N2 lbs.-ft., . (50)
where W = weight of reciprocating parts in lbs.,

b = maximum amplitude of vibration in radians,
R = crank radius in feet,
= phase velocity of vibration in radians per
sec.
_2.n.N
- 6o
N = revolutions per min.,
& = 32-2 ft. per sec.%
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The unbalanced force F is felt as a reaction at the main
bearings, and is responsible for vertical vibration of the engine
frame and knocking at pistons and driving gear. It is possible
for this unbalanced force to cause a derangement of the piston
driving gear in serious cases.

The rocking moment M is responsible for transverse vibration
of the engine frame. )

In multi-cylinder engines, the average force during a re-
volution is one-half the values given by the foregoing expres-
sions, multiplied by the number of cylinders.

Reciprocating Paris—The reciprocating parts of each
cylinder of an oil engine consist of,

One-third to two-fifths total weight of connecting rod.

,» Diston head.

,, Piston skirt (if fitted).

,» Ppiston rod.

,» crosshead (if fitted).

,» set of piston cooling gear, including water or oil in
piston and rod.

Let W =total weight of reciprocating parts for one

cylinder in lbs.,
R = crank radius in feet,
g = 322 ft. per sec.2
Then effective moment of inertia of reciprocating partsis
W.R?
J= 2.8

In the case of steam reciprocating engines, it is also necessary
to take account of the reciprocating part of the valve gear.
This can be done by the methods just described for dealing with
the cylinder masses, and as a rule the effective moment of
inertia of the reciprocating parts of the valve gear is combined
with that of the nearest working cylinder.

(vii) Engine-Driven Auwiliaries.—Crank-driven auxiliaries,
such as air-compressors and scavenge pumps, can be treated as
an additional set of running gear, and the total moment of
inertia calculated by the methods already described for the
main cylinder running gear.

1bs.-ft. sec.? per cylinder. . (57)
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In the case of lever-driven auxiliaries—

Let W = weight of reciprocating parts of auxiliary in
Ibs.,
L = total stroke of auxiliary in feet.

Then effective moment of inertia of auxiliary is
W. L2
= ——— lbs.ft. sec. . . . (58
J=%3 sec. (58)

This value is added to the moment of inertia of the cylinder
from which the auxiliary is driven. .

Total Moment of Imertia of Cramkshafi and Runming Gear
of Reciprocating Engines—This is determined by summing up
the moments of inertia of the crankshaft and the revolving
and reciprocating parts of the running gear. The value per
cylinder is then obtained by dividing this total by the number
of cylinders.

In the case of reciprocating steam engines, however, where
the moment of inertia is not the same for all cylinders, each
cylinder must be dealt with separately.

Crank-driven auxiliaries are treated separately, whilst the
moment of inertia of lever-driven auxiliaries is added to the
moment of inertia of the cylinder from which the auxiliary is
driven.

These calculations should be tabulated as in Table 11.

The following expression may be used for determining the
approximate total moment of inertia of the crankshaft and
running gear of oil engines, in cases where working drawings
are not available :—

J =X .D2.S¢®lbs.~{t. sec.? per cylinder, . . (59)
where D = diameter of cylinder in feet,
S = stroke in feet.

The value of X depends on the type of engine, approximate
values being as follows :—

K = 35 to 7-0 for medium speed trunk-piston engines, such
as are employed for direct-coupled electrical generat-
ing sets. The lower value is for engines without

VOL. L.—9
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crankshaft balance weights, whilst the higher value
applies when crankshaft balance weights are fitted.

K = 5-0 to 100 for large crosshead engines, such as are
employed for marine propulsion. The lower figure
is for engines without crankshaft balance weights,
and the higher figure for engines with crankshaft
balance weights.

K = 35 for short-stroke opposed-piston engines, and 275
for long-stroke opposed-piston engines. In this case
S is the total combined stroke of the upper and
lower pistons, and the stroke bore ratio is 3 and 4
for short and long-stroke engines respectively.

TABLE 11.

MOMENT OF INERTIA OF CRANKSHAFT AND RUNNING GEAR OF A S1x-CYLINDER
Four-STROKE CyCcLE O ENGINE, 13}-INCH BORE X 18-INCH STROKE.

Welght of | yioh! R | WKL g
Ttem. No.of. | GoerLos. | WelBt | pii | 1peited. Lte. T e,

Journals . 7 144 1008 | 00595 60 1865
Crankpins . 6 114 684 | 06220 425 13150
Crankwebs . | 12 210 2520 | 0'3000 766 23800
Revolving part

of connecting

rod . B 6 192 1152 05625 648 20°100
Recip. part
—Eg— 6 225 1350 | 05625 760" 23600

Total moment of inertia = 82-515,
ie. moment of inertia per cyl. — 82515 = 1375 Ibs.-ft. sec.?
In the case of automobile and aero engines it is more
convenient to express the moment of inertia in lbs.-ins. sec.?
units,
2 3
ie. 7= hcinssect . . . (60)
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where J = moment of inertia of revolving and reciprocating
parts of one cylinder line,
D = bore of cylinder in inches,
S = stroke in inches,
k = 5000 for automobile engines with crankshaft
balance weights,
= 10,000 for automobile engines without crankshaft
balance weights ; and for in-line aero engines
with crankshaft balance weights,
= 20,000 for in-line aero engines without crankshaft
balance weights ; and for radial aero engines.

The values of J obtained by using these factors are approxi-
mate and should be used for general guidance only. In the
case of in-line engines with more than one bank of cylinders the
value of J obtained from Equation (60), using the above values
of &, should be multiplied by the number of banks to obtain
the approximate moment of inertia of each crank line.

In the case of radial engines the value of J obtained by
inserting the above value of %2 in Equation (60) should be
multiplied by the number of cylinders in each row to obtain
the approximate moment of inertia at each crank throw.

(5) Monfent of Inertia of a Marine Propeller or Air-
screw.—The propeller is first reduced to an equivalent disc
as follows (see Figs. 28 and 29).

Describe a radius # and determine the total cross-sectional
area of the blades at this radius. This total area divided by
(2. 7. x) is the thickness of the equivalent disc at radius .

The complete equivalent disc is obtained by repeating this
process at different radii.

The boss and that part of the propeller shaft contained in
the boss may be treated as a solid of revolution,

2 2
i.e. moment of inertia of boss = ﬂ—]# . % Ibs.-ins. sec.?,
@)
where D = diameter of boss in ins.,
L = length of boss in ins.,
S = specific weight of material in lbs. per cu. in.,
g == 386 ins. per sec.2.
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For bronze S = 0315 Ib. per cu. in.,
ie 7= 2L ins. sec.? .. (62
e rz2500
|
"-‘—7 Rp |
? dx 1 i
:_L——.z:-—: 1l
& A__dc l
D, . Q
Sl R

%-io WW‘[’
~

Y 1Ry =Rad ofBos: = D

< B

 a—

H 2.
I -

z

Fre. 28.—Equivalent disc.

The moment of inertia of the propeller blades is obtained
from the equivalent disc as follows :—

In Fig. 28 the full lines show the outline of the equivalent
disc for the propeller blades. SS is a line drawn parallel to the

=15 Depived Fi3,
B =20 oo,
/Sf',” do.

Fic. 29.—Moment of inertia of propeller blade.

axis ZZ at any desired radius (a position midway between the
points P and Q is convenient).
Let the distance of SS from ZZ be R, and rule any line AB

parallel to the axis ZZ, cutting the outline of the equivalent disc
at A and B.
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Project Aand Bonto SSat Cand D. Join C and D to any
convenient point O on the axis ZZ, cutting AB at A; and B,.
Then A, and B, are points on the “ first derived figure.”

Repeat this process for different positions of the line AB,
thus obtaining the outline of the first derived figure.
Treat the first derived figure as though it were the original
figure, and so obtain the ““ second derived figure.”
Finally, use the second derived figure to obtain the ** third
derived figure ” in a similar manner.
Let A = area of original figure in sq. ins.,
A, = area of first derived figure in sq. ins.,
A, = area of second derived figure in sq. ins.,
A, = area of third derived figure in sq. ins.,
S == weight of I cu. in. of the material.

Then
Ty 1 (B X
A=_[R°y.dx, A1=—R‘L"x,y,dx,
I (% . _ I (%
Ag:ﬁijﬂ‘y'dx’ As—ﬁjnoxs'y'dx'

where R, = radiusofboss; R, = extreme radius of blades,
i.e. weight of blades,

w S i dx Ib

=2z2.7. .J‘I%x.y. % 1bs.,

or W=z2.7.S.R.A lbs. . . . (63)
Moment of inertia of blades about axis ZZ,

j=2 Z S, Jz: 43,y . dy Ibs.-ins. sec?,
Le. J= 3—'%'—5 R A, bs-ins. sec?, . . (64)
where g = 386 ins. per sec.?.
Also 7=V “ng

i.e. radius of gyration K = R\/‘%f ins. . . . (65)
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If the equivalent disc is not drawn full size, care must be
taken to allow for the vertical and horizontal scalesin calculating
the values of A, and A,.

ExaumprLE 15.~Fig. 29 shows one blade of a three-bladed pro-
peller, 14 ft. 6 ins. diameter.

The equivalent disc for one blade of this propeller is also
shown in Fig. 29; the horizontal scale having been made five
times full size, and all thicknesses having been measured from
a vertical line to reduce the work entailed in drawing the derived
figures.

The thicknesses of the equivalent disc are tabulated below :—

TABLE 12.

Section. Cmsi'BS]es%x;ial S‘;nlans“ Orne | p.diusin Ins. Thxcknﬁl]issc ci!nl?’\llsijm!ent
b 44273 18 3907
2 180-7 24 1-200
3 166-6 36 0738
4 1386 48 0460
5 986 60 0262
6 513 72 0114
7 3175 78 0064
8 128 84 0024
9 ] 87 o

The equivalent disc was drawn to the following scales :—
Vertical scale (radii) : half full size (1 in. = 2 ins.).
Horizontal scale (thickness): five times full size

(rin. = 1f5in.).

Hence, area scale is I sq. in. = 2 X I1/5 = 2/5 sq. in.

The areas of the first and third derived figures for one blade
of this propeller, measured by planimeter on the drawing, were
600 and 56+ sq. ins. respectively.

Hence, A 2 % 6o 124 sq. ins.,
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i.e. assuming S = 0-315 Ib. per cu. in. for bronze,
R = 48 ins. (see Fig. 29),
W =2 X 3416 X 0313 X X 24
= 2280 Ibs. per blade.
Also
Ay= 3%69 = 22! sq. ins.,
‘e J= 2 X 31416 X 0315 X 48° X 22-8
- 386
= 12,900 Ibs.-ins. sec.2 per blade
_ 12900
T 2240 X 12
Boss.—The boss and that portion of the propeller shaft
contained in it is equivalent to a solid cylinder 33 ins. diameter
and 33 ins. long.

Hence, J

= 048 ton-ft. sec.? per blade.

DL _s3ix3
12500 12500
= 3130 lbs.-ins. sec.?
= 0'TI6 ton-ft. sec.?,
Total moment of inertia of propeller :—
Blades = 3 X 048 = I-440
Boss = 0116

Total = 1-556 tons-ft. sec.?.

The effective moment of inertia of the propeller is greater
than the foregoing calculated values due to the effect of the
entrained water. According to Frahm, the allowance for
entrained water varies from 20 to 30 per cent., with an average
of 25 per cent. for propellers of normal design, i.e. the calculated
moment of inertia should be increased by 25 per cent. before
using it for calculating natural frequencies and vibration
stresses. In the above example, therefore, the effective
moment of inertia is

J = 1536 X I-25 = 1-945 tons-ft. sec.?

The exact value of the allowance for entrained water cannot

very well be calculated mathematically, since it depends on the



136 TORSIONAL VIBRATION PROBLEMS

design of the propeller and the characteristics of the ship’s hull.
Previous experience with similar installations is the best guide
as to whether an allowance of 25 per cent. will be satisfactory
ornot. In this connection it should be noted that the moment
of inertia of the propeller mainly influences the value of the
one-node frequency of marine installations, and has relatively
small influence on the value of the two-node frequency, where
the amplitude of vibration at the propeller is small.

It should also be noted that the effective moment of inertia
of the propeller varies with the loading of the vessel, so that
there is usually some difference between the one-node frequency

—— ——Rp = 877~ -

5004500 000 ~—— — 1"‘I
1 r<—pb- 8- Blede Length = 69"
~ [ . 7R
2400 4000001
B < .
$ 3001 300000 5 . . .
3 N ; g(;irza % RY Curve \\ [
2 =
% 2001 200w & A el AR GR= 150000001
% Y A
3 100 F-100000 Moo L rea Curve -
S Ars j,’{Z’IA. dR - 8000 mf;
< o {
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30 40 S0 60 el 80 90 00
R= Radius in inches ~—»

Fie. 30.—Polar moment of inertia of air-screw or propeller blade.

of vibration when the vessel is fully loaded and the propeller is
fully immersed, and when the vessel is in ballast and the tips
of the propeller blades are projecting above the water.

An altemative method of obtaining the polar moment of
inertia of a marine propeller or air-screw blade is shown in
Fig. 30.

This method is probably more accurate than the equivalent
disc method just described, because it does not depend upon
the accuracy of a somewhat laborious graphical construction.
In the alternative method the cross-sectional areas of the blade
A, at different radii R, are calculated and entered in the
table shown in Fig. 30. In this table the first column contains
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the number of the section; the second column contains the
radii R, at which the various sections are situated measured
from the axis of rotation, in inches ; the third column contains
the cross-sectional areas A, of the various sections, in square
inches; and the last column contains the products (A . R?),
in inchest, i.e. the product of cross-sectional area and radius
squared at each section.

Fig. 30 is drawn for the example already worked out by
the equivalent disc method, i.e. the values of the cross-sectional
areas and radii are taken from Table 12.

Two curves are plotted from the values given in the table
in Fig. 30, namely, a curve showing the variation of cross-
sectional area with radius, and a curve showing the variation
of the product (A .R?) with radius.

The weight of the blade is obtained from the first curve, as
follows i—

Total volume of blade = j:: A . dR cubic inches.

= area under full line curve in Fig. 30
= A,

Weight of blade, W=S5.4A,

where S = weight of I cu. in. of the material in Ibs.

The area under the curve is obtained by planimeter and
care must be taken in determining the area scale.

If the area is measured by planimeter in square inches and
T in. on the horizontal scale represents x ins. radius, whilst
T in. on the vertical scale represents y sq. ins. of cross-sectional
area, then the area scale is

15q.in. = x.yins3

In Fig. 30, for example, assuming that the vertical scale is
I in. = 100 sq. ins. of cross-sectional area, and the horizontal
scale is I in.=710 ins. radius, then the area scale is
I sq. in. = 100 X I0 = I000 ins.2

The area under the full line curve in Fig. 30 measured by
planimeter is 8 sq. ins.
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Hence, A, =8 X 1000 = 8000 ins.%
The material is bronze, i.e. S = 0-315 Ib. per cu. in.
The weight of the blade is therefore
W=25.A;=0315 X 8000 = 2520 lbs.
This value is about 10 per cent. greater than the value
obtained by the equivalent disc method.
The polar moment of inertia of the blade is obtained from
the second curve in Fig. 30 as follows :—
Polar moment of inertia == J
S (B .
- A .R?.d4R lbs-ins. sec.?
glx,
=g3 (area under dotted line curve in Fig. 30)
= § . Az:
g

where S = weight of T cu. in. of the material in Ibs.,
g = 386 ins.[sec.
The area scaleis Isq. in. = %. 2,

where I in. on the horizontal scale represents # ins. radius, and

T in. on the vertical scale represents z units of the product

(AR?).

In Fig. 30, for example, assuming that the vertical scale is

I in. == 100,000 ins.* of the product (AR?), and the horizontal
scale is 1 in. = 10 ins. radius, then the area scale is

I sg. in. = 100,000 X IO = 1,000,000 ins.%
The area under the dotted line curve in Fig. 30, measured
by planimeter, is 16 ins.2.
Hence, A, =16 X 1,000,000 = 16,000,000 ins.b5.
The polar moment of inertia of the blade is therefore

_S __ 0315
J= z A, = 386 X 16,000,000

== 13,050 Ibs.~ins. sec.2
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This is only 1 per cent. greater than the value obtained by
the equivalent disc method, indicating that the difference in
the weight calculated by the two methods is due to a difference
in estimating the weight at the root end of the blade.

The radius of gyration K is easily obtained, as follows :—

K= ﬁ \/‘_2 inches.

In the present example, A, =

16 000,000 and A; = 8o000. .

Hence, X = J 16000000 _ i
“8ooo 4477 108,
16
15
7 /
g7 Vi
871 /
K10 Built T
; ) Bronz B/aJé.:,CIE\S;/ /
3 /
3 & So//d Bronze 74
£ N4
: & Soliel Cast Iron. -
Q
5
EW // A
EEN | /
23 L=
1 23456 780001239 6H61781020

Diameter of Propeller in Feet.
Fie. 31.—~Weight of four-bladed marine propellers, including C.I. tail cap.

The method just described can be used equally successfully
for determining the weight and polar moment of inertia of the
blade when a piece is cut off the tip. This is useful in the case
of air-screw blades where it is common practice to manufacture
different diameter air-screws from one standard blade by cutting

the desired amount off

the tips.
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For example, if the tip radius of the propeller blade of
Fig. 30 is reduced from 87 ins. to 8o ins., the weight and polar
moment of inertia of the shortened blade is obtained by stopping
the graphical integrations at 8o ins. radius. The curves will,
of course, require rounding off before calculating their areas,
as shown by the chain dotted lines o and §, to allow for the
rounding off at the tip of the shortened blade.

74 280

3 26
| azf 290

711, Peopel er'[)las=0to1oft, 7l ‘2?_11 Prapeller' Dnas=10tozlofb
1 L : uilt ( Bronze B/.:m’eﬁ, 2001 Buitt (. Bnanzeﬂlades,'_
Tﬁ 9 1 Boss. -7801‘5:- v/
s v’,s.’ﬁ‘a.st‘ 01 160 v+Solid astl .
g RSN/ e .74
I 7_“6‘0//!'Br'onze,\ 149 S1Solid Bropze ]
£ 6 120 l’
N 3
X 5 17009
=, PN

3 60

2 20

17 — 12

O T e s s 67 8 9N ZBIE B 16178 20

Diameter of Propeller in Feet.
Fre. 32.—WK:? of four-bladed marine propellers.

2
(Moment of inertia of propeller = W:{ + 25 per cent. to 30 per cent.

allowance for entrained water.)

As already explained the calculated moment of inertia of
a marine propeller must be increased by about 25 per cent.
to allow for entrained water, but this correction'is not applied
to air-screws.

Figs. 31 and 32 contain the weights and WK? values for
four-bladed marine propellers, and may be used for estimating
purposes.
 Figs. 33 and 34 contain the weights and WK?2 values of
metal and wooden air-screws. The values include the hubs,
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although as a general rule the effect of the hub on the polar
moment of inertia of an air-screw is negligible.

The curves are based on good average values for two-bladed
metal air-screws in the smaller diameters and for three-bladed

550,

$00

450

400

350

§

Duralumin

Variable Pirch ~U

Altscrew in 1bs
ey
&
[S]

200 +
> Duralumin
N \=Fixed Pich

! /.
£150
£ /|
100 74
Lw:od
LA
S0
L1 |41
//‘

1 23 4 56 7.8 9 1011 1213MK4I156
Diameter of Alirscrew in Feel ——>—

F1c. 33.—Weight of air-screws, including hub,

metal air-screws in the larger sizes. In the case of wooden
air-screws the values are for two-bladed designs throughout.
The curves for four-bladed wooden air-screws lie between
the curves for metal and for two-bladed wooden air-screws.
In using these curves it should be borne in mind that
considerable variation in the polar moment of inertia of
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air-screws of the same diameter and number of blades, but
of different designs, is possible. Nevertheless, the values ob-
tained from these curves will enable fairly accurate estimates
of torsional vibration frequencies to be made, because quite
a large variation in air-screw inertia does not make much dif-
ference to the frequency calculation in normal engine-air-screw
installations.

o 1" Arscrelw Dias =470 7Rt T Aliscrew Das = 700 5 it
e LT ™ T T
7500
T T e LT
wK? ! ‘ WEZ o2
6500 4= 55~ (b4 Ins Sec L J = g thsins SecZ
000 300
3500
So00 j 250,000 ? /
24500 / Y /
2 zoaooo-;. /
35005 timin Blades / / >; Duralumin
“imaob—é Steel Hub 150,000 "y -Biadles €,
2500 Fa
2000 / / 100000 y
500
100 /\ 50,000 A\___
Wood Wood
300 = ! -

78 8 100 125 5
Dismeter of Awscrew i Feel -

F1c. 34.—WEK? of air-screws.

It should, however, be kept in mind that air-screw blade
flexibility can have an important influence, especially in the
case of high duty metal air-screws where blade scantlings are
kept as small as possible to minimise weight (see the Appendix
to Vol. I).

Exsupie 16.—Estimate the weight and effective moment of
inertia of a solid bronze propeller, 16 ft. o in. diameter.
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From Fig. 31, weight = 4-35 tons. This weight includes
the boss and a cast-iron tail cap, but does not include that
portion of the propeller shaft contained in the boss.

From Fig. 32, WK?= 77 tons-ft.?,

- 1 2)p) = 125 X 77
1e. J = 125(WK%g) = [
= 2+99 tons-it. sec.2.

This value includes the propeller boss and a cast-iron tail
cap, but does not include that portion of the propeller shaft
contained in the boss.

Swmall Marine Propellers—The weight and polar moment
of inertia of small solid bronze three-bladed marine propellers
may be estimated from the following formule, in the absence
of specific data :—

Weight = W = D3/400 Ibs. . . . (66)
Radius of gyration = K = 0-27D ins,,
ie. WK? = D¥/5500 lbs-ins? (excluding entrained
water) . . . . (67)
where D = diameter of propeller in inches.

(¢) Moment of Inertia of Flywheel.—If the flywheel is
simple in form, e.g. a plain disc and rim, the moment of
inertia may be obtained as follows :—

2)
Rim—  J, = V% O ) st sect, .. (68)
where W, = weight of rim in Ibs.,

£ = 3272 ft. sec?,
D = external diameter of rim in feet,
d = internal diameter of rim in feet.

Disc—  Ja =y—g—" @—‘2—;——“ Ibsft. sec.?, . . (69)

where D, = external diameter of discin feet,
d, = internal diameter of discin feet,
ie. moment of inertia of iywheel = J = (J, + Ja)-



TORSIONAL VIBRATION PROBLEMS

I44

By poniaag it
5 ponad iz

i panaag i€

9517 JuapEninby
— T -5
3

e

4Ly jo enIour Jo Justio—GE o1




EQUIVALENT OSCILLATING SYSTEMS I45

If the flywheel is more complicated in form, e.g. a wheel
with arms, or a turning wheel of light, ribbed construction,
the equivalent disc method already described should be used
(Fig. 28).

Fig. 35 shows the equivalent disc and derived figures for
a typical combined flywheel and turning wheel of light ribbed
construction.

An experimental determination of the specific gravity of
the material of cast-iron flywheels indicated that the average
specific weight was only 025 1b. per cubic inch compared with
the value génerally employed, namely 0-26. The experimental
value of the radius of gyration was about 4 per cent. less than
the calculated value, indicating that the more open-grained

Anchoredl Hexagon
Bar, 17" overfiats
forming knife edfe.

F1c. 36.—Experimental determination of moment of inertia.

material was in the flywheel rim. If, therefore, a specific
weight of 0-26 is used for calculating the weight and polar
moment of inertia of a heavy flywheel, the variation of density
of material may be taken into account by reducing the calculated
weight by 4 per cent., and by reducing the calculated polar
moment of inertia by 12 per cent., to obtain the probable actual
values.

These corrections may be important in systems where
close tuning is necessary.

Experimental Determination of Moment of Inertia
of Rotating Bodies.—The calculated value of the moment of
inertia may be checked by experiment, using the compound
pendulum theory.

Fig. 36 shows the arrangement. The flywheel is suspended

VOL. L—I0
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from a knife edge and the natural frequency of oscillation deter
mined, taking care to avoid having too large an angle of swing.
The knife edge in Fig. 36 consists of a short length of hexagon
bar supported in V-blocks. Care must be taken to ensure that
the support is rigid. )
Let T = periodic time in seconds, i.e. the time for one
complete oscillation,
K =radius of gyration of wheel about the centre of
gravity (C.G.) in feet,
R = distance of C.G. of wheel from point of sus-
pension in feet,
g = 322 ft. per sec.’

Then ’1‘=2.4r.\/»Kz+R2 secs.,
g.R

or Kie T-E—S'gg_R _Re=[08I5(T*. R) — RA 62 (70)

Hence, J= %Y . K2 Ibs.-ft. sec.2,
where W = weight of fiywheel in Ibs.

Another simple method of determining the moment of
inertia experimentally is shown in Fig. 37.
In this case the rotating body is suspended by two light
wires so as to be free to oscillate in the horizontal plane.
Referring to Fig. 37,
Let ‘W = weight of body in lbs.,
L = length of suspension wires in feet,
R =radial distance of each suspension wire from the
axis of oscillation in feet.
W.R.0
T

Then restoring force F=W.sina=

2
restoring couple M = W.Re. 0

restoring couple per unit displacement
e M W.R®

i L
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Now T:z.n\/é,

where T = periodic time in seconds,
J = moment of inertia of body about axis of
oscillation in Ibs.t. sec.?,

. TJ.L
ie. I=2.n V%I.Rf
_W.R:.T* W.RLT
Hence, J= 7L ~ 39350 Ibs.~ft. sec.2. . (71)
|
R
~
A
7 4
1A i«lJ AT
By My

Fi6. 37.—~Experimental determination of moment of inertia of fiywheel.

It should be noted that the above expression is independent
of the number of suspension wires, so that three wires may be
used for supporting heavy bodies. Care must be taken to keep
the amplitude of the oscillations small.

ExXAMPLE 17.—(A) Amotor-carwheel, fitted witha 27-in. X 4-4-in.
tyre, was suspended on a knife edge, as shown in Fig. 36.
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The distance from the point of suspension to the axis of
the wheel was 8-688 ins., the weight of the wheel was
33 1bs., and the number of complete oscillations per minute
was 42. Calculate the moment of inertia of the wheel.

In this case, W = 33 lbs,,

8-688
R = —I—z—=o-7z4ft,
T=2= 1429 secs
Hence, K? = 0-815(T?. R) — R*
= (0-815 X I-429% X 0'724) — 0-724®
= 0-681 ft.2,
or J' = E K2 =313_>S_9£8_I

g 322
= 0'698 Ib.-ft. sec.?.

(B) The same wheel was suspended by means of two wires, as
shown in Fig. 37. The length of each wire was 55 ft.
and the radial distance of each wire from the axis of
oscillation was #-68 ins. The time for fifty complete

oscillations was 170 secs. Calculate the moment of inertia
of the wheel.

In thiscase W 3 1bs.,
-5 ft.,
-68

'l
N oW

I

= 0-64 ft.,

= 34 secs.

W.R2.T2 33 X 0:64% X 342
395 L 395 X 55
= 0718 Ib.~ft. sec.’.

This is within 3 per cent. of the value previously obtained.
(d) Correction for Mass of Shafting.—It was shown in
- Chapter 1 that as a general rule the mass of the shaft can be
neglected if the product of the length of the shaft in feet, multi-
plied by the frequency in vibrations per second, does not exceed
1000.

In the case of systems consisting of two masses, A and B,

il

— 3 "B
f
3I3 5|

Hence,
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separated by a length of shafting, the mass of the shaft can be
taken into account as follows. Estimate the position of the
node by the methods already given. Add ome-third of the
moment of inertia of the length of shaft between the node and
mass A to the moment of inertia of mass A ; and add one-third
of the moment of inertia of the length of shaft between the node
and mass B to the moment of inertia of mass B.

If there is more than one mass at one end of the system,
the appropriate proportion of the moment of inertia of the
connecting shaft should be equally divided amongst these
masses. -

When the inertia of the shaft cannot be meglected, eg.
very long shafts with light end masses, the methods given in
Chapter 8 should be used [see Eqn. (402)].

(¢) General.—Table 13 contains expressions for calculating
the weights and radii of gyration of a number of standard
solids.

Since most engineering structures are composed of standard
forms, this table and the following rules will be found useful for
estimating moments of inertia.

Rule 1.—The moment of inertia of a body with respect to
any axis is the sum of the moments of inertia of any constituent
parts into which we may conceive it divided,
ie. J=Z(J,+ J. + etc). . . . (72)

Rule z~The moment of inertia of any body about any
axis is equal to its moment of inertia about a parallel axis
through the centre of gravity, plus the moment of inertia which
the body would have about the given axis if all collected at its
centre of gravity,

ie. J¢¢=<Jm+g-Re), N )

where  J,, = moment of inertia about given axis ¥z,
Jsa = moment of inertia about a parallel axis
through the centre of gravity,
W = total weight of body,
R = distance of the centre of gravity from the
given axis aw.
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TABLE 13.
MOMENTS OF INERTIA OF SOLIDS,
Jo = W.Kix

Jix = Moment of Inertia about Axis XX, m Lbs, Ft, Sec®
W= Weight of Body, in Lbs. K= Radius of Ggpat;on in Feet.,
5 = SpecnﬁcWenghtofMatemal inlbs/Ft ¢=2322 Ft./Se

All Linear Dimensions to be measured in Feet.

WVeight, inLbs. Radius of Gyration, in Feet.

Parallelepiped. b b b .1-“2‘-
X: ey ——X o A F
w=S{abe) L %= X XLTR

p
&

~el« 2 e ok
Ky = S K&Fg;’;_b’ @oﬁéﬁﬂgi

Hollow Cylinder.

Wi
w=I(o~d)Ls

w=T0lLs,

Hollow Cylinder,

2 D)
W=T(D=d)Ls,

X X
2 (p4d?) (D48, 2
= K= —B—){—R




EQUIVALENT OSCILLATING SYSTEMS I51

TABLE 13. (continued)

Weiéht, inLbs Radius of Gyration, in Feet.

Cone. T - T
= AA L T EFA ?L;
=I.dLs. G = = WA RV &
A 2+ :‘D’,I3 . F(DL;I 2 X 5 215—12 X,
4
K=y kg(=AT3bl 2 __a.fL +DPHR
—»1

Cone. X Lxé};m —-i‘x i&
wa%.n?x_.s, AN

D
Razsat) ap* 2 3 o’mz
XX~ “40 xx= 30

Frustumof Cone - H_L . L‘!%
” a—x -9 -
X=Dr Kl T '{

W LS(CDdd
X
5 5\ 5 2
-d. ~d W-R
K2 -.1 K»zza(u!as

Paraboloid.

w=F.0\Ls,

.

Torus.

2
W=}. D.aZs.

Sphere.
W=-IL5%s (Solie) x
waT(o d3)s
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TABLE 3 (continued.)
Weight, in Lbs. Radius of Gyration, in_Feet.

Elliptical = Tm
Frna & x =214
c \ W%
b —_Jb ey
w=JT.a.b.c.§ K= dh b2 ’+b‘ , R2
Lamina with )
Serni - Curcudar ¢
Ends ZU
N s
- eS| w2 m2alert a) s 3nrlha) 2 _2amrial)s Inrrid)
wa(rr +2a)rc.S| K _C_,Z_r__if)dx ﬁm_m‘l
Semi- Cireular | .32 Shoner  3p-osar .
: T x T ) : 7t
Lamina o = 2 X -t x
gl cg] L .
2 o[ G2 X X
w=Ani2c. § |x=l5-%] , P

= o erl Ky=0-320% R2 Kxx
|y

ﬁi‘éfa VS

=]
W=1% ab.c 2
% a CSKxx=—+g4_ K;é<=—

Ttiangular
Lamina

Segment of ,
L‘zrcu[dr Lamina| )—\TX
- 240rsin T
Z- 29z J s
2o

ki 7 z2

Hexagonal /{\

Lamina X- \}4

“a v Al

W= 0-8664%c. S| Kix’g’;—.dz Ky a2 B2

NOTE:  If all linear dimensions are in inch units
N anad weight is in A:; H)en the moment”

of inertia is -y W = Kyx Lbs inssec?
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The following Table of Specific Weights of materials gives
average values for each class of material :—

TABLE 14.
SPECIFIC WEIGHTS OF MATERIALS,
Lbs. j:er Cubic Inch.

Aluminjum . . . . . 0097
Brass . . . . B . . 0300
Bronze and gunmeta.l . . . . . 0315
per . . . . B . . 07320
Duralumin . . . B . . . o102
Iron . B B - B . . . 0260
Lead . . . . . . 0412
Magnesium alloy (elektron) . . . . 0065
Monel metal . . . . . 0323
Steel . . . . . 0283
'J\mgstsn a]loy (heavy alloy) . . . 0-600
. . . . 0040

AIR-SCREW BLADE MATERIALS.

Birch . . . . 04023
Compressed and mpreg-nated wood . . 0050
Mahogany . . . 0032
Micarta . . . . . . . 0049
Qak . . . . . . . . 0-029
‘Walnut . . - . . . . 0023

Notes.—The specific weight of wood is subject to a wide
variation for varying moisture content.

L=

X

Fic. 38.—Moment of inertia of frustum of cone.

Tungsten alloy is a material recently introduced as the
result of investigations carried out at the General Electric
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Company’s Research Laboratories, Wembley. This material
has approximately the same physical properties as mild steel
and is readily machinable with ordinary tools. The material
has just over twice the specific weight of steel and has been
used successfully for balancing internal combustion engines
where space limitations prohibited the use of ordinary steels.
Its tensile strength is 40 tons per sq. in., yield-point 36 tons
per sq. in., Young’s modulus 32,000,000 Ibs. per sq. in., Brinell
hardness 230 to 2go.

The specific weight of rubber given in the above table is
an average value for material used in the manufacture of
transmission couplings.

Exampie 18.—FEstimate the moment of inertia of the conic
frustum shown in Fig. 38 about the axis x4. The material
is cast iron.

The moment of inertia of the frustum shown at (s), Fig. 38,
is the difference between the moment of inertia of the large
cone shown at (b), about axis xx, and that of the small cone
shown at (c) about axis xx.

Moment of Inertia of Large Conme.

5,.D I X 05
®—4d) (o75—03)
3t

Total height, L=

Hence, from Table 13,
x.D2.L.S

Weight W = =

, where S = 450 lbs. per cu. ft.
for cast iron
_ 3416 X 075% X 3 X 450
Iz

= 199 Ibs.,
s _(B.12+3.D) 8 x5 +3xoys?
o 8o - 8o

= 0'g2I ft.2,

Hence, Ju = “’—9:7—-:9“ = 568 Lbs.-£t. sec.’.

K
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Moment of Inertia of Small Cone.
Weight — 3-7416 X 0°52 X 2 X 450

12
= 59 Ibs.,

Kt = &L+ DY+ R,

where R = distance of centre of gravity from axis xx
A 2 _ .

(11+ —) =1 +1-—15ft.,

Le. Kt = 3(2* '8{'00‘52) L5t
= 2-409 ft.2

Hence, Ju = =99 X 2409 _ = 44 |bs.-ft. sec.2.

322
Moment of Inertia of Frustum.
Jio = (568 — 4+4) = 128 Ibs.-f. sec®.

The expression for the weight of a frustum is

w=""L%p: 1D
6
s HIXA (075t + 075 X 05+ 05)
=139 Ibs.
LD +3.D.dF6.d, 3[D°—4"
Also K”_E[ Di+rD.a+ @ ] so[Da-dS]'
; 0752+ 3 X 075 X 0'5 4 6 X 0'5?
e K= 073 F 075 X 05 05 ]
075% — 0'5°
+ 80[0 +75% — 053]
= o295 1.
Hence, = \_N.TK:_IQIJ_%?A& = 1275 bs.-fi. sec?

This agrees with the value previously calculated.
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eel crankweb

ExaMpLE 19.—Fig. 39 shows two designs of st
for an engine with a crank-throw of z ins. Calculate the
ia about the axis of rotation

weight and moment of inerti
XX in each case.
Case I. Oval Web.

From Table 13 the weight and radius of gyration of an

elliptical lamina are
2
2t 4R

We=mn.a.b.c.S, and K%, =

BE I
TS
Fre. 39.—Moment of inertia of crankwebs,
In this example @ = 2:3751ins.; b =13 ins. ; c=05ins,,
S = 0283 1b. per cu. in. for steel,
R = distance from axis of rotation to centre
of gravity of ellipse = 1 in.
W = 31416 X 2375 X I75 X 075 X 0-283

Hence,
= 277 Ibs.
Also K2, = w -+ 12
— 318 in;‘.z{
fe. J=W.K386 = "’-777;——6318 — 00228 Ib.Ain. sec.?.

Case I1. Semi-Circular Ends.
From Table 13 the weight and radius of gyration of a
larnina with semi-circular ends are

W=(.r+2.4r.c.5
=2Aa(127“+1z“) + 3. 7. 727 + &) TR

K2
. 12(n7 + 2a)
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In this example

7 = 1751ns.; 4= {475 — 33) = I-251ins.,,
¢=o0v5in.; S = 0283 Ib. per cu. in. for steel.
Hence,

W = (371416 X 175 + 2 X I-25)175 X 073 X 0:283
= 2-97 Ibs., i.e. 75 per cent. heavier than Case I.
Also K2,
_ 2XT25(12 X 1-75211-25%)+3 X 3T416 X 1-75(2 X I-75%+-1-25%)
12(3:14I6 X I75 4+ 2 X I-25)
+ 12 = 3-32ins.2,
ie. J=W.K?386= %3——32 = 00255 lb.-in. sec.?, or

12 per cent. greater than Case I.

ExampLE 20—Fig. 40 shows a crankweb for an automobile
engine crankshaft with an integral balance weight.
Calculate the weight and moment of inertia about the axis
of rotation XX.

Fre. 40.—Balanced crankwebs.

The following dimensions are given :—
R = crank-throw = 2 ins. ; 7 = 3-25 ins. ;
R, = 1251ins.; ¢ =0-5in.
From the geometry of the web, referring to the left-hand
diagram in Fig. 40,
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d=Ryfsin 30°=2.R, = 2z X 125 = 25 ins,,
a = (@+R)sin 30° = (d + R)fz = (25 + 2)/2 = 2-25 ins.,
b= 27— a* = 21/3252 — 2252 = 4-69 ins.,
e= (4 + R) cos 30° = 0-866(Z + R) = 3-897 ins.,

b :
/= (e - 5) = 3897 — 2:345 = I552 ins,,
g=f.sin3o°=f/z=0776in

= (¢-+-0-5b) sin 30°= (e_—}-o_s_b>_ (3—§9L—:———2345> = 3-I2I ins.
Also sin § =gfr = o~776/3-25 = 0238,
8 =1375°,
sin =h/1 3-121/325 = 0:g6o0,
8 = 74°

The web can be divided into two circular segments and two
triangles, as shown in the right-hand diagram in Fig. 4o.
Segment A.
7=325ins.and @ = 2. 8 = 2 X 133 = 27:5°.
Then from Table 13,

Weight = W = ﬂs%&c—s , where S = 0283 1b. per cu.
in. for steel,
= 3T416 X 3-25% X 27'5 X 05 X 0-283/360 = 0-358 Ib.
K,, = r*/2 = 3-25%2 = 528 ins.2
Hence, moment of inertia of segment about polar axis XX = J,
J = WK?/386 = 0-358 X 5-28/386 = 0-0049 lb.-in. sec.2
Segment B.
y=325ins., a=2.0 =2 X 74 = 148°.
Weight =W =3-1416 X 3-25% X 148 X 0'5X 0-283/360=1-93 1bs.
K2, = 3-252/2 = 5-28 ins.2.
Hence, J = WK?/386=1:3% 5-28/386=0-0264 Ib.-in. sec.2.
Triangle C a = 2-25ins.; b= 4-69 ins.
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Then, from Table 13,
Weight =W =o05.4.b.¢.S
=05 X 225 X 469 X 05 X 0283
= 0745 Ib.
a2 602
K2, = a?f2 + 0224 = 3%5- -+ 4—2649 = 3445 ins.2,
The moment of inertia about polar axis XX is, therefore,
J = WK2(386 = 0745 X 3445/386 = 0-0066 Ib.-in. sec.2
The total moment of inertia of the crankweb about polar

axis XX is obtained by adding together the values for the
separate pieces, thus:—

Weight M f Inert
Part, Va/\lfgh loment Jo. ia
1-Segment A . . 0:358 1b. 00049 Ib.-in. sec.?
1-Segment B . . 1-930 070264
2-TrianglesC . . 1490 00132
Total for web . . 3+778 Ibs. 0-0445 Ib.-in. sec.®

TI. EQUIVALENT ELASTICITIES.

(@) Elasticity of Shafting.—When the shafting is not of
uniform diameter throughout its length, the stiffness of each
section requires separate consideration. It is convenient to
replace the actual shaft by a shaft of uniform diameter D, the
torsional rigidities of the sections of the equivalent shaft
between the various masses being maintained the same as in the
original system by an appropriate adjustment of the lengths.

The length of the equivalent shaft is determined as follows :

From Equation (1),

6.0
T

x. D¢
32

M_
I.
where I = for a solid shaft of diameter D,
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Hence, torsional rigidity
M_G.I .DL G
=—"_:—L—pzwgz.L_’ : - (74)

ie. the torsional rigidity is directly proportional to the fourth
power of the shaft diameter, and inversely proportional to the
shaft length.
Let L, = actual length of shaft,

D, = actual diameter of shaft,

L = equivalent length of shaft,

D = equivalent diameter of shaft.
Then, for both sections of shaft to have the same torsional
rigidity,

7.D4.G_#.D*.G

32.L; 32.L°
4
or equivalent length L = L1(5D—4) for solid shafts. . (75)
1

In a similar manner it can be shown that for a hollow shaft
of actual diameters D; and 4;, and actual length L,, the length
L of an equivalent solid shaft of diameter D is

Equivalent length L=LI[EA—D‘T‘]. N )
1 T W

If there are several shafts and/or flexible couplings in series
the overall torsional rigidity of the complete assembly is
obtained as follows :—

Let C = overall torsional rigidity,
C, Gy, C,, etc. = torsional rigidities of the individual
elements,
L = equivalent length of the complete assembly,
L, L, L, etc. = equivalent lengths of the individual
elements.
Then L=(L,+L;+L,+etc. ..,
bt L=T/C; L,=U/C,; L,=U[C,; L,=UJC,; etc.,
where U is a constant. :

Hence, %: (é + 61» -+ é + etc. . . ) . . )
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Tapered Shafting.—For small vertex angles the equlvalent
length of the frustum of a circular cone is

L=——~—~[———] .

where D = diameter of equivalent uniform circular shaft of
length L,
L, = axial length of the frustum,
D, = diameter of large end of frustum,
D, = diameter of small end of frustum.

Equation (78) can be written
Lo L. D‘(K“+ K+1)

Dp K® N - - (79)
where . K= Dl/D,

When K = 1, ie. when the shaft is of uniform diameter,
Equation (79) reduces to Equation (73), which is
correct.

For values of K up to and including 1'2 the error in assuming
that the tapered shaft is equivalent to a parallel shaft of the
same length and of diameter (D; -+ D,)/2 is less than 3 per cent.

Hollow Tapered Shaft.—In the case of a shaft having
a tapered bore the following method can be employed : —

Let L == equivalent length of the actual hollow shaft,

L, = equivalent length of a solid shaft having the same
dimensions as the outside dimensions of the
actual shaft,

L; = equivalent length of a solid shaft having the same
dimensions as the bore of the actual shaft,

C, C,, C; = torsional rigidities corresponding to L, L, and L;
respectively.
Then C==n.D*.G/(32.1); C,==.D*. G/(32. L) ;
C;=mw.D*:G/(32.Ly),
where D = diameter of equivalent solid parallel shaft.
Hence, L=L,.L/(L: — Ly)- . . (80)

Equation (80) can be used for all noxma.l types of hollow

shaft. In the case of a hollow cylindrical parallel shaft,

VOL. IL.—II
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outside diameter D,, inside diameter 4, and length L,, for
example :—
From Equation (75),
L,=1,.D4Ds*; Ly=1L,.DYd*
Hence, L=L,.L;(L, — L) =1L,.D¥(D;* —d,%),
which agrees with Equation (76).
Circular Shaft of Varying Diameter.—The effective
e length of a section of shafting
T which joins another section of

larger diameter is greater than
4 ]L
L oy

the actual length owing to local
F1e. 41.—~Fillet allowance.

deformation at the juncture.

" The smaller shaft, in effect,
buries itself in the larger one,
as shown in Fig. 41. The
length of the smaller shaft is
therefore virtually increased by
the amount /, and the length of the Jarger shaft decreased by
the same amount.

The allowance 7 depends on the ratio of the shaft diameters,
and may be obtained from the factors in Table r5.

TABLE 15.
EFFECTIVE LENGTHS OF SHAFTS OF VARYING DIAMETER,

Ratio: Ratio: ml

1-00 o
125 0055
150 0085
2°00 0100
3-00 0107
Infinity o125

Shaft Couplings.—In the case of solid forged couplings
the factors already given for shafts of varying diameter may
be used. '

In normal designs the thickness of the couplings is about
one-quarter of the shaft diameter. Hence, if a factor of 0'125
is used, the following general rule for dealing with solid forged
couplings is obtained. -
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Assume that the shaft extends into the coupling 2 distance
equal to one-half the thickness of the flange, and that the
remainder of the flange thickness has a diameter equal to the
pitch circle diameter of the coupling bolts.

In the case of keyed couplings, assume that the torsional
rigidity is that of the shaft for ome-half the length of the
coupling, and that of the collar for the remainder.

In the case of a splined or serrated shaft, such as the air-
screw shaft of an aero engine, assume that the shaft extends
into the attached member a distance equal to one-third the
length of the splines or serrations and that the effective outside
diameter of the splined or serrated portion is equal to the pitch
circle diameter of the splines or serrations.

Backlash in splined or serrated shafts tends to reduce the
torsional rigidity of the connection by an amount which is
not constant but which varies with the torque transmitted.

In other words, the effect of backlash is to make the con-
nection non-linear, a subject which is discussed in Chapter ro.

In the case of members that are shrunk on to the shaft,
assume that the shaft enters the attached member for a length
equal to one-quarter to one-half the diameter of the shaft,
the smaller value applying to tightly shrunk-on members.

In the case of a continuous sleeve or liner which is shrunk
on to the shaft over a considerable length, assume that the
effective outside diameter of the shaft in way of the sleeve is
increased by the thickness of the sleeve, i.e. the effective radius
is the radius of the shaft plus half the sleeve thickness. The
stiffening effect of sleeves depends on the tightness of the fit,
the length of the sleeve in relation to the shaft diameter, and
the material of the sleeve.

The above rule applies to cases where the sleeve is long, is
made of the same material as the shaft, and is tightly shrunk on.

‘When the sleeve is short it is made of more elastic material
than the shaft, and a moderate fit is used, e.g. a bronze liner

" pressed on to a shaft, the stiffening effect is usually negligible.

As a general rule the stiffening effect of short collars or
thrust rings having an axial length less than ome-quarter the
diameter of the shaft is also negligible,
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Cast-Iron or Bronze Shafts.—When the actual shaft is
made of cast iron or bronze, the equivalent length of steel shaft
is given by e

DA
L=Lf Gx] .. 8y
where L = equivalent length of solid steel shafting,
D = diameter of equivalent shaft,
G = modulus of rigidity of steel,
L, = actual length of cast-iron or bronze shaft,
D, = actual diameter of cast-iron or bronze shaft,
G, = modulus of rigidity of cast iron or bronze.

Table 16 gives the values of the moduli of rigidity for
various materials :—

TABLE 16.
Erastic CONSTANTS.

Materlal, Modulus of Elasticity, E. Modulus of Rigidity, G.
Alominiom . 10,000,000 lbs./in.% 3,800,000 Ibs. /in.?
Bronze (phosphor, muga.n

ese, and aluminium) . 15,000,000 6,000,000
Cast iron . . . . 17,000,000 7,000,000
Duralumin . . . 10,500,000 3,800,000
Gunmetal and brass . . 14,000,000 5,000,000
Magnesium alloy (elektmn) 6,500,000 2,600,000
Monel metal . 25,000,000 9,000,000
Steel . . . 30,000,000 12,000,000
Steel (spring wxre) B . 30,000,000 11,500,000
Steel (stainless) . . 28,000,000 11,800,000
Tungstanalloy(heavymetal) 32,000,000 —
‘Wrought iron . 28,000,000 11,000,000
Rubber . 500 100
Compressed a.nd impreg~

nated wood . . . 3,850,000 320,000
‘Wood . . . . 1,500,000 80,000
Micarta . . . B 1,300,000 400,000

The values given in the above table are average values for
each material. In the case of metals the varation is not
great, but in the case of non-metallic materials there might
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be an appreciable variation between different samples of each
class.

The values given for rubber are the average values for the
grade of material used in transmission couplings, but the
actual value in any given .case can be adjusted over a con-
siderable range by varying the specification of the rubber.

E - .
Note.—G = E+op where o = Poisson’s Ratio
= 1 to } for most metals.
ExamPLE 21r.—Calculate the length of a solid steel shaft, 8 ins.

diameter, which has the same torsional rigidity as the
composite shaft shown in Fig. 42.

u |

Lm 3o——<—13—>(-s—ls l3|<—30—->|

@, ® { @ (@l _ (g)
i . Liﬂ
S W
1Y
CsstI/’o‘n
Iy
3 w
844| | 186° )
l<——3293 29.58"—>t<lj<—20.6">

g’ ‘Equivalent length———s
Fic. 42.—Equivalent length of complex shaft.

Section (@).—Io ins. of 6-in. diameter shaft.

The allowance for local deformation at the juncture of
the 6-in. and 8-in. diameter shafts (D,/D,= 8/6 = 1-33) is
007 . D, by interpolation from Table 15.

8&
Hence, Equivalent length = (10 4 0-07 X 6)[6;],
= 32°03 ins. of 8-in. diameter.
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Section (b).—30 ins. of 8-in. diameter shaft.

The actual length is reduced by the allowance made on
section (@) for local deformation at the juncture of the 6-in.
and 8-in. shafts,

ie. Equivalent length = (30 — 007 X 6),
L, = 2958 ins. of 8-in. diameter.

Section (¢).—18 ins. tapered 8-in. to 12-in. diameter.

L,.D* I I
Equivalent length = _—(D1 =Dy [D_-x — D—l":l s
. 18 x 8* b
Le L= 30z — 9 @ - Izs]

= 844 ins. of 8-in, diameter,

Section (d).—6 ins. of 12-in. diameter shaft.
The effective length of this section is the actual length plus
one-half the thickness of the coupling flange,

ie.  Equivalent length = (6 + 1 5)[12‘]
L; = 148 in. of 8-in. diameter.
Section (¢).—3-in. thick coupling, bolts on 15-in. P.C.D.
Equivalent length = [1 5,]

ie. L, = o'12 in. of 8-in. diameter.

Section (f)—3-in. thick hollow coupling, bolts on x15-in.
P.CD.
In this case the material is cast iron.

8¢ 12000000
Hence, Equivalent length = _[15‘ — 104}[7000000 ] G P

ie. L; = 0-26 in. of 8-in. diameter.
Section (g).—30 ins. of hollow cast-iron shaft.
. . 3 8t 12000000
Equivalent length = [30 + 2:| [12‘ — ro‘] 7000000 J’
ie. o = 2060 ins. of 8-in. diameter.
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Total Equivalent Lengih,
L=(Le+Ly+ L+ L+ L, +L+1L,)
= 0934T ins. of 8-in. diameter solid circular shaft (see
Fig. 42).

In practice the small refinements introduced into the fore-
going calculation do not appreciably influence the value of the
natural frequency.

For example, if the couplings and the local deformation at
the juncture of the 6-in. and 8-in. sections are neglected in
Fig. 42, and if the tapered portion is agsumed to have a uniform
diameter equal to its mean diameter, the calculation of the
equivalent shaft is shortened as follows :—

Siz-inch Section :

Equivalent length = 10 X g = 316 ins.
Eight-inch Section :

Equivalent length = 30-0 ins.
Tapered Section (mean diameter = 10 ins.):

Equivalent length = 18 x 18—0“ = 7+4 ins.
Twelve-inch Section :

Equivalent length =6 x Ii;‘ 12 ins.
Hollow Cast-Iron Section :

. 8¢ 12000000
Equivalent length = 30[;'2‘-—_13] [7000000 ]

= 19°6 ins.

Hence, Total equivalent length = 89-8 ins.

This is 4 per cent. less than the more accurately calculated
value, and since the frequency of torsional vibration is inversely
proportional to the square root of the length, the probable
error in the frequency calculation would be 2 per cent. high
when using the approximate value for the equivalent length.

Torsional Rigidity of Shafts of Non-Circular Cross-
Section.—Table 17 contains expressions for calculating the
equivalent lengths of shafts of non-circular cross-section.
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The classical work of Saint Venant on the torsion of prisms
showed that in bars having symmetrical but non-circular cross-
sections plane transverse sections do not remain plane when the
bar is twisted, but become curved or warped. This warping
brings about a different distribution of shear stress and shear
strain from what would occur if transverse sections remained
plane after twisting. As a general rule the greatest intensity
of shear stress in a bar of symmetrical but non-circular cross-
section occurs at a point on the perimeter of the cross-section
nearest to the shaft axis or centroid of the cross-section. Thus
in the case of an elliptical cross-section the maximum shear
stress occurs on the boundary of the ellipse at the extremity
of the minor axis. If the plane section had remained plane
after twisting, the maximum shear stress would have occurred
at the point situated at the greatest distance from the axis of
twist, i.e. at the extremity of the major axis, and the shear stress
would have been a minimum at the extremity of the minor axis.

Similarly, in the case of a rectangular bar the maximum
shear stress occurs on the boundary of the rectangle at the
middle of the longer side. The shear stress at the corners of
the rectangle is zero.

These examples show that the simple theory used for
solving torsion problems relating to circular bars, viz. that
within the elastic limit shear stress and shear strain are pro-
portional to the distance from the centre of the bar, cannot
be applied in the case of shafts of non-circular cross-section.

The subject has been investigated both analytically and
experimentally (see Bibliography). An account of Saint
Venant’s analytical work is given in Todhunter and Pearson’s
' History of the Elasticity and Strength of Materials,” Vol. II,
Part I, Chapter X, Cambridge University Press, whilst the
elegant experimental work of A. A. Griffith and G. I. Taylor,
using the soap film analogy suggested by Prandtl, is described
in their paper, “ The .Use of Soap Films in Solving Torsion
Problems,” Pr dings, Institute of Mechanical Emgineers,
1917, p. 755. A good summary of the subject is contained in
Seely’s ““ Advanced Mechanics of Materials,” Chapter IX,
Chapman & Hall (London).
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The expressions contained in Table 17 have been mainly
deduced from Saint Venant’s empirical formule and from the
results of Griffith and Taylor’s soap film experiments. The
following general conclusions should be noted :—

(1) The soap film experiments showed that at external
corners, such as the corners of a rectangular or tri-
angular bar, the shear stress due to twisting is zero ;
whilst at internal corners, such as the corners of
key-ways and the roots of splines and serrations, the
shear stress due to twisting is very high. In general,
the stress at any point on the boundary of a section
where the section is convex outward is less than if
the boundary of the section were straight, and at a
sharp external corner the stress is zero. The stress
at any point on the boundary of a section where the
section is concave is greater than if the boundary of
the section were straight, and at sharp internal
corners the stress is theoretically infinite, assuming
that stress remains proportional to strain. In prac-
tice, however, since all materials are more or less
ductile, the stress at sharp internal corners remains
finite because of local yielding of the material, which
brings about a redistribution of stress in the neighbour-
hood of the highly stressed region. The extent of
this mitigating influence depends upon the ductility
of the material and the shape of the commer. The
simple precautionary measuve of providing the largest
possible radius in all corners should ahoays be taken. -

The foregoing points can be verified by referring
to some of the examples in Table 17. Thus the
stress at the corner of a key-way is considerably
greater than the stress at the centre of the key-flat
when there is a small radius at the comer of the
key-way, but becomes nearly equal to the stress
at the centre of the key-flat when the corner radius
is increased.

(2) The soap film experiments showed that a long thin
rectangular torsion member is not so stiff as a member
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TABLE 17.
TORSIONAL RIGIDITY OF SHAFTS.
; Equivalenf Length 0
Cross-~ JSection of ! Maximum Area of
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TABLE 17 (confinued).

Cross- Section of | Selen” Bﬁf{.’/h Meximum
Shafr Diameler D Shear  Slress
- I 16 - 8IM
L LID4'[—~——D?] f b3
ar X
- n4l_K - KM
=Lt 5] | =
r |k [r s
Di/100] - 3151134
7301 T 0197150
72517 D/25 | 35126
D/1s 1124 B/ 13-01 117
—i.pt [ K = KM
o =0t [H] 1 F= 4
(218 Di D
I arat
17100 13-0
DI/ 9714
Di/25] 86 3
I/15] 8-31 8-4
7=
D3
r | K
D:/100] 20-O
piAWLRNS
1/501 14~
/40154
! aFX

L = length of solid circular shafr of diamefer D
Having the same lorsional rigidily es length L1
of the acltal shafr.

M = Twisting momenl” Fansmitied by shaft.



172 TORSIONAL VIBRATION PROBLEMS

having a square section of the same cross-sectional
area.

For example, from Table 17, the equivalent length
of a rectangular section when a = 28 is

L =L,.D%(4-96t%),
whereas the equivalent length of a square section
of the same cross-sectional area, when the length of
each side is a,, is

L =1,.D¥%(x434,%,
where, for equal cross-sectional areas, @2 = 2b?,
ie. L =1L,.D¥(572b%).

Hence the torsional rigidity of the square section is about
15 per cent. greater than that of a rectangular section of equal
area in which the longer side is twice the shorter side.

The torsional stiffness of a long thin rectangular member is
nearly the same whether the member is in the form of a simple
rectangular bar or is rolled up into a U-, C-, S-, or L-shaped
member, provided the width of the member remains constant
and the length of the median line is unaltered.

This explains the considerable reduction of strength and
stiffness when a narrow longitudinal slit is cut in a cylindrical
tube, ie. the slit converts the tube into a member having a
narrow rectangular cross-section of length =(D; + dy)/2 and
thickness (Dy — d,)/2.

Thus, if the width & of the rectangle is small compared
with the length 4, the terms containing & in the numerators
of the expressions for the equivalent length and shear stress
of a rectangular section given in Table 17 are negligible.
Hence these expressions reduce to

—1,.ptf X -3.M
L=L.D {3-1.4. b”} and f=i v
In the case of a slit tube the length of the equivalent rect-
angle is a4 = n(Dy + d,)/2, and its width is & = (D, — d,)/2.
Inserting these values in the foregoing expressions for
L and f,
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_ 164 - 768
B ayOay) =, dy,-ay
which are in good agreement with the values given for a slit
tube in Table 17.

The soap film experiments also showed that the stiffness
of any section is reduced appreciably by any discontinuity,
such as a key-way, even if the discontinuity does not reduce
the area of the section appreciably.

Conversely, any addition to the area of a particular section
increases its stiffness, provided the configuration of the original
area remains unaltered. Thus, in the examples given in
Table 17 the equivalent length of a tube of external diameter
D,, internal diameter 0-6D,, and length L, is

L =115L,. DYDs4,
whereas the equivalent length of the same section when
a single key-way, D,/4 wide and D,/10 deep, is cut in it is
L=r128L,.D¢D,
when the radius in the corner of the key-way is » = Dy /100.

L=L,.Ds

(3) In the case of severe discontinuities, such as key-ways
and serrations, it should be noted that the values
given in Table 1y for the maximum shear stresses
at points of high stress concentration are theoretical
values. Due to local yielding these theoretical
.values are not realised in practice in the case of vibra-
tory loading, a point which is discussed more fully
in Chapter 7.

General Expressions for the Torsional Rigidity of
Non-Circular Shafts in Torsion.

(@) Solid Symmetrical Sections.—Saint Venant found that
the torsional rigidity of any solid symmetrical section
is nearly the same as that of an elliptical section
having the same area and the same polar moment
of inertia as the actual section.

() Thin Tubular Sections—The following expressions
give approximate values for the maximum shear
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stress and equivalent length of thin tubular sections
having a umiform wall thickness. (See Seely,
““ Advanced Mechanics of Materials,” pp. 176 and
177) =
f=M/z.A.9), . . . . (82)
L=P.L, .DY(40'8. 42,4, . . (83)

where f = maximum shear stress in Ibs. per sq. in.;

M = torque in Ibs.-ins.,

A = area enclosed by mean periphery of section, in
sq. ins.,

t = wall thickness in inches,
= length of mean periphery in inches,

L = equivalent length of solid circular shaft of dia-
meter D,

L, = actual length of tubular section.

For example, consider the case of a hollow cylindrical
section, outside diameter D, and inside diameter d, = k. D,,

A=l R X

t = Dy — dy)J2 = Dy(x — B2,

P =7(D; + dy)[2 = m.Dsy(1 + B)/2.
51.M

Hence, f= D, 5 + B (= )
2.L,.D*
and R X ey

Also, from the expressions given in Table 17 for a hollow
circular section,
f=31D;. M/(Dy* — d,*) = 51 M/D 31 — 44,
and L=1L,.D¥{D¢—dY =L,.DYDs1 — 29).
The error in the approximate expression for different values
of % is shown in the following table :—
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Stress /. Equivalent Length.

Value of
&

Exact, Approximate. Exact. Approsimate.

o8 864 M/D;* | 787 M[D2 | 192L;.D¥D,* | 169 L, .D#D*

085 10-65 995 2:10 2:09
ogo 14-80 14°10 2:92 2:91
g5 2720 26-80 541 540
0975 | 52:30 5230 10:40 1025

In the case of elliptical tubes the values of A and P can be
computed from the following expressions :—

A= Za. b = area enclosed by mean periphery,

2 LBt
- ,T\/‘i T ¥ _ length of mean periphery,

where a = mean length of major axis,
b = mean length of minor axis.

The empirical expression given in Table 1y for the shear
stress due to twisting a bar of rectangular cross-section yields
values which are within 4 per cent. of the exact values. The
expression for the equivalent length of rectangular bars yields
values which are within 7 per cent. of the exact values when
the ratio /b lies between I and 2, and within 5 per cent. when
this ratio is greater than 2.

ExXAMPLE 22.—A torsional pendulum consisting of a flywheel
of moment of inertia 0-357 Ib.-in. sec.? is rigidly attached
to the free end of a 1-in. diameter solid steel bar 12 ins.
long. The other end of the bar is firmly clamped as
shown in Fig. 1.

Calculate.

I. The natural frequency of torsional vibration of the.
system.

I1. The maximum torque which can be imposed on the
bar if the shear stress must not exceed 10,000 1bs.
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per sq. in.  Also the angle of twist at the flywheel
when this torque is applied statically at the same
point. R

I11. The required lengths of shaft, assuming that the solid
circular bar is replaced by bars having the various
cross-sections shown in Table 17; that a shear
stress of 10,000 lbs. per sq. in. must not be exceeded
when the alternative bars carry the same torque
as the solid circular bar; and that the natural
frequency must be the same as for the solid circular
bar.

L. Natural Frequency of System.
From Equation (7),
F = ¢-35v/C/[J vibs./min.,

where C = G.I,/L Ibs.-ins. per radian
_ Dt G _ 1f X 12000000
T 102.L° T 102 X12

= 08,000 Ibs.-ins. per radian,
J = 0-357 Ib.Ain. sec.2

Hence, F= 9-55\/ 2.8305? = 5000 vibs. /min.

IX. Maxémum Torgue.—From Table 1y, for a solid circular
section,

J=51M/D?
where f = 10,000 1bs. per sq. in., D = 1 in.
Hence, M = 10,000 X 13/5-T = 1960 lbs.-ins.
Angle of Twist at Flywheel.
From Equation (1)
g M.I
G.I

but C=G.I,[L,
ie. 8 = MJC,
where M = 1960 Ibs.-ins.,
and C = 98,000 Ibs.-ins. per radian.

Hence, 8§ = 1960/98,000 = 0-02 radian or 1-15°
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I1la. Hollow Circular Section (assuming d; = 06 D).

In all the following examples the appropriate expressions
for shear stress and equivalent length are taken from Table 17.

Sheay Stress.
f=351D;. M[(D,* — 4,
= 585 M/D,?, when d; = 06 . Dy,
ie. Dy® = 5:85 X 1960/10,000, when M = 1960 Ibs.~ins.
and f = 10,000 lbs. per sq. in.,
D; = 105 ins., and 4, = 0-63 in.
Length of shaft.
L=1L,.DYD*—d,%.

If the frequency is to remain the same as for a solid circular
bar 1 in. diameter and 12 ins. long, the actual length L, of
the hollow bar must be equivalent to 12 ins. of 1 in. diameter
solid circular bar, i.e. L/D* = 12, a value which holds for all
the following examples.

In this case,

L, = 0-87 D,*. L/D* where D, = 1-05 ins,,
ie. L, =087 X 1:05* X 12 = 12+6 ins.

1116. Hollow Shaft with Longitudinal Skt

(assuming @ = 0'6.D,).
Sheay Stress.
f= 76 . M
Dy +dy)(Dy — &y
=207 . M/D,3, when d, = 06 . Dy,

ie. D,® = 297 X 1960/10,000 = 582,
or D, = 1-8 ins,, and d, = 1°08 ins.
Length of Shaft.
L= 15L,.D*
T (D F 4Dy — )
or Ly = (Dy +45)(Dy —4,)*. L/(x5. DY)

= 0068 . D,*.L/D% when d; = 0-6. Dy,
where D, = r-8ins, and L/D* = 12.
Hence, L, = 0068 in. X 1-8* X 12 = 86 ins.
VOL. L.—I2
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IlIc. Ellipse (assuming a = 2b).

Shear Stress.
f=51.M/(@.?) =2-55.M[b® when a = 2b,
ie. b* = 255 X 1960/10,000 = 03,
or b = 0-794 in., and @ = 26 = 1-588 ins.
Length of Shaft.
L— L, .D%a®+ )
2.a%5.b% '
or L,=32.b*.L/D* when ¢ = 25

= 32 X 0-794* X 12 = 152 ins.

II1d. Rectangle (assuming & = 2b).
Shear Stress.

f=(5.a+9.5).M/(5.2*.7)
= 1-95. M/b®, when @ = 25,
or b® == 1-95 X 1960/10,000 = 0-382,
whence b = 0725 in., and @ = 25 = 1-45 ins.

Length of Shaft.
L=1,.D4%a?+ ?)/(31.4%.5%
=L, .D%/(4:96 . 8%,

ie. L; = 496 X 0-725* X 12 = 164 ins.
IIIe. Square.
Shear Stress.
f=48.MJa3,
or a* = 48 X 1960/10,000 = 0-94,
whence a = 0-98 in.
Length of Shafi.
L =1,.D%(143. a%,

ie. Ly =143.e*.L/D*
= 143 X 0-98% X 12
= 158 ins.
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I1Lf. Equilateral Triangle.

Shear Stress.
f=120.M/ad,
ie. a® = 20 X 1960/10,000 = 3-92,
or a = 1575 ins.
Length of Shafi.
L =453.L,.D4at,
or L, =157* X 12/4'53 = 16-3 ins.

II1g. Hexagon.
Shear Stress.

f=53.MDg2,
or D,3 = 53 X 1960/10,000 = I'04,
ie. D, = 1-014 ins.
Length of Shaft.
L=1L,.DY(x18.D"),
ie. L, =118.D,4.L/D*
= I-18 X I'0I4? X I2 = I4-qins.
II1h. Octagon.
Shear Stress.
f=354. M/D,?,

or D= 54 X 1960/10,000 == 1-06,
D, = 1-02 ins.
Length of Shaft.
L=L,.D4(rx.DyY,
ie. Ly=11.D. L/D*=11 X 102! X 12 = I14-3 ins.
Torsional Resilience.—The work done by a torque M in
twisting a bar through an angle 6§ is
W=M.90/2,
but, from Equation (),
M/I,=2.fd=G.0/L,
or M=2.f.1,/d and 0 =2.f.L[G.4d,
ie. W=2.1,.f2.L/G. d?ins.-lbs.,, . . (84
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where W = total resilience in ins.-lbs.,
I, = polar moment of inertia of cross-section of shaft
in ins.# units,
f = maximum shear stress in Ibs. per sq. in.,
L = length of bar in inches,
G = modulus of rigidity in Ibs. per sq. in.,
d = diameter of bar in inches.
For a hollow circular bar, outside diameter 4 and inside dia-
meter k. d, '
I,=n.dx —%)[32, and V=a.dx — k*L/4,
where V= volume of bar in cubic inches.
Hence, W, = resilience per unit volume
= fA1 + EY/(4 . G) ins.-Ibs. per cu. in. . (83)
In the case of a very thin tube & is very nearly unity, so that
Equation (85) reduces to

W, = f?/2. G for a very thin tube. . . (86)

In the case of a solid shaft % is zero, so that Equation (85)
reduces to
W, = f2/4G, for a solid circular shaft. .87

As already explained the foregoing expressions cannot be
applied to non-circular sections because plane transverse
sections do not remain plane after twisting.

The specific resiliences of non-circular bars can be computed,
however, from the following expression :—

W, =M.¥8/2V,
where 8 = total angular deflection of bar in radians due to
torque M Ibs.-ins.
V = total volume of bar in cubic inches.

In this example M = 1960 Ibs.-ins., 6§ = 0-02 radian.
Hence, W, = 1960 X 002{2V = 19:6/V ins.-Ibs. per
cubic inch.
The values of W, are given in the last column of Table 18.
Equations (86) and (87) show that for a given maximum
stress and a given weight of material a very thin circular
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tube stores twice as much energy as a solid circular bar, and
it will be found that any other solid section is even less efficient
than the solid circular section. The examples given in Table 18
show that the resilience per unit volume approaches that of
a solid circular bar the nearer the crosssection of the bar is
to a circular cross-section, e.g. a square section is more efficient
than a triangular section, and a hexagonal or octagonal section
is more efficient than a square section.

TABLE 18.
RESILIENCE OF TORSION BARS.
Section. Rt | Votume o Bar. Weghtof .| Unit Voluma
Ins, Cu. Ins. T, Ins.-Lbs. per
L. d Cu.In.
Solid circular . . - 12°0 942 2°67 2-08
Hollow circular . 12:6 696 197 282
Hollow circular with longl—
tudinal slit . . 86 1400 397 140
Solid elliptical . . 152 1500 425 131
Solid rectangular . . 16-4 17-25 487 114
Solid square . 158 15'20 430 129
Solid equilateral tnangular 16-3 17-50 495 112
Solid hexagonal . 149 1320 374 1-48
Solid octagonal - B 143 11:30 321 173

The presence of discontinuities, such as key-ways, serra-
tions, etc., also has a considerable influence on the specific
resilience of the bar, because the maximum stress to which
the bar can be subjected with safety is determined by the high
local stresses which occur in the region of the discontinuity.
The average stress is, therefore, considerably lower in most
cases than the average stress in a bar of corresponding cross-
section but without any discontinuity. It should be noted,
however, that the effect of a discontinuity on the permissible
maximum stress, and therefore on the specific resilience of a
bar, depends on the material of which the bar is made as well
as on its cross-section and type of discontinuity. As a general
rule, the specific resilience of two bars of identical form, con-
taining a discontinuity such as a key-way, but of different
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materials, will not be in direct proportion to the stress-
carrying capacity of the two materials, because there will
be a more favourable redistribution of stress in the neighbour-
hood of the discontinuity in the case of the more ductile
material, due to local yielding at the highly stressed zones.
Also, in the case of two identical bars made of the same
material, the specific resilience will be greater for the bar
which has the larger radii at the discontinuity, e.g. in the
comners of a key-way or at the roots of serrations.

ExampLE 23.—Calculate the natural frequencies of the system
described in Example 22, when all the bars are 12 ins.
long and are made of the following materials: steel, cast
iron, aluminjum, bronze, magnesium alloy, and wood.

From Equation (7),

F = g955vC]J,
where C=G.L,L,

. G 1
ie. F =935 T ]'j

If only the length L and the modulus of rigidity G are
altered this expression can be written

In Example 22 it was shown that the frequency of the
system with steel bars having the various cross-sections de-
scribed in Table 18 was 5000 vibs./min.

Table 16 shows that the modulus of rigidity of steel is
12,000,000.

Hence, F, = K+/G,/L, vibs./min.,
where F, = the natural frequency of the system when

the modulus of rigidity of the material
is G,, and the length of the bar is L,.

Similarly, Fy = KVG,/L,,

Le. F,= Fr\/g: . i’

it 4
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In this case, G; = 12,000,000,
L; = length of bar from column 2 of Table 18,
o = I2ins.,
G, = modulus of rigidity from Table 16,
F; = 5000 vibs./min.,
_ " L,.G, 1
e o 5000\/‘12000000 X 12 _E{‘/Ll' G
The values of F, can be computed from the above expression
by the appropriate values of G, and L, from Tables 16 and 18
respectively. The results are given in Table 9.

TABLE 19.
NATURAL FREQUENCIES OF TORSIONAL PENDULUM.

Material.

Section.

Steel. Cast Iron. |Alumind Bronze. Wood.

vibs./min, | vibs,/min. | vibs. /min. | vibs./min, | vibs./min, | vibs./min.
Solid circular . 5000 3810 2810 3530 2320 407
Hollow circular . 5120 3900 2880 3620 2370 417
Hollow cixcular
with longl. slit]| 4I20 3140 2310 2900 910 335
Solid elliptical . 5610 4270 3150 3960 2600 457
Solid rectangular | 3840 4450 3280 4120 2710 475
Solid square . 5720 4350 3210 4040 2650 465
Solid triangular . | 5810 4430 3270 4100 2700 473
Solid hexagonal. 5560 4240 3130 3930 2580 453
Solid octagonal . | 35440 4150 3060 3840 2520 442

The considerable reduction of torsional stiffness and the
consequent reduction of matural frequency due to cutting
a longitudinal slit in a hollow circular shaft should be noted.
In the particular example given above the dimensions of the
slit tube were increased to maintain the same maximum fibre
stress under a given torque as for the plin tube. If the
dimensions had not been increased the reduction of stiffness
due to slitting the tube longitudinally is given by the expressions
in Table 17. :
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For a plain cylindrical tube,
L=L,DY(Ds* — a9
= 115L,.D4D 4 when 4, = 0:6D,.
; - of ,«1‘5___}
For a slit tube, L=1L,.D {(Dl AT
= 1465 L; . DD when 4, = 0-6D,,
i.e. the torsional rigidity of the slit tube is nearly 1/roth that
of the plain tube, when d; = 0-6D,.

(b) Crankshaft Stiffness.—The reduction of the actual
length L in Fig. 25 of each crankshaft element between main
bearing centres to an equivalent length of plain shafting L, of
diameter D of the same torsional rigidity may be carried out
as follows —

Referring to Fig. 25,
Torsional rigidity of unit

Let C=G.L,=_.G.D'= Ilength of the equivalent
shaft,
. Torsional rigidity of unit
Ci== G- &% = Ilength of the crankshaft
3z ;
journals,
_m _ __ Torsional rigidity of unit
Co= 5 GD:* ~ &) length of the crankpin,
_ _T.W2.E _ Flexural rigidity of one
=E.I=
Iz crankweb.

Then, assuming that the deflection of the crankshaft
element is mainly due to twisting of the crankpin and journals,
and bending of the crankwebs, and that the bearing clearance
is sufficient to permit free displacement of the journals :

() Journals.

Let L;= length of equivalent shaft having the same tor-
sional rigidity as each journal,
= length of journal.
L,_ A A.C

Then  F=f o L=5

iy
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‘ie. L= for hollow journals

A D¢
DF =45

ADL} for solid journals.
(ii) Crankpins.
Let L,=length of equivalent shaft having the same
torsional rigidity as each crankpin,
B =length of each crankpin.

L, B _C.B
Then T=g, L= <
- B.D* .
ie. L,= (D‘—dT) for hollow crankpins
— BD]? for solid crankpins.

(iii) Crankwebs.

Let L= length of equivalent shaft corresponding to two
crankwebs.

Fig. 43 shows the deflection of a crankweb due to a couple M.

Let Y = radius of curvature of web,
# = difference in inclination of web at journal and
crankpin, i.e. the angular deflection of the next
following journal due to flexure of the crankweb.

Then from the theory of beams
M/I=EJY,
of  Y=E.IM=CyM,
where C;=E.I=T.W3.E[1z = flexural rigidity of the
- crankweb.
Also, from Fig. 43 3
§=RJY = My-R/C, =12. M. R/(T. W? . E),
54 .M.R

or, for two crankwe] 8 = TR
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M.L,_2¢.M.R

Hence, T TT.W.E
_ 24.R 7.G.D?*

Le. L, = T We.E X 32
_2336R.G.D*
T T.WEB.E

Assuming that E = 30,000,000 Ibs. per sq. in. and
: G = 12,000,000 lbs. per sq. in. for steel,

094z R.D*

T fortwo steel crankwebs.

L=

Fic. 43.—Flexure of crankweb.
(iv) Total Equivalent Length of One Crankshaft Element.

= L1+ Ly + L)
A.D*  BD* o942 R.D*
for solid journals and crankpms.

In applying the foregoing method, it should be noted that—

(i) Local deformation at the juncture of journal and crank-
pin and web increases the effectjvz lersth of the
journal or crankpin. J v

(ii) The effective lever arm of the couplg acting on the crank-
webs is less than the crank fadius R, due to the
attachment of the cra‘.nmynfﬁ ]ournal

(iii) The effect of restraint at the bea_rmgs is to increase the
stiffness of the crankshaft. N
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For normal running clearances of 4/1000 to 8/1000
of an inch, the increase of torsional rigidity compared
with that of a free shaft is 5 to 10 per cent.

Exact mathematical treatment is not possible, since the
elastic characteristics of the shaft in the neighbourhood of
critical speeds depend, amongst other things, upon the bearing
clearances which are variable and are, therefore, not even taken
into account accurately in direct measurements of crankshaft
stiffness.

In the case of onenode torsional vibrations of marine
installations, where the length of the crankshaft is a small
proportion of the total length of shafting in the system, the
equivalent length of the crankshaft can be assumed to be the
same as the actual length without making any appreciable
difference in the value of the natural frequency. In normal
installations of this type, the error in the value of the natural
frequency corresponding to an error of 1o per cent. in the
equivalent length of the crankshaft would be less than half
per cent.

In the case of two-node vibrations of marine installations,
and one-node vibrations of close-coupled electrical generating
sets, however, the elastic properties of the system are mainly
determined by the torsional rigidity of the crankshaft.

Since the natural frequency is approximately inversely
proportional to the square root of the shaft length, an error

“of>ze per cent. in calculating the equivalent length of the
cranksha1, sorresponds to an error of about 5 per cent. in the
value of th'g‘m]:uml frequency.

The equivalens, length of the crankshaft should therefore
be determined as :;Qully as possible, and the following simple
iri ighnate jor B. C. Carter, has proved

is purpose. (See “An Empirical
Formula for Crankshaft Stiffness in Torsion,” by B. C. Carter,
D.LC, MIMech.E./ Engineering, 13th July, 1928, p. 36))

Carter’s empirical formula for the equivalent length of a
crankshaft in bear’l’ml‘g may be stated thus :—

exure,
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L= {525 + {D'?i]fz;} e IR

for hollow journals and crankpin,

o5 5
for solid journals and crankpin.

The symbols correspond to those shown in Fig. 25.

This formula, which is similar in form to Equation (88), is
based on actual observations, on a number of small shafts of
different designs representing marine, aircraft, and motor-car
practice.  Assuming the test results to be exact, the range of
error for all the results was + 12 per cent., corresponding to
a range of error in the frequency calculation of 4 6 per cent.

The Carter formula was used for calculating the equivalent
lengths of the crankshafts of the engines of T. S. M. V.
Polyphemus, tested by the Marine Oil-Engine Trials Committee.
(See Appendix to “ Marine Oil-Engine Trials,” Sixth Report,
Proc. Inst. of Mech. Engineers, 1931, Vol. 121, pp. 268 and 286.)
These engines are each six-cylinder, four-stroke cycle, single-
acting type, 620 mm. bore, 1300 mm. stroke, rated at 2750
B.H.P., and 138 r.p.m., with a crankshaft diameter of 16§ ins.
The error between the calculated frequencies and the torsiograph
frequencies was 4 2 per cent. for the one-node frequency
observed during the shop trials with the engine coupled to a
dynamometer ; and 4 0-6 per cent. for the two-node frequen.,y
observed during the sea trials. ~

A similar closeness of agreement between the ce*:ulated and
observed values of the two-node frequencies ¢ a large number
of opposed-piston engine installations (W*Ie?é the crankshaft is
of the type shown at D in Fig. 44, and spherical bearings are
employed) has been obtained by the aithor, using the Carter
formula, for the equivalent length of the %rankshaft.

Exa¥PLE 24— Calculate the equivalent lenig(of the crankshaft

(90)

element shown in Fig. 25, assuming following dimen-
sions, the diameter of the equivalent t to be the same
as the diameter of the journals:—
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Solid journals A = gins.,, D; = 8}ins., d;=o.

Solid crankpin B = 7}ins.,, D, = 81 ins., d,=o0.

Crankweb R=gins, T=4ins, W=12ins.
Diameter of equivalent shaft D = journal diameter = 8% ins.
Hence,

Lol 50 (B £

_ 9+o08x%4¢ 095 X75) | I'5 X 9
= 8*‘[{ pE } + { By } T ]
== 1220 ins. + 5625 ins. + g-025 ins.

= 26-85 ins., say 27 ins.

Fig. 44 gives the values of the ratio L,/L, for a numbes, of
different crankshaft designs, calculated by the Carter formula.
L is the actual length of one crankshaft element between main
bearing centres, and L, is the length of the equivalent journal,
ie. the length of plain solid cylindrical shafting of diameter
equal to the diameter of the crankshaft journal, which has the
same torsional rigidity as the actual crankshaft in bearings.
The unit throughout is the diameter of the journal.

Examples A, B, and C represent solid forged, built, and
semi-built shafts employed for slow and medium speed marine
and land engines. .

Example D is an opposed-piston oil engine crankshaft.

Examples E to X represent high-speed aero engine and
automobile engine crankshafts; G and H being examples used
in single-row and double-row radial aero engines respectively.
In the majority of the examples given in Fig. 44 the values

ted for the ratio L,/L have given good agreement between

alculated and observed frequencies for engines fitted with

crankshafts of the proportions specified.

A fundamental difference between the Carter empirical
formula for crankshaft stiffness, Equation (go), and the formula
based on theoretical considerations, Equation (88), is that the
former contains a considerably_.smaller allowance for the
stiliness of the crankpin, w set by an increased allow-

ance tr web flexure. -1 (mtm‘son, although considerable
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test experience with a great variety of crankshaft forms has
shown ‘that the Carter formula is exceedingly reliable for
computing the overall stiffness of a crank element comprising
journals, webs, and crankpin, there is no reliable experience
to show that it enables the stiffness of the individual members
of the crank element to be correctly assessed. From an in-
vestigation of the stiffnesses of the individual members of a
shaft element of the type shown at D in Fig. 44, the author
found that the Carter formula did, in fact, over-estimate the
stiffness of the crankpins und under-estimate the stiffness of
the webs, although the overall stiffness of the crank element
was in good agreement with the experimental results.

As a result of this investigation, however, the following
alternative semi-empirical expression was developed, and this
gave a better indication of the distribution of stiffness in the
crank element for the particular case investigated.

L,=D4HA+°‘4D1}+{B+°'4D“}+{R_32 fl%{,;"D’)}] (1)

D4z | T\ Di—dst

In this expression the symbols have the sime meanings as
in Equation (89).

The form of Equation (91) is similar to that of Equation
~ (88), the only differences being the inclusion of fillet allowances
~on journals and crankpin, and the adoption of an effective
Craink arm equal to the distance between the centres of gravity
of the »jnner semi-circular, cross-sectional areas of the crankpin
and joulimal,

In all ¥the examples shown in Fig. 44, Equation (91) gives
values for tfme ratio L /L which agree with the values obtained
from Equatidy (8¢) within -+ 1o per cent., and in the majority
of cases the & greement is within -+ 5 per cent. Exceptions
are exa.mple_s I}and K, probably due to the relatively short
crankthrow in eX-3mple I and to the thin web in example K.

Where there is 3 Jarge discrepancy between the equivalent
length obtained by ysing Equation (8g) and that obtained by
using Equation (9%),". and where 4fere is no experimental ex-
perience to indicate W-hich value is nearer the true value, an
average of the two calcljated values will probably give reason-
ably accurate results. )
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Crankshaft stiffness can also be determined by strain energy
methods, taking into account strain energy due to bending,
torsion, and shear.

According to this method the effective stiffness of the crank-
shaft is not a constant quantity but depends on the relative
values of the forces applied to the shaft. The stiffness cannot
therefore be finally determined until the form of the elastic
curve is known, and on this account the stiffness in one-node
vibration differs from the stiffness in two-node vibration. The
strain energy method is chiefly of interest in the case of crank-
shafts containing elements of the types shown at D and H in
Fig. 44, 1.e. where there is no journal bearing between adjacent
crankpins and consequently where flexural displacements are
liable to be more pronounced.

Although the strain energy method gives a form of crank-
shaft deflection which agrees more closely with experimental
observations of shaft deflections under statically applied
torques, there is little difference in the frequencies calculated
by this method and by using the simple formula for crankshaft
stiffness, Equations (89) and (g1).

Furthermore, torsiograph observations show that in general
the recorded frequencies, even for shafts containing elements .
of the types shown at D and H in Fig. 44, are in good agree-
ment with the frequencies calculated by using Equations
(89) and (gx) for crankshaft stiffness.

It would therefore appear that the very much more involved
calculations which must be made to determine crankshaft
stiffness by the strain energy method are not a necessary part
of practical frequency calculations.

Automobile Engine Crankshaft Elements.—Fig. 45
contains some typical crankshaft elements, the appropriate
expression for calculating the equivalent length of the element
being stated in each case. In all cases the formule have been
derived from Equation (8g).

The element shown at A in Fig. 45 represents each cylinder
section of an in-line engine where there is a journal bearing
at each side of the crankthrow.

The crankpin and journal may be either solid or hallow,

VOL. I.—I3
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Fic. 45 (comtinued).

and three types of crankweb are shown in the diagram. 15’11'33_
X is the usual rectangular form and calls for no special com-
ments. Type Yis a circular form, the effective width W being
the diameter of the circle. This type of web is sometimes
used as a journal bea.rmg, usually with a roller bearing mounted
on its periphery, in which case, of course, W must’ be large
enough to provide a web which is concentric with{ the axis
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of rotation. Type Z is a balanced form in which the web
is extended beyond the journal to counterbalance the rotating
masses. This type of web is used on four-, six-, and eight-
cylinder in-line automobile engines, and its effective width
W is measured at a distance R/2 from the axis of rotation.

In applying the formula for the equivalent length, allow-
ance should be made for variations of journal length A, and of
crankpin length B for different cylinders of the same engine.
Also, if the crankpins and journals are solid, d, and 4, are zero.

The element shown at B in Fig. 45 is found in three-bear-
ing, four-cylinder in-line and in five-bearing, eight-cylinder
in-line automobile engines. It is also found in two-row radial
aero engines and in the Fullagar type of opposed-piston oil
engine.

If the crankpins and journals are solid, then &, and d,
in the expressions for equivalent length are zero. In these
expressions no allowance has been made for the circular
facings at the junction of the crankpins with the centre web.
In the majority of examples this allowance is covered by the
normal allowance for deformation at the junction of a crankpin
with a web, but in exceptional cases the facings can be treated
as enlarged portions of the crankpins, using the method already
given for dealing with shafts of varying diameter.

For instance, the value of L,/L given for example J in
Fig. 44 is obtained from the expression for L, from example B
of Fig. 45, as follows :—

and from example J in Fig. 44,
D=10; Dy=10; dy=0; B=06: R=10;
Ty=06; Wy=133; and L = 1-3.
ce, Ly=(0-75 X 06) + 1-5/(0:6 X 1:33%)
= 045 + I-06 = 1-51,
" Ly/L = 1-51/1-5 = 1°0I.
\'r g circular facings are taken into account, the effective
L\‘inthe crankpin is modified as follows :—
o=
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Diameter of circular facings = Dy = 1-25, from example J
of Fig. 44,

Length of circular facings = C = o-13,

ie. Dy/D, = 1-25, and from Table 13 the appropriate allow-
ance /D, for local deformation at the junction
of the crankpin and the facing is 0:055,

or ! = 0-035, D, = 0-055, since Dy = 1-0.

Also, the effective length of the remaining portion of the

facing reduced to crankpin diameter D, is
1, = (€ — )D,YDy = (015 — 0055)/1°25* = 0:030.
Thus the modified length of the crankpin is
B, =B+ 1+ 1; =06+ 0055 + 0039 = 0-694
and the modified equivalent length is
L, = (075 X 0:694) + 1-06 = 052 + 1-06 = 1'58,
or  L,/L = 1-38/15 = 1053.

Thus the effect of making allowance for the circular facings
is to increase the equivalent length of the element by about
5 per cent.

It should be noticed that if the length C of the circular
facing is less than the allowance Z determined from Table 15,
then the modified length of the crankpin when the circular
facings are taken into account should be assumed to be

B, =B +C).

The equivalent length of the element shown at J in Fig. 44

can also be determined by Equation (91) as follows :—
_ B+ 0'41)2} 05(2R — 0-4Dy)
L= D‘[{ D T T, We ]
Where B=06; D=10; Dy=10; dy=0; R=10;
T,=06; W, =133
Hence, L,= (064 04) + 0-5(2 — 0:4)[(06 X 1°33%)
=10+ 057 =157,

and since L =15; L,/L =105,
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In this case, therefore, the collars cannot be neglected in
calculating the equivalent length of the element. It should be
noted, however, that if the length of the collar is less than the
allowance /, determined from Table 13, then the effective length
of the crankpin is By, i.e. the effect of the collar is negligible.

The element shown at D in Fig. 45 is similar to that shown
at B, except that the centre crankweb is inclined and the
effective length of the crankarm S is measured along the
inclined centre line of the web.

The element shown at E in Fig. 45 is found in four-bearing,
six-cylinder in-line engine crankshafts. In this case the
effective length of the lever arm is 0-866R, where R is the
crankthrow. Also the torque‘acting at right angles to this
lever arm is 0-866 times the torque acting at right angles to
the crank arm. Hence the effective length of each half of
the centre web in terms of the torque acting at right angles
to the crankarm is o-75R, ie. the allowance for flexure of
the centre web in example E of Fig. 45 is 0-75 of the allowance
for flexure of the centre web in example B.

The element shown at F in Fig. 45 is found in opposed~
piston engines of the type having three crankthrows to each
cylinder, such as the Junkers and Doxford engines.

The stiffness of a crankshaft element depends to some
extent upon the shape of the web (see Engineering, 1st Nov.,
1929, p. 549), and this is particularly the case when the crank-
pins are hollow. If the crankweb shown at the left-hand
side at G in Fig. 45 is regarded as a standard of comparison,
then the effect of bevelling the web as shown at the right-
hand side at G in Fig. 45 is to reduce the stiffness of the crank
element by from 7 to 14 per cent., say an average reduction
of 10 per cent.

A small bevel or radius which is confined to the very edge
of the web, however, does not affect the stiffness to any ap-
preciableextent. The effect of making the web square cornered,
as shown by the dotted lines at G in Fig. 45, is to increase
the stiffness of the element by about 1 per cent.

These considerations should be borne in mind when means
for altering the stiffness of a crankshaft are being considered.
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It should be remembered, however, that stiffness obtained
by adding material to the web, especially if the material is
added near the crankpin, does not necessarily imply an in-
creased natural frequency, because the polar moment of inertia
of the web is also increased and this tends to lower the fre-
quency. It is for this reason that an increase in journal
diameter is more likely to raise the frequency than an increase
in crankpin diameter.

ExaMpLE 25—Fig. 46 shows a two-bearing, four-cylinder
engine crankshaft. Obtain an expression for the overall
equivalent length.

The overall equivalent length of this crankshaft is obtained
from the expressions for the equivalent lengths of crankshaft
elements given in Fig. 45, as follows :—

ZL, = overall equivalent length = (2L, + 2L, + L),
where 2L, = L, from example A of Fig. 45.

Inserting the symbols from Fig. 46 in the expression for
L, in Fig. 45, example A, the following expression is obtained
for 2Ly :—

2L, = (A + 0:8T) + (0-75B . D4/D,*) + 1:5R . DY/(T . W3).
Also, 2.Ly=12.L, from example B in Fig. 45,

ie. 2.Ly=(x5B.DYD% +3.R.DY(T,. W3),
and L, =L, from example C of Fig. 43,
ie. L;=3B,.DYD#*+ B2. D¥(z5. R2. D*).

Hence the overall equivalent length of this crankshaft is
2L, = (A + 0-8T) + D*[(2-25B/D*)
+ TSR{E/(T. W) + 2/(T; . Wi} + (By/DyY)
+ B,¥(13. R®. Dyi)l.
This expression neglects the effect of the enlarged portion
of the centre crankpins, but this can be taken into account
separately by the method just discussed.

ExaMPLE 26.—In the case of the crankshaft element shown at
A in Fig. 44, determine the values of the ratio L,/L,
(@) when a hole o-5 diameter is bored through the crankpin
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and journals, and (5) when the hole through the crankpin
is displaced radially outwards from the centre of the
crankpin by an amount 0-125.

(2) From Equation (8g),

o)+ (k) + 28

202

4
L. ‘D[ —a W

i

I

i

=
o>

&‘ Ly
[
F16. 46.—Two-bearing, four-cylinder, four-S.C., S.A. engine crankshaft.
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In this case D=1; D;=1; D,=1; d;=o03;
dy=0%5; B=1; R—I T—os,de——xs

Hence,
__fro4o08Xos 075 X 10 I3 X 10
L.={ e+ {14—0-5‘} +{o-s X T3t
= (149 + 0-8 + 0:89)
=318,

and since L = 30, L,/L = 1-06.
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(b) From Table 17 the equivalent length of a hollow shaft
with a concentric hole is

L =L,D¥(D,* — d,%, where L;, D,, and 4, are the actual
dimensions of the shaft, and D is the
diameter of the equivalent shaft

= 1-067L,D*/D,*%, when 4, = 0:5D,.

Also from Table 17 the equivalent length of a hollow shaft
with an eccentric hole of diameter d; = 0-5D, and o0-125D,
eccentricity is

L =116L,. DD,

ie. the equivalent length of the shaft with the eccentric hole
is about g per cent. greater than that of the shaft with the
concentric hole.

Hence the allowance for the crankpin in the equivalent
Jength of the crank element must be increased by this amount
when the hole is bored eccentrically, i.e. the modified equivalent
length is

L, =149 + (08 X 1:16/1067) +- 0-89
=149 + 087 + 0-89 = 325,
and L./L = 1-08.

The effect of boring the holes through the crankpin and
journals is, therefore, to increase the equivalent length by
about 6 per cent. when the crankpin hole is concentric and about
8 per cent. when it is eccentric, compared with the equivalent
length for solid crankpin and journals.

In practice eccentrically disposed crankpin holes are used
to facilitate machining and the insertion of oil-sealing plugs
in shafts which have comparatively short crankthrows, and
also to strengthen the web section at its junction with the
crankpin. An eccentric crankpin hole also has the advantage
of providing a larger reduction in the centrifugal loading on
the bearings, and in the moment of inertia of these parts.

The following values for L, are obtained by using Equation
(91) instead of Equation (89) :—
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For Solid Journals and Crankpin.
L= (104 0:4) + (10 + 0:4) + (1 — 0:4)/(0'5 X 1-57)
= T4+ I4 + 036 = 316,
and L,/L = 316/3-0 = 105.
For Hollow Journals and Crankpin.
L, =1°4/0°9375+1°4/0:9375 4036 =1'49+1°49-+0-36

=334
and L,/L = 3'34/3'0 = r'11.

For Hollow Journals and Crankpin, with Eccentric Hole in
Crankpin.

L, = 1494 (149 X 1:16/1-067) 4-0-36 =149 +1-62+0-36
= 3'47,
and L,/L =3-47/3:0=116.

Hence the comparative values of L, given by Equation
(o1) show that the effect of boring holes through the crankpin
and journals is to increase the equivalent length by about
6 per cent., which is the same percentage reduction of stiffness
as was obtained by using Equation (8g). The effect of boring
the crankpin hole eccentrically, however, is to increase the
equivalent length of the undrilled shaft by about 1T per cent.,
which is a greater reduction of stiffness than that indicated
when Equation (89) is used.

As already mentioned, if there is no previous experience to
indicate which value is likely to be nearer the true value,
an average of the two values should be used.

Experimental Determination of Crankshaft Stiff-
ness.—There is considerable evidence that experimental
methods in which the crankshaft is mounted in its bearings
and subjected to a statically applied torque give reliable
values of crankshaft stiffness for use in frequency calculations.

In a paper read before the Liverpool Engineering Society
and published in the Tramsactions of the Society, Vol. LV,
pp. 122 to 127, Mr. K. O. Keller describes the results of a tor-
sion test carried out on a large opposed-piston marine oil
engine crankshaft of the type shown at D in Fig. 44. This
shaft was 42 ft. long, with 17-in. diameter journals and 18-in.
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diameter crankpins, and the test was carried out by anchoring
the coupling at one end of the shaft by means of a plate lever,
and by applying a torque to the other end of the shaft by means
of a similar lever and dead weights. The measured overall
deflection of this shaft under a torque of 280,000 lbs.~ft. was
0015 radian, corresponding to an overall torsional rigidity
of 18,600,000 lbs.-ft. per radian. The equivalent length of
17-in. diameter plain shafting is therefore about 36 ft., corre-
sponding to a ratio L,/L = 0-85, which agrees with the value
given for example D in Fig. 44.

The frequencies calculated from this value for crankshaft
stiffness were subsequently found to agree with the frequencies
recorded by torsiograph measurements.

In the case of small engines Dr. Geiger has stated that
carefully carried out static torsion experiments on crankshafts
give results which can be used in frequency calculations with
the assurance that the calculated frequencies will be in good
agreement with torsiographic measurements.

The crankshaft should be mounted in its bearings, and
Dr. Geiger states that bearing clearance has no apparent
influence on the running stiffness of the shaft, since the torsio-
graph shows the same natural frequency whether this is
measured at a very strong critical speed where shaft distortion
due to bearing clearance might be expected to be greatest,
or at a very weak critical speed where comparatively small
distortions due to bearing clearance might be expected.

This experience is also characteristic of many hundreds of
torsiographic observations made by the author, both on large
marine engine systems and on small high-speed engines.

Fig. 47 shows two lever arrangements for applying a pure
torque to a shaft.

The arrangement shown at (A) is the simpler system and
consists of two rigid bars connected to one another and to the
torque lever on the shaft by suitable links or cables. The load
W is applied at the middle of the shorter bar and produces a
clockwise torque of magnitude M = WR, where R is the length
of each arm of the torque lever, which is rigidly secured to
one end of the shaft under test. The other end of the bar under
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test must be secured against rotation by a torque reaction
lever or other suitable means. In this arrangement there is
a small initial torque due to the weight of unbalanced parts
which can, if desired, be eliminated by suitable counter-
weights.

The arrangement, shown at (B) in Fig. 47, consists of two
sets of arrangement (A), and has the advantage of enabling
either clockwise or counter-clockwise torques to be applied to the
shaft under test merely by rolling the weight W along the loading
bar. When the weight is at the centre of the loading bar there
is no torque on the shaft. When the weight is rolled a distance
X to the right-hand side of the centre of the loading bar a
clockwise torque of magnitude M =W .R.X/L is applied
to the shaft, where the symbols have the meanings indicated
in Fig. 47. When the load is moved a distance X to the left-
hand side of the centre of the loading bar a counter-clockwise
torque of the same magnitude is applied to the shaft. It is
interesting to note that although the sum of the reactions
at the two supporting brackets is, of course, equal to the
load W, these reactions are equal only when the load is at
the centre of the loading bar. For all other positions of the
load they are unequal, and if the load could be applied at a
distance L from the centre of the loading bar the reaction on
one supporting bracket would be equal to the load W, and
would be zero at the other supporting bracket, i.e. the system
virtually reduces to the system shown at (A) in Fig. 47.

The arrangement shown at (B) in Fig. 47 provides a very
convenient method of plotting torque-deflection diagrams
under increasing and decreasing torques, for example, when
studying hysteresis effects, the changes of torque being ob-
tained merely by rolling the weight along the loading bar.
It should be noticed, however, that the lever or other means
provided for taking the torque reaction on the shaft under
test must be arranged to take care of both clockwise and
counter-clockwise torques if it is intended to roll the weight
over the full length of the loading bar. A simple method of
locking the weight carriage in any desired position should
be provided (see also Fig. 148).
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The total torsional deflection between one end of a crank-
shaft and the other when a torque corresponding to the full
load of the engine is applied at one end of the shaft varies
from about o-3° for medium and low-speed shafts, where
the working stress is low, to about 1:0° for the more highly
stressed shafts of high-speed automobile and aero engines.
These deflections are measurable with quite simple measuring
equipment, such as a micrometer or clock gauge. A simple
and reliable method of
e @ —— > measuring the twist in the

+ shaft is to provide two
L/ comparatively light measur-
/y ing levers, one at each end
7

of the shaft. These levers
7 should be independent of
the main torque loading
and reaction levers to avoid
// s errors due to lever distor-
7 tion, and should be of
7/ sufficient length to show a
7/ measurable deflection on
/ the clock gauge at low
7 values of torque loading.
Clock gauge readings should
be taken from each of the
measuring levers. The true
twist of the shaft between
the points where the measuring levers are attached is obtained
from the difference of the two clock gauge readings, as follows :—
Let 7 = radius at which clock gauge readings are taken,
¢ = clock gauge reading at free end of shaft,
¢, = clock gauge reading at anchored end of shaft.
Then 8 = twist in shaft = (¢ — ¢,)/r radians
= 57'3 (¢ — ¢,)/r degrees.

By providing two measuring levers in this way any error
due to slipping of the anchorage lever is eliminated.

A typical torque-deflection diagram is shown in Fig. 48.

que —»—

v

Deflection mn Radians
Fic. 48.—Torque-deflection diagram.



EQUIVALENT OSCILLATING SYSTEMS 209

This diagram was obtained by applying a pure torque to a
crankshaft, the torque being applied statically with the shaft
in its bearings. The torque was gradually increased from zero
to a maximum and then gradually reduced back to zero again,
with the result that a definite hysteresis loop was formed.

The hysteresis effect is due to a number of different causes,
for example, localised elastic deformation at lever attach-
ments and at couplings; bending deflections of keys, splines,
and serrations, and gear-wheel teeth; backlash in gears,
splines, serrations, and key-ways, all contribute to the forma-
tion of a hysteresis loop. Fortunately, however, the distor-
tion due to these causes is usually confined to short portions
of the curve at each end of the torque range, and between
these distorted portions the load-deflection diagram consists
of two parallel lines of constant slope. The slope of these
two lines is the true measure of the torsional rigidity of the
shaft, and the dotted line in Fig. 48 represents the torque-
deflection diagram which would be obtained if all localised
distortions could be eliminated.

The torsional rigidity of the shaft is easily computed from
the slope of the dotted line, as follows :—

Let M = torque at any selected point on the dotted line in
Fig. 48, in Ibs.-ins.,
# = the angular deflection in radians corresponding to
torque M, measured on the dotted line in Fig. 48.
Then C = torsional rigidity of the shaft in Ibs.-ins. per radian
= M/f.

Mass Elastically Connected to the Main System.—
In Fig. 49 a mass J is connected to the main system at X by
a shaft of torsional rigidity C.

This elastically connected mass may be replaced by an
equivalent rigidly connected mass J,, the magnitude of J,
being determined as follows :—

Let J=moment of inertia of the elastically connected
mass in Ibs.-ins. sec.2,
J. = moment of inertia of equivalent rigidly connected
mass in Ibs.-ins. sec.?,
VOL. L.—I4
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C = torsional rigidity of the connecting shaft XY in
Ibs.-ins: per radian,

w = phase velocity of the forced vibration of the whole
system, including J

radians per sec.,

F == frequency of forced vibration of the whole system
in vibs. per min.,

w, = phase velocity of the natural vibration of the
elastically connected system XY

2.7 .F, .
= radians per sec.,

F, = frequency of natural vibration of the elastically
connected system XY in vibs. per min.,

6, = amplitude of vibration of J in radians,

8, = amplitude of vibration at X in radians.

Fi16. 49.— Elastically connected mass.
Then torque at X due to vibration of J with a phase velocity
« and an amplitude 8, is
M;=].w*.6,lbs-ins.
Torque at X due to vibration of J, with the same phase
velocity and an amplitude 8, is
M,=17,. »*. 8, Ibs.-ins.
Hence, for J, to have the same effect as J on the torsional
vibration characteristics of the whole system,
M= M,
ie. J.= u
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If C is infinite, i.e. if J is rigidly connected to the system,
0, =6,
But it will be shown later that for any finite value of C (see

Equation (234)),
[}

0y =—>2—.
w
=[]
-7
Hence, J,—I_ 5’.]"
W,
Now w;’=§,
; - J J - J
Le. JS_I~M—I—4772.F2'J—-I-Fa’J- - (92)
C 3600 C o1z C

If C/] = w? i.e. if the natural frequency of the elastically
connected system is equal to the frequency of the forced vibra-
tion, the value of J, is infinite.

ExamPLE 27.—Calculate the natural frequencies of torsional
vibration of the system shown in Fig. 7, using the values
given in Example 4, by the method just described.

From Example 4,
J3 = 2073 Ibs~ins. sec.,
2 = 1036 Ibs.-ins. sec.?,
C; = 4,770,000 Ibs.-ins. per radian,
Cy = 3,180,000 1bs.-ins. per radian,
F = natural frequency in vibs. per min.
The three-mass system shown in Fig. 7 can be reduced to an
equivalent two-mass system by finding the equivalent value of
Jaat Ju,

-1 1544
e Je=—FT, 1544 X F?
91-2C, 912 X 3180000

__ 1544 X 188000
"~ 188000 — F?
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The system then reduces to a simple two-mass system
consisting of J; and (J, + J,) connected by a shaft of torsional
rigidity C,,

<< G0 T+ o)
F= 9'554) 1\J1 .e 2
J(Je+ 79

ie.

I X 188000
4770000[2073 + 1036 + ’ié%mz*]

I544 X 188000
2073 [1036 + 188000 — F2 :]

=955

Whence, F*— 1100000 F2 - 177500000000 = 0,
and F = 443 and 950 vibs. per min.

These values agree with the values of the one-node and two-
node frequencies calculated by the three-mass method.
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CHAPTER 4.
FLEXIBLE COUPLINGS.

FI1GURE 50 shows a flexible coupling in which the torque is
transmitted through flexible spokes.

F1e. 50.—Elastically connected fiywheel rim.

Let a == thickness of each spoke, in inches,

b = width of each spoke, in inches,

f = bending stress in each spoke, in Ibs. per sq. in.,

4 = slope of deflection curve of each spoke,

# = number of spokes,

7 = radius to point of fixation of spoke in hub, in inches,

= deflection of one end of spoke relative to the other
end, in inches,

C == torsional rigidity of n spokes, i.e. of the whole coupling,
in lbs.-ins. per radian,

E = modulus of elasticity in Ibs. per sq. in.,

I =moment of inertia of cross-section of each spoke
about its neutral axis, in ins.* units = @®. b/12,
for rectangular spokes,
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L == bending length of each spoke, in inches = (R — 7),
M = fixing couples at ends of each spoke, in Ibs.-ins.,
P = end reaction of each spoke, in Ibs.,
R = radius to point of fixation of spoke in rim, in inches,
T = torque transmitted by coupling, i.e. by # spokes, in
Ibs.-ins.,
Z = modulus of section of each spoke, in ins3 units =
a* . b6 for rectangular spokes,
8§ = angular deflection of rim relative to hub, in radians,
1. Spokes Fixed at Both Ends.—The spoke loading diagram
is shown in Fig. 50.
For force balance, P,+ P,=o,
where P, is the reaction at the rim and P, is the reaction at
the hub,
or Py=—P,
i.e. the reactions are equal in magnitude but opposite in direc-
tion, say &+ P.
For couple balance, P.L + M, + M, =o.
Assuming that torque is transmitted from the rim to the hub,
Input torque (at rim) =T, =P. R+ M, =P(L +7) + M,

per spoke.
Qutput torque (at hub) =Ty = — P.7v + M,,
but My=—(P.L+M,)
Hence, Ti=—(P.R+M,),

ie. the output torque is equal in magnitude but opposite in
direction to the input torque.

It is convenient to regard the spoke loading as made up of

two systems, viz. :(—

(i} Aload P at the rim and a corresponding fixing couple
—P.L, and shearing force — P, at the hub, ie.
each spoke is loaded as a cantilever.

The deflection is therefore y, =P .L1%(3.E. ),
and the slope at the rim is 4, = P.L?(z. E.I).
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(i) A fixing couple M, at the rim and an equal and op-
posite fixing couple — M, at the hub. These couples
impose a constant bending moment on each spoke.

The deflection is therefore y, =M, .L¥(z.E.I),
and the slope at the im is ¢, =M, .L/(E . I).
The total deflection of the rim relative to the hub is therefore
y=y+y=L2.P.L4+3.M)/(6.E.I),
and the slope at the rim is
i=yR=1%.P.L+3.M)/6.E.I.R),
but the slope at the rim is also given by ¢ =1, + i,
ie. i=L(3.P.L4+6.M)/(6.E.I).
Since these two expressions for the slope must be equal,
M,=P.L{2.L—3R)/6.R—3.L),
and the transmitted torque for » spokes, i.e. for the whole
coupling, is
T=nP.R+M,)
=n.P6.R*—6.R.L+2L%/(6.R—3.L). (93)
The deflectionis y = 6. E%I;(%;RR:I)
and the corresponding angular deflection is
0= 5R = g pa e
6.E.Iz.R—1L)
The torsional rigidity of » spokes, i.e. for the whole coupling,
is therefore
C=T/l=4.n.E.I3.R*—3.R.L+LYL2% (95)
The maximum bending stress in each spoke occurs at the
hub and is given by the following expression :—
Juse = S 1;.3(631.2RA]£)+ iy )
2. Spokes Insecurely Fited.—In practice it is possible that,

due to insecure fixation of the spokes, particularly at the hub,
the fixing couples at each end of the spoke are nearly equal.

- (04)
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The following expressions apply when this occurs, ie. when
M, =My =M:—

Since P.L+M +Mp=o0,
hence, M,=My=—P.1lj2
i.e. deflection of rim relative to hub =y =P . L¥(12. E . I),
or angular deflection = § =3y R =P.L%(12.E.I.R). (97)

The transmitted torque for # spokes is

T=nP.R—P.Liz)=un.PR-+7)jz . (98)
and the corresponding torsional rigidity is
C=T#=6.n.E.I.RR + r)/L% . (99)

The maximum bending stress in each spoke occurs at the
points of fixation in the rim and hub, and is given by the
following expression -—

oz = TR —7) T.L
TR ZR+7) n.Z2(=2.R-L)

3. Spokes Fixed in Hub and Free in Rim.~—~The loading
diagram is shown in Fig. 50.

Inthiscase M,=o0andM,=M=-—P.L.

(100)

The input torque is
T, = P. R per spoke,
and the output torque per spoke is
T,=—P.r+M=—-P.r—P.L=-P.R,

i.e. the total torque transmitted by » spokes, i.e. by the whole
coupling, is
T=».P.R

The deflection of the rim relative to the hub is
y=P.1%3.E.I),
and the corresponding angular deflection is
§=yR=P.L3Y3.E.I.R). . . (zo1)
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The torsional rigidity of # spokes, ie. of the whole coupling,
is therefore

C=Tl6=3.E.I.R2.u/L3, (roz)

and the maximum bending stress in each spoke occurs at the
hub and is given by the following expression :—

Fux=T.L{(n.R.2). (z03)

Uniformly Siressed Spokes.—Since the primary purpose of
a flexible coupling is to introduce the greatest amount of
flexibility into a system, ie. to provide the greatest possible
deflection under a given load for a given expenditure of material,
the volumetric efficiency of the coupling is well represented
by its resilience or the energy stored per unit weight.

For maximum volumetric efficiency the spring elements
should represent as large a proportion of the total weight of
the coupling as possible, and each spring element should be
as uniformly stressed as possible so that the physical properties
of the material are used to full advantage. For example,
it has been shown that in the case of torsion bars a hollow
cylindrical section possesses the greatest resilience per unit
weight because it is subjected to very nearly uniform shear
stress. A solid cylindrical torsion bar is only half as good,
whilst any other section is less than half as good.

The volumetric efficiency of couplings of the type shown
in Fig. 50 can therefore be increased by shaping the spokes
so that they are uniformly stressed. This can be done very
simply when the spokes are fixed at the hub only, and Fig. 51
shows three methods of improving the efficiency of flexible
spokes.

In Diagram I, Fig. 51, the thickness of the spoke a tapers
uniformly towards the hinged end, i.e. towards the rim, whilst
the width of the spoke b remains constant. In Diagram II
the thickness remains constant, and the width tapers gradually
towards the rim.

Spoke of Constant Width and Tapering Thickness (Diagram I,
Fig. 51).—The deflection of the tip under a load P is given by
the following expression :—
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12.P. L3 K? (3K — (K —1)
Y=E b‘rx“—‘nﬂ(l"g' K- 20, (o

where P=T/R.n),
and K = ratio of thickness at hub to thickness at rim.

For uniform stress the thickness of the spoke should be
proportional to the square root of the bending moment, which
gives the parabolic shape shown dotted in Diagram I of Fig. 51.

Fic. 51.—Flexible spokes.
In a truly uniformly stressed spoke of constant width and
variable thickness the tip deflection is
y=8.P.LY(E . .a.b),
and the corresponding angular deflection of the rim relative to
the hub is
=8.P.L3E.a*.b.R). . . (x03)

The torque transmitted by # spokes for this deflection is
T=P.R.n



FLEXIBLE COUPLINGS 219

Hence the torsional rigidity of the coupling is
C=T/6=E.e*.0.R*.n/8.L". . (106)
The maximum bending stress occurs at the hub and is given by
foax=T.L)n . R.Z)=6.T.Lf@@*.5.R.%). (107)
The equivalent length L, of plain cylindrical shafting of
diameter D, which has the same flexibility as the coupling,
can be obtained as follows :—
The torsional rigidity of a length L, of plain cylindrical
shafting of diameter D is
C=n.D*.G/(32.L)=E.a*.b.R?. 4(8.L9.
D4.G. L3
Hence, L=mErrrmw (108)
Table 16 shows that for nearly all metals the ratio E/G is
about 2-5, so that the above expression for L, can be written
D+. 12
L=gw s rew (x09)
Spoke of Constant Thickness and Tapering Width (Diagram
11, Fig. 51).—The deflection of the tip under a load P is
given by the following expression :—
_ 12.P.L*.K rlg XK (3—K)
y‘E.a“.b(K-—I)’((K—I) 7)) - (o)
For uniform stress the width of the spoke should be pro-
portional to the bending moment, which gives the triangular
shape shown dotted in Diagram II of Fig. 51.
In the case of a truly uniformly stressed spoke of constant
thickness and variable width, the tip deflection is
y=06.P.L3E.a*.b),
i.e. the angular deflection of the rim relative to the hub is
0=6.P.L}YE.a*.b.R). - . (1)
Hence the expressions for torsional rigidity and maximum
stress are as follows :—
C=E.a®.b.R*.2n)(6.1L%), . . (112)
fux =6.T.Lj(@*.b.R.n). . . (xoy)
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The expression for the equivalent length of cylindrical

shafting is in this case
D‘Z' La
L=m@mzrren - - ™)

A good practical approximation to a uniformly stressed
cantilever of constant width and varying thickness is obtained
by making the tip thickness one-third the root thickmess
(K = 3 in Diagram I of Fig. 51), and an equally good approxi-
mation for the case where the thickness is constant and the
width varies is obtained when the width at the tip is one-sixth
the width at the root (K = 6 in Diagram II of Fig. 51).

These approximations have the advantage of providing
sufficient material at the tip of the spoke to take care of shear
loading and in all actual examples it is important to check
the shear stress in sections near the tip.

It is possible to increase the flexibility of the spoke still
further by varying both width and thickness, but the gain in
flexibility over the simple approximations given above is hardly
sufficient to compensate for the increased manufacturing
difficulties.

Expressions for torsional rigidity, equivalent length, and
maximum bending stress for different types of spoke are given
in Fig. 52. These expressions have been derived by the
foregoing methods.

Resilience of Flexible Couplings.—The resilience of
a coupling may be defined as the capacity of the coupling for
storing energy or, in other words, it is the amount of energy
which is restored when the load is removed from the coupling.
In general, for strains within the elastic limit of the material,
the resilience is one-half the product of the force or torque
and the linear or angular displacement which it produces.

In the case of direct tension or compression, for example,

W = resilience = load X deflection/2 = P. §/z,

but E = modulus of elasticity = stress/strain = g—‘%,

assuming uniform distribution of stress,
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: _Symbols
¢ = Torsional Rigidity of Coupling, (n. Spokes), in Lbs. Ins./Radian
Le= Equivalent Lengfh in Inches of Cylindrical Shaft of Dia. D.
f = Maximum Bending Stress in edch Spoke, in lbs./Ins.?
n = Number of Spokes in (oupling.
T = Total Torque Transmitled oupling, (n Spokes), n Lbs. Ins.
W = Slrain Energy for n JSpokes, in In. Lbs.
V = Wlume of One Spoke in Cu.ins. ’
K = L/R,

Fie. s2.—Flexible spokes.
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where L = length of specimen; A = cross-sectional area of
specimen, i.e.

w=2 2N
where V = volume of specimen = A . L,
f=stress = P/A.

Hence, if f is the stress at the elastic limit, then Equation
(x14) Tepresents the greatest strain energy which can be stored
in the specimen without permanent distortion. If the stress
distribution is not uniform the equation is of the same form as
(z14), but the numerical factor is less than one-half when f
is the maximum stress anywhere in the specimen.

Torsional Resilience—When a specimen is subjected to a
uniformly distributed shear stress within the elastic limit the
stored strain energy, or shearing resilience, is given by the
following expression :—

2y
c
where W == shearing resilience in in.-Ibs.,
f = shear stress in 1bs. per sq. in.,
V = volume of specimen in cubic inches,
G = modulus of rigidity in Ibs. per sq. in.

W=1%. (xx5)

This expression is similar to Equation (114), and represents
the greatest strain energy which can be stored in the specimen
without permanent distortion.

If the shear stress distribution is not uniform the equation
is of the same form as (113), but the numerical factor is less
than one-half if f is the maximum shear stress anywhere in
the specimen.

In the case of a hollow cylindrical shaft subjected to tor-
sional strain within the elastic limit, the shear stress is directly
proportional to the radius, and the maximum shear stress
occurs in the outermost fibres, i.e. at the outer radius R,.
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Let f, = maximum shear stress in lbs. per sq. in., ie. the
stress at the outer radius R,
R, = outer radius of shaft in inches,

R, = inner radius of shaft in inches,
K = Ry/R,,
= Volume of hollow shaft=n=.L(R2— R,?), in
cubic inches.

Then the shearing resilience of any tubular element at radius 7,
and of thickness dr, and length L is

2.m.7.L. fz

AW = P
where f= shear stress at radius r = f,. #/R,.
7. L. 3%, d a. L.f2

Hence, W = Rz G r Ldr =m2 R —RH)
L.
- k) R Bf‘G (R 2 _ Rzz)(Rlz + Rgz)
A K3).V
f—:—-'jG)——- . . . . . (116)

2
This expression approaches the value W = % 2y as K

approaches unity, i.e. when R, is very nearly equal to Ry,

Thus in the case of very thin tubes the strain energy stored
is very nearly equal to the maximum theoretically possible
(Eqn. 115). This is because for very thin tubes there is prac-
tically uniform distribution of shear stress.

Equation (r16) becomes W=f2.V/4.G when K=o
or R, = o, i.e. for a solid cylindrical shaft. Thus the capacity
of a solid cylindrical shaft for storing shear strain energy is
only about one-half that of a very thin tube containing the
same volume of material subjected to the same maximum shear
stress.

Flexural Resilience—The resilience of a beam can be found
from the following well-known expression for flexural resilience,
when the bending moment diagram is known :—

W= i.[E 7 - 4%, . . . (119)
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where M = bending moment,
E = modulus of elasticity,
I = moment of inertia of cross-section of beam
=a*. b/r2,
a = depth of beam,
b = width of beam.

In a simple cantilever of length L and constant rectangular
section, i.e. depth ¢ and width , carrying a tip load P,
Bending moment at distance % fromtip =M =P . #.

Hence, W= iE—Jsz dx (from Eqn. 117)
’ @.b.EJy ° !

: . _2.Pr L3

ie. “_a“.b.E’

but  f; = maximum fibre stress = M/Z,
where M =P . L = the maximum bending moment,
and Z = modulus of section = a2. b/6,

ie. P=f.ZIL =f,.a. b/(6.1).

Hence,

w =%, and since . b. L = volume of beam = V,
w=lJ L

If the section of the beam varies throughout its length so
that the maximum fibre stress is constant at all sections the
expression for strain energy is altered as follows :—

Let I, = moment of inertia of section at fixed end of cantilever
=a*. bf1z.

Then, assuming that the cross-section varies in width, constant
skin stress is obtained when the width is directly proportional
to the bending moment,

ie. I=4a.0.%/(12.L).
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The expression for resilience becomes, therefore,

6.P2 Lt 3.P2. L8
V=7 el = FrE
or, substituting the value P = f, . 2. b/(6. L),
woftab.L

12.E ’

but volume of beam =V =2.b.Lj2 (since the plan form
of the beam is a triangle).

Hence, W=14% f”—sEE . . . (r19)

It can be shown that Equation (119) applies to any rect-
angular beam in which the skin stress is constant, and that
for any other solid section the numerical factor is less than
one-sixth, i.e. the resilience per unit volume is less for a given
maximum fibre stress. For example, in the case of a round
section the value of the numerical factor is one-eighth.

It should be noted that the total resilience of a spoke of
type III in Fig. 52, i.e. where approximately uniform skin
stress is obtained by varying depth of the beam, is about
25 per cent. greater than that of a spoke of type IV where
the width of the beam varies, assuming the same root section
in each case. This is because the volume of material in the
spoke is about 25 per cent. greater for Type IIL

Diagram III in Fig. 51 shows a cantilever consisting of
two flanges separated by a thin web in which the stress due
to flexure is approximately constant throughout the material.
In the following discussion the web will be neglected and it
will be assumed that the flanges do not buckle.

In this case, I = (a,° — ,8)b. x/(r2 . L), assuming that the
plan form of the beam is triangular, as for a rectangular beam
with constant skin stress, where % is the distance measured
from the tip,

6.L

and W = @F— e E J L% .dx
3 Pl LB
@ — @ E
VOL. L—1I5
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; la,® — af)b
but P=f,.ZL =f°—6‘—a—L—,

.ay.
W _ft-led—afp L f?.ay. b, Lz — Kla)’
12.E.a® iz . E

also, volume =V = (2, —ay).b.Lj2=0ay(1 —K,).0.LJz,

where K, =as/a,,

ie, W=72Vir+ K, +K3)/6.E). . . (x20)
The following table shows the variation of strain energy

per unit volume with K, :—

ie.

K, w.
Jti(6-00 E)
Stllars7 E)
5/(343 E)

3/(260 E)
J#i(2-00 E)

s
W
B

ooy

The value K; = 0 corresponds to a solid rectangular beam,
i.e. the expression for resilience agrees with Equation (119).

The value K; = 1 is approached when the flanges are made
very thin compared with the total depth of the beam. For
this condition the expression for resilience approaches that
for uniformly stressed material (see Equation 114).

In the case of spring elements of flexible couplings it is
not practicable to employ members of the type shown in
Diagram III of Fig. 51, and even if this could be done it is
doubtful whether the numerical factor in the expression for
resilience would be very much greater than that for a beam
with uniform skin stress, viz. one-sixth, bearing in mind that
effective means would be required to prevent buckling of the
thin flanges.

Fig. 52 summarises the formule for spoked couplings
and contains expressions for calculating the torsional tigidity,
equivalent length, and resilience of the complete coupling,
and the maximum bending stress in each spoke.

In designing couplings of this type, the spokes should be
stressed to the maximum permissible value to obtain maximum
resilience. The length of the spokes will usually be fixed by
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consideration of the maximum permissible diameter of the
coupling and the size of the hub, and the maximum torque
to be transmitted by the coupling will be known. In this
connection it should be noted that it is usually safe to make
the coupling as strong or a little stronger than the shaft on
which it is mounted, because the torque passing through the
coupling even under conditions of torsional resonance is the
same as that passing through the shaft except in abnormal
cases.

Since the stress in the spokes for a given torque is inversely
proportional to 2.5, whilst the volume is proportional to
a . b, the product f,?.V increases as the depth of the spoke @
decreases.

It is an advantage, therefore, to make the spokes as wide
as the space available and other structural requirements permit.
A good starting-point is to assume that the width is one-half
the length of the spoke.

The spokes may be separate members, as shown in Fig. 51,
or they may be formed integral with the hub, as shown at IV
in Fig. 53. The former method enables the spring members
to be made of high tensile spring steel, whilst the latter method
overcomes the difficulty of ensuring complete fixation of the
roots of the spokes.

The number of spokes is limited by the diameter of the hub,
and so a further advantage of making them separate members
is that in cases where the number of spokes required to give
the maximum permissible bending stress under the applied
torque exceeds the number of slots which can be economically
cut in the periphery of the hub, several thinner spokes can be
accommodated in each slot, as shown at IV and V in Fig. s1.
This laminated construction provides a certain amount of
inter-leaf damping which may be useful in certain applications.

In the case of spokes formed integral with the hub, or with
a ring which in turn is splined or keyed to the hub, care must
be taken to avoid excessive stress concentration at the roots
of the spokes by providing a generous radius between each
pair of spokes as shown at IV in Fig. 53.

This tadius should not be less than the thickness of the
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spoke at its root, in which case the pitching of the spokes
round the periphery of the hub is approximately = . a, ie.

o~
Ea o
S

2
% S
L
> B8

ression
Springs

v
Snp

Fre. 53.—Spring couplings.

the number of spokes which can be accommodated round the
periphery of a hub of radius 7 is (2. 7/a).

This avoids any serious concentration of stress at the roots
of the spokes. If it is necessary to provide a greater number
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of spokes than is given by the above rule care must be taken
to allow for this concentration of stress. For example, if the
root radius is made one-quarter the root thickness, then the
stress concentration factor will be about 2 for spring steel.

In general, for maximum resilience the volume of active
material, i.e. the volume of the spring elements, must be as
large a proportion of the total volume as possible ; the spring
elements should be as uniformly stressed as possible ; and the
materjal should be stressed to the maximum permissible
limit.

These considerations imply that the width/thickness ratio
of the spokes should be large, taking into account structural
limitations, and that a sufficient number of spokes should be
provided to ensure that the material is stressed to the maximum
permissible limit under the given loading conditions.

There are so many variables in the design of a coupling of
this type that it is impossible to generalise further than this,
and in practice the best compromise is usually obtained by
successive trial for a particular application.

Table 20 compares the resilience per unit volume for dif-.
ferent types of spring elements, assuming 100 per cent. for
uniformly stressed material.

Uniform tension or compression members are impractical
for use in spring couplings, unless made of rubber, because they
are far too rigid.

The most efficient torsional spring element is a hollow tor-
sion bar made of high-tensile steel, and elements of this type
are commonly employed in practice, for example as quill
shafts in geared drives. It is not always possible, however,
to accommodate the required length of torsion bar in the
space available.

An advantage of hollow or solid torsion bars is that a con-
siderable amount of flexibility can be introduced into an os-
cillating system without any appreciable increase of inertia,
whereas the moment of inertia of the housings of flexible
couplings might alter the inertia characteristics of the system
considerably. In some cases, and where doubt exists, it is
advisable to investigate this point.
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The solid cylindrical torsion bar is only about half as effi-
cient as a very thin hollow torsion bar. Itis commonly found
in engineering practice in the form of thin quill shafts made of
high-tensile steel for use in geared drives, and even more
generally in the form of helical springs.

TABLE 2o0.
REesILIENCE PER UNiT VOLUME.
Type of Spring. ResiliencePer | per cent.

TUniformly stressed bar in tension or com-

pression - “ Y. E) 100
Limiting value for a very th.ux ho].lm\ cy]m-

drical torsion bar . 2. G) I00
Limiting value for flexural member thh very

thin flanges of rectangular cross-section . fotiz . E) 100
Solid cylindrical torsion bar f4-G) 50
Flexural members with nmform skm stress

everywhere, and rectangular cross-section . f:H(6. E) 33
Flexural members similar to Type III in

Fig. 52 . . - AU E) 28
Flexural members sumlar to T\'pe I\ in

Fig. 52 . £2l(7-8 . E) 26

Simple cantﬂe‘er of umform rectangular

section (Type II in Fig. 52) f2/(18. E) 11
Flexural members similar to Tvpa I mFxg :,2 f(18.E)to| 1xto8

spokes securely fixed . (24 . E)
Flexural members similar to T\pe Iin Fxg 52 fo3/(18 .E) to | 11 to 55

spokes insecurely fixed . .| AY(36.E)

Note.—Table 20 does not take account of differences between G and E
and between f, f; and f;, for different materials. The percentages given in the
table do not, therefore, give a direct comparison between flexual and torsional
members. This matter is discussed later in connection with Tables 21 and 22.

Flexural members with very thin flanges in relation to their
depth are not practicable because of the difficulty of connecting
the flanges together so that buckling is prevented, and also
because their bulk occupies space which can be filled more
effectively by other forms of spring element.

In the case of flexural spring members, therefore, Table 2o
shows that the greatest efficiency is obtained in practice when
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these are designed to have a uniform skin stress everywhere.
It is interesting to note, however, that the efficiency of such
an element is only one-third that of a truly uniformly stressed
element, but that it is about three times as efficient as the
elements shown at I and II in Fig. 52.

In the case of flexible couplings employing flexible spokes,
therefore, care should be taken to shape these so that the skin
stress is as nearly as possible uniform throughout the spoke,
in which case the torsional rigidity of the coupling is given by
the following simple expression :—

Resilience of coupling —w=S XE— .. (ra1)
but .2,
Le. 0= f v EV
— T/ = 3 -E.T
and C=T/0= Vojw (122)

where C = torsional rigidity in Ibs.-ins./radian,
E = modulus of elasticity in Ibs. per sq. in.,
T = torque transmitted by coupling in Ibs.-ins.,
V = volume of one spoke in cu. ins.,
fo = skin stress in Ibs. per sq. in. (uniform throughout
the spoke),
# = number of spokes.

So far only the form of the spring elements has been con-
sidered, and nothing has been said about the relative merits
of different materials.

Table 2r contains the properties of some typical materials.
The working stresses quoted in this table are about one-half
the fatigue limits for the respective materials, which provides
a sufficient factor of safety if the parts are free from severe
stress raisers, such as sharp corners or other discontinuities.

The following expression for the maximum permissible
shear stress when repeated torsional stresses are superimposed
on various mean stresses is given by Dr. S. F. Dorey in his
paper, “ Some Factors Influencing the Sizes of Crankshaifts
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for Double-Acting Diesel Engines ” (Trans. N.E. Coast Instn.
of Engineers and Shipbuilders, 1931). It is based on the
experimental work of Dr. G. A. Hankins, and gives safe values
for all ductile steels, and for values of x up to o-4 for high tensile
steels :—
fi=Ff185 + 12.2 + 035.4%) .
where f, = maximum permissible shear stress for ratio #,
+ f; = fatigue limit for completely reversed torsional
stress,
= ultimate tensile stress/4 approximately for most
steels,
x = minimum shear stress/maximum shear stress.

When x =1, the range of stress is zero, and f, =34 .,
which is the ultimate shear stress.

When x = o, the minimum stress is zero, and f, = 185 . f,
which is practically equal to the endurance
range.

When x = — 1, ie. completely reversed stress, f, = fi, and
the endurance range is again 2 . f;.

(123)

The above expression shows, therefore, that if the per-
missible shear stress is +f,, it is immaterial whether it is
applied as a completely reversed stress or is superimposed on
a steady mean stress up to a value f,.

For example, if the maximum permissible stress in reversed
torsion is 3 15,000 Ibs. per sq. in., there is no risk in super-
imposing this on a steady stress of 15,000 Ibs. per sq. in., so
that the shaft is subjected to zero minimum stress and 30,000
Ibs. per sq. in. maximum stress. In both cases the range of
stress is 30,000 Ibs. per sq. in.

In the case of repeated bending stresses at various mean
stresses the same remarks apply, namely, that if the per-
missible bending stress is & f,, there is no risk in superimposing
this on a mean steady stress up to a value f;.

In the case of couplings subjected to periodic torque
fluctuations the stress on the spring elements may be regarded
as composed of a cyclic variation of stress superimposed on
a steady mean stress and, provided this steady mean stress
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does not exceed one-half the endurance range of the material,
the spring elements of couplings transmitting periodically
fluctuating torques can be safely designed from a considera-
tion of the fluctuating part of the load only, using the working
stresses given in Table 2I.

Since the principal duty of flexible couplings in drives
subjected to torsional vibration is to assist in absorbing the
fluctuating torque loading, the specific resiliences in Table 22

TABLE 2zr.
PROPERTIES OF MATERIALS.

Permissible Working Stress,

E
Material. 1bs.fin2. lbl.l?n.’.

§, Ibsfin?, | £, Ibsin®

30 tons/in.? mild steel . 130,000,000 | 12,000,000 | + 16,000 | + 8,000
60 tons/in.? alloy steel . 130,000,000 | 11,800,000 | * 30,000 | + I5,000
9o tons/fin.? spring steel . |30,000,000 | 11,500,000 % 50,000 | + 25,000

Stainless steel (high tensile) | 30,000,000 | 12,000,000 | * 30,000 | * 15,000
Stainless steel (low tensile) | 30,000,000 | 12,000,000{ #* 20,000 | * 10,000
Stamless steel (Austemhc) 28,000,000 | 11,800,000 | = 20,000 | + 10,000

“K ” monel metal . 26,000,000 | 9,500,000| =+ 19,000 | + 9,000
Bronze - - . . | 15,000,000 6,000,000 * 10,000 | £ 5,000
Duralumin . . | 10,000,000 3,800,000| + 9,000 | + 4,500
Rubber (average values) . 500 100] % 75| % 75

Bending { Torsion | Reversed | Reversed
moduli moduli | bending. | torsion.

are based on the permissible working stresses and elastic
moduli in Table 2r. This gives the maximum specific re-
siliences for each stress cycle, and for the different types of
spring element commonly used in practice.

Incidentally this specific resilience is the energy of the
vibration per unit volume, or weight, of the spring elements
when the maximum cyclic stress attains the values given in
Table 21.

Table 2z shows that the greatest specific resilience is
obtained with rubber in shear, although it is interesting to
notice that the resilience of rubber in shear per unit volume
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is very nearly the same as that of spring steel in shear per
unit volume. It should be mentioned, however, that the
safe working load of = 75 Ibs. per sq. in. depends on the
strength of the bonding between the rubber and its supports.

TABLE 22.
RESILIENCE PER UNIT VOLUME AND WEIGHT.
(Tuch-lbs.).
.- Mild ¢ Al Spris Dur- -
Description. 3 )G | Bems | Bromee. | o | T
Hollow  cylindrical |percu.in| 2-7 95 | 2770 21 27 | —
torsion bars {e.g. —_
quill shaits). perib. | 95 | 335 joso | 70 270 | —
S‘;]lfn’;‘;:d(‘:“;lqtfﬁ percu.in 13 | 48 | 135 | 10 | 14 | —
z‘;ﬁzs}f“d belical | per b, | 46 | 368 | 475 | 35 [ 135 | —
%Fle{nm.l members
e It I S I I
d tangul
rossection eg, | Pl | 5o Lar7 daos | 37 135 | —
flexible spokes).
Simple il f :
un}i)for;arl:ct;;ﬂ:r percuin| o5 | 17 | 47 | o4 | o5 | —
:epii:‘:;(e.g. fexible | porgp, | 18 | 6o | 26 3| 45 | —
percu. in| — — - —_ — 28
Rubber in shear.
per lb. —_ —_ — — — | 560
Rubber in tension [PEFEWiR) — | — j — ] — | — | 6
or compression.
P per 1b. —_ -—_ —_ — — 112

Spring steel possesses a higher specific resilience than any
other metal, owing to its capacity for withstanding very much
higher working stresses under both reversed bending and
reversed torsion loads. Thus, on either a volume or a weight
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basis the specific resilience of spring steel is about ten times
that of mild steel and about thirteen times that of bronze.

In the case of duralumin the specific resilience of spring
steel is from 6 to 10 times that of this light alloy on a volume
basis, but only from 2 to 33 times on a weight basis.

Table 22 also shows that the most efficient form of spring
element is a hollow cylindrical torsion bar; and that the
specific resiliences of a solid cylindrical torsion bar and a
flexural member of rectangular cross-section with uniform
skin stress everywhere are very nearly the same, when the
materials are required to withstand vibratory loads.

It is therefore immaterial whether torsion or flexural
members are used as the spring elements of flexible couplings
as far as specific resilience is concerned. The form of the
coupling is, however, an important factor in deciding the type
of spring. For example, the space available for installing
the coupling may indicate a form of coupling in which a much
greater volume of spring material can be accommodated in
torsion than in bending, and in such a case torsion members
would naturally be employed.

ExampLE 28.—A flywheel rim is attached to a shaft by eight
alloy steel spokes of uniform rectangular cross-section,
each spoke being 8 ins. wide. The inner radius of the
fly-wheel rim is 30 ins., and the outer radius of the boss
is 10 ins.

Calculate :

(i) The thickness of each spoke, assuming that the spokes
are securely built-in at each end; that the maximum
bending stress in the spokes must not exceed 1= 30,000
Ibs. per-sq. in.; and that the torque transmitted
from the flywheel rim to the flywheel shaftis - 600,000
1bs.-ins.

(i) The moment of inertia of the equivalent rigidly con-
nected flywheel, assuming that the moment of inertia
of the elastically connected flywheel rim is J.

Since the spokes are securely built in at each end and are of
uniform rectangular cross-section they are of type I in Fig. 52.
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(i) The maximum bending stress in each spoke is therefore
_ 6.T.LGR — L) _ :
f= @ P 6. R—6.R.LF 2.1y == 30000 bs/sq.ins,,
where T = applied torque = - 600,000 lbs.-ins.,

L = length of spoke = (30 ins. — I0 ins.) = 20 ins.,
R == radius to inside of rim = 30 ins.,
# = number of spokes = 8,
@ = thickness of spokes in inches,
b = width of spokes in inches = 8 ins.

Hence,

o 6 X 600000 X 20(3 X 30 — 20)

= 30000 X 8 X 8(6 X 30° — 6 X 30 X 20 + 2 X 20%)
ie.a=1in

(ii) The equivalent torsional rigidity of the spokes is
C__ﬂ.u’.b.E(3.R’—3.R.L+L*)
- 3.18 :
(see example I, Fig. 52),

ie C_8 X 1 X 8 X 30000000(3 X 302 — 3 X 30 X 20 -} 207)
R 3 X 208
= 104,000,000 lbs. ins./radian.
Hence, from Equation (92),
- J
A |
91-2C
3

Y] 1bs.-ins. sec.2.
9500000000
{Note.—Total resilience of spokes
ewoV.n3—3 K+ XY
6.E(3 - K)* ’

where K = L/R = 20/30,

V = volume of each spoke = 20 X 8 X I = 160 cu. ins.
2
Hence, W = 3;%2’})(3——16(”(: = 1-33 X 1280 = 1700 in.-Ibs.,

ie. resilience = 1-33 in.-lbs. per cu. in. or 1700 in.-Ibs.‘total.)

I
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ExXAMPLE 29.—Assuming that the generator mass in Table
is replaced by a flywheel rim connected to the shaft by
eight alloy steel spokes of the dimensions given in the
preceding example, calculate the moment of inertia of the
flexibly-connected rim so that the onme-node frequency
is unaltered.

From the preceding example the moment of inertia of
the equivalent rigidly connected mass is

- J .
L= w3
9500000000

This must be equal to the moment of inertia of the generator
mass in Table 1 if the one-node frequency is to remain un-
altered, i.e. for a frequency of 2520 vibs./min.,

J. = 23,500 Ibs.-ins. sec.2.

- J.
Hence, 23500 = a0
9500000000
or J = 1.405 lbs.-ins. sec.?.

Note that the value of the two-node frequency with this
flexibly connected flywheel rim is different from the value
given in Table 2.

The amended value can be obtained by making a new fre-
quency tabulation, using a value of 1405 Ibs.-ins. sec.? for
the moment of inertia of the generator mass, and a value,

C,.C, for the stiffness of the section of shafting
C,+C, between no. 6 cylinder and the generator,
where C; = actual stiffness of shafting between no. 6 cylinder

and the generator
=170 X 10" lbs.-ins./radian (from column 1 of
Table 1),
torsional stiffness of the flexible spokes
10'4 X 107 Ibs.-ins./radian,

Co=

Ce

I

. ~ (17 X 104 e 2 The R
ie. C,= (I—-——7 T 10‘4) X 107 = 6-45 X 107 Ibs.-ins. /radian,
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ExaMpLE 30.—Calculate the torsional rigidity of a flexible
coupling, assuming that the coupling is to be as flexible
as possible, taking into account the following limitations
in design:—

(@) Coupling to be of the type which employs flexible
spokes as the spring elements.

(b) The flexible spokes to be integral with the hub.

(c) The coupling and the mild steel shafts which it con-
nects to be capable of transmitting a fluctuating
torque of = 10,000 Ibs.-ins., superimposed on a mean
transmission torque of 5,000 1bs.-ins.

(d) The outside diameter of the coupling not to exceed
12 ins.

(e) The width of each spoke to be one-half the length of
the spoke, and the shafts on which the coupling is
mounted to be hollow, the inner diameter being
one-half the outside diameter.

Diameter of Mild Steel Shafis.—From Table 21 the safe
stress for mild steel in reversed torsion is & 8oco Ibs. per sq.
in., assuming that the shafts are free from stress raisers. Since,
however, in the present instance the keys or splines used for
securing the two halves of the coupling to the shafts must be
taken into account as stress raisers, a stress concentration
factor of 2 will be assumed. The working stress is therefore
=+ 4000 lbs. per sq. in.

The following expression shows the general relationship
between torque and shaft diameter :—

T =a.D¥x — K% . f,/16, . . . (124)
where T = transmitted torque = - 10,000 lbs -ins.,

D = outside diameter of shaft in inches,

d = inside diameter of shaft in inches,

K = d|D = 1/2 in this example,

fs = working stress = + 4,000 Ibs. per sq. in.
Hence, D*=16.T/[x(x — K% f].
For a solid shaft, K = o, ie. D*=16T/(n.f) = 51T/f
When K = 1f2, D3 = 544T/f, = 544 X 10,000/4000,
or D = 2-38 ins,
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The shafts on which the coupling is mounted should there-
fore be about 2-4 ins. outside diameter x 12 ins. bore.

The stress due to the mean transmission torque has been
neglected because it has already been shown that a fluctuating
stress of - f; can be safely superimposed on a steady stress of
the same magnitude. In this example the steady stress is
well below the fluctuating stress, viz. 2000 lbs. per sq. in.
steady stress and 3 4000 Ibs. per sq. in. fluctuating stress.

Dimensions of Spokes.—It will be assumed that the spokes
are designed as cantilevers of rectangular cross-section, fixed
at the hub and free at the rim, with uniform skin stress through-
out, because this type gives the maximum specific resilience
obtainable with any practicable form of spoke. It will also
be assumed that the necessary variation of cross-section to
give uniform skin stress is obtained by varying the thickness
of the spoke and keeping the width constant, because this
method gives a somewhat greater volume of spring material
and therefore a somewhat greater total resilience than other
methods of obtaining uniform skin stress.

The spokes are therefore of Type III in Fig. 52 for which
the resilience per unit volume, from Table 20, is f,?/(7-1E),

i.e. total resilience of coupling
=W =f2.V.n/(7xE) (Type II1, Fig. 52).

For spring steel spokes, the permissible working stress in
reversed bending, assuming that the radius at the root of each
spoke is sufficient to avoid any severe stress concentration, is
=+ 50,000 Ibs. per sq. in., from Table 21.

Hence, W = 50,000%. V. n/(7:T X 30,000,000)
= 117V . 7 ins.-Ibs.

(Note.—This value is somewhat less than the value given
in Table 22 because the skin stress in spokes of Type III in
Fig. 52 is not exactly uniform throughout the beam.)

Let a = thickness of each spoke at root, in inches,
b = width of each spoke, in inches,
L = effective length of each spoke in inches = (R — 1),
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R = effective radius of spoke at rimin inches,
7 = effective radius of spoke at hub, in inches,
K=7rR,ier=K.R,
V = volume of material in each spoke, in cubic inches,
» == number of spokes in coupling,
V, = V.2 = total volume of material in spring elements
of coupling, in cubic inches.

Then, for a spoke of Type III in Fig. 52,

V=2.4.5.L3=2.a.bR —7)[3,
ie. V.=2.a.5.0nR —7)3.

It has already been mentioned that the radius at the roots
of the spokes, when these are integral with the hub, must be
sufficient to prevent concentration of stress at these points.
The radius at the roots of the spokes should therefore be equal
to the width of the spokes at that point, as shown at IV in
Fig. 53.

This implies that the pitch of the spokes round the periph-
ery of the hub at the effective radius#» should be about = . 2
so that the maximum number of spokes which can be accom-
modated is

#n=2z.r/a.
Hence, V,=4.0.7(R—7)/3=4.b. R(K — K¥/3.

The volume of material in # spokes, and therefore the re-
silience of the whole coupling, is a maximum when K = 1/2,

Le. R=o2r
and V w max = b . R¥3 cubic inches.

Since the maximum outside diameter of the coupling is
limited to 12 ins., it will be assumed that the effective radius
of the spokes at the rim of the coupling is R = 5 ins., which
should allow ample margin for accommodating the tips of the
spokes as shown at IV in Fig. 53.

Hence, the dimensions of the spokes are as follows :—

R=3ins.; r="Rf2=25ins.; L=(R—7) =2-51ns. ;
and n = 2.7/a = 5/a.
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The maximum stress in the spokes, from Example III,
Fig. 52, is
f=645T.L{n.a*.b.R),
where T = transmitted torque = =+ 10,000 Ibs.-ins.,
L = length of spoke = 2-5 ins.,
# == number of spokes = 5/a,
a = thickness of spokes at root,
b = width of spokes at root = L[z (specified) = 1-25
ins.,
R = effective radius of spokes at rim = 5 ins.,
f = permissible working stress = + 50,000 Ibs. per
sq. in. for spring steel spokes in reversed

bending.
_ 675 X 10000 X 2'5
Hence, 50000 = SXTBX3Xa’
or a = 0108 in.,
and n = 5/a = 46.

The spring elements of the coupling are therefore 46 spring
steel spokes, 0-108 in. thick X r-25 ins. wide at the roots;
2-51ins. long ; 5 ins. effective radius at tip, and 2-5 ins. effective
radius at hub.

Referring to Diagram IV in Fig. 53, the diameter of the
hub at the bottom of the root radii of the spokes is

(5 — 24) = 478 ims.
The outside diameter of the mild steel shafts on which
the coupling is mounted is 2-4 ins., so that there is ample margin
for fixing the spoked member on its shaft.

Torsional Rigidity of Coupling—The total volume of
material in the coupling springs is

V.n=2.a.b.L.nf3=2 X 0108 X I-25 X 2:5 X 46[3
= 10-35 Cu. ins.
Hence, total resilience = W = 117V . % = 117
X 10°35 == 1210 ins.-lbs.
Now strain energy = W =T . §/2,
and torsional rigidity = C = T/d.
vOL. 1—I6
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LT
Hence, W= T C= R . . (125)

where T = transmitted torque = 10,000 Ibs.-ins.,
W = total resilience = 121-0 ins.-bs.,
_ 10000 X I0000

1e. C= > X Tato = H13.000 Ibs.-ins. /radian.

This value can be checked by means of the expression
from example III of Fig. 52, viz.,
C=n.a".0.E.R¥(85L3
_ 46 x 0-108% X 1'25 X 30000000 X 5°
- 85 x 25°
. = 410,000 lbs.-ins./radian.
The equivalent length of 2-4 ins. diameter solid shaft,
ie. of shaft the same diameter as the shafts on which the

coupling is mounted, is given by the expression from example
III of Fig. 52 as follows :—

Le. D 250 X 2:4¢

T3.m.a%.5.R* T 3 X 46 X 0108 X 125 X 52
= 95 ins. of 2-4 ins. diameter solid bar.

L.

It is of interest to note that an alloy steel torsion bar
1-5 ins. in diameter and 14 ins. long would transmit the same
torque and have the same flexibility as the above coupling,
assuming that this bar was free from discontinuities, so that
the working stress of 4 15,000 lbs. per sq. in. in reversed
torsion given in Table 21 could be permitted. The weight
of the torsion bar is about 7 Ibs. compared with about 3 lbs.
for the more highly stressed spring steel spokes of the flexible
coupling. The total weight of the torsion bar assembly
would, of course, be somewhat greater than 4 Ibs., due to the
provision of the necessary attachments to the input and out-
put shafts, whilst the total weight of the flexible coupling
would be considerably greater than that of the spokes alone.
A detailed investigation would probably reveal that the total
weight of the flexible coupling was at least twice that of the
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torsion bar and its attachments. The principal objection to
the torsion bar is the axial space required to accommodate it,
whilst an advantage of the flexible coupling is that supple-
mentary damping means can be provided more easily than
in the case of a torsion bar, if this is required.

A further check on the torsional rigidity of the above
flexible coupling is obtained by applying the general expression
[Eqn. (122)] for the torsional rigidity of a coupling containing
flexural spring elements carrying a uniform skin stress, viz.,

C=3.E.T¥(V.n.f3, . . (122)
ie. in this example,

C = 3 X 30000000 X 100002

1035 X 500007 = 348,000 lbs.-ins./radian.

This is about 15 per cent. less than the value previously
calculated, the discrepancy being due to slight lack of uni-
formity of skin stress in the shape of spoke chosen.

Flexible Couplings Employing Helical Springs.—
Diagrams I and II in Fig. 53 show two types of flexible
coupling in which helical springs are the flexible elements.
Diagram I is an arrangement employing compression springs,
whilst Diagram II employs tension springs. The arrangement
employing compression springs is often used as a spring drive
in geared systems, the teeth of the gearwheel being cut on
the periphery of the outer member. It is also used as a damped
and tuned vibration absorber, the damping means being either
solid friction, in which case suitable frictional surfaces are
introduced between the outer and the inner members, or
hydraulic friction, in which case the spring pockets are made
fluid tight and are filled with oil which is forced through small
openings between the pockets, when relative motion occurs
between the inner and outer members, due to vibration (see
Figs. 176 and 201).

In the arrangement employing tension springs, special
care must be taken to permit absolutely free rotation of the
end connections of the springs on their anchoring pins when
relative motion occurs between the input and output sides of
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the coupling. If this is not done there is serious danger of
breaking the end coils of the springs.

The type of end connection shown at II in Fig. 53 is prob-
ably the most satisfactory. Two or three coils are wound
tightly at each end of the spring and a screw thread is cut
on the shank of the end connections. This thread is the same
size and pitch as the closed end coils of the spring and is
machined so that it is a tight fit when screwed into the spring.
Care must be taken to remove all sharp corners. The inch
rate of the spring can be controlled to a slight extent by the
amount the end connections are screwed into the spring, and
this is sometimes a useful method of correcting slight differ-
ences in rate between one spring and another. It should be
noted, however, that whilst it is an easy matter to screw the
end connections into the spring, it is not so easy to unscrew
them, due to automatic tightening of the coils on the shank.

Compression springs are probably to be preferred, since it
is difficult to provide really satisfactory end connections for
tension springs without sacrificing a good deal of the space
which would otherwise be occupied by the spring members.

In designing the springs it is necessary to make sure that
there is sufficient initial tension to avoid completely unloading
the springs on one side of each arm when the coupling is trans-
mitting the designed maximum steady torque plus the maxi-
mum fluctuating torque.

The same remark applies to the initial compression of the
springs in the arrangement shown at I in Fig. 53.

The strength and flexibility of couplings employing helical
springs in tension or compression can be calculated as follows :—
Let T = total torque transmitted by coupling for a deflec-

tion «
=P.xn.R, Ibs-ns.,
P = load acting along axis of each spring in Ibs.,
% = inch rate of each spring, ie. the load per unit de-
flection of spring, in Ibs. per in.
= PJx,
7 = number of springs,
o = linear deflection of each spring in inches,
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R = radius from axis of rotation of shaft to pitch circle
radius of springs (see Fig. 53),
8 = angular deflection between input and output sides
of coupling in radians.
Then 6 = «/R, and C = torsional rigidity of coupling = T/6,
ie. C=P.n.R%a=*h.n.R?*Ibs-ins. per radian. (126)

The maximum fluctuating stress in the spring can be
calculated from the following expression :—

£= D persqin, . . L )
where + P = maximum fluctuating load on each spring in Ibs.
~ T/(n. R),

D = mean coil diameter of spring in inches,
d = diameter of spring wire in inches.

To this must be added the steady stress due to the initial
tension or compression which is necessary to ensure that the
springs are never completely unloaded under the most severe
vibratory movements which the coupling handles. This
implies that the initial load in each spring must be at least
equal to the fluctuating load plus the steady mean load.

In determining the safe load on the coupling under com-
pletely reversed torsion it is necessary to take into account
any discontinuities which can act as stress raisers. For
example, the above expression for the maximum stress is
torsional stress only, and does not take into account the effect
of the ratio of wire size to mean coil diameter in introducing
additional stresses which increase as this ratio diminishes.

This effect can be taken into account by multiplying the
stress given by Equation (127) by the following factor :—

Y=(EiUI.'i), L a®

where U = D/d.

This expression agrees very well with the formula developed
by Mr. A. M. Wahl, and shows that when D/d = 5 there is
a 30 per cent. increase in stress. The mean coil diameter
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should, if possible, be not less than eight times the diameter

of the wire.
The inch rate of the spring can be calculated from the
following expression :—
b=Pa= % bs, per inch (29)
! 8§.D3. N T !
where G = modulus of rigidity (see Table 21),
N = number of free coils = (total number of coils
— 2), unless screwed end attachments are

used.

ExaMpLE 31.—Calculate the torsional rigidity of a flexible
coupling of the type shown at I in Fig. 53, assuming the
following conditions :—

() The pitch circle diameter of the springs to be 10 ins.

(6) The coupling to transmit a fluctuating torque of

-~ 10,000 lbs.-ins., superimposed on a mean trans-
mission torque of 5000 lbs.-ins.

Spring Loads—The total load on # springs is made up
as follows :—

P, = load due to fluctuating torque = 4 10,000/5

= - 2000 lbs.,

P, = load due to mean transmission torque = 3000/5

= 1000 Ibs.,

where the + sign indicates compression.

To avoid completely unloading one of the springs of each
pair the initial load on the springs must be at least equal to
(P: + Pa),
ie. P, = (2000 + 1000) = 3000 Ibs.

Thus the initial compression in each spring to avoid un-
loading one of each pair completely must be 3000/7 1bs.

The maximum total load on any spring is therefore

P = 2Py/n = 2 X 3000/n = + 6000/n, to zero.

(Actually the initial compression of the springs should provide
a small margin over the actual minimum required to avoid
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complete unloading. It will be assumed therefore that the
maximum load on any spring varies from -+ 6100/% to + 100/n
for reversible drives.

Note that the loads are 6100/%n to 2100/n per spring for
the leading springs and 2100/n to Ioo/n per spring for the
trailing springs in the case of non-reversible drives.)

Spring Dimensions.—Assuming that the springs are made
of go tons per sq. in. spring steel and that the mean coil
diameter D is four times the wire diameter &, the stress is
given by Equation (127),

ie. fi=255.P.Dd,
where Js = permissible working stress,
P = maximum load on each spring
= 6100/n,

D = mean coil diameter = 4.4,
4 = wire diameter.
Assuming that there are no stress raisers, the maximum
permissible shear stress is given by Equation (123),
Le. Js=1i(1-85 4 129 + 03543,

Note.—In this case it is not permissible to design the spring
from a consideration of the fluctuating load only, because the
steady load (i.e. the sum of the initial plus mean transmission
load) is greater than one-half the range of the fluctuating
load
where f; = fatigue limit for completely reversed torsion

= 90f4
= 4 22-5 tons per sq. in. for go tons per sq. in.
spring steel,

% = minimum stress/maximum stress = 100/6100 = 6£x
Hence, f, = 225 (1-85 + 1-2/61 + 0-35/3721) = 42 tons per
sq. in.
The appropriate allowance for secondary stress effects is
given by Equation (128), viz.,
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Y = (U + 15)/U,
where U=Dld=4. .
Hence, Y =4+ 13)/4 =1375

Thus the maximum permissible equivalent static stress is
42 1-375 = 305 tons per sq. in.

A safe working stress of 60,000 lbs. per sq. in. will therefore
be assumed, and since in a reversible drive the load on each
spring varies from 6100/ to 1oom, the corresponding stress
variation is from 60,000 to §80 lbs. per sq. in.

The number of springs which can be accommodated de-
pends on the lemgth of the circumference of the pitch circle
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FiG. 54.—Safe stress rang s for carbon steel springs.
(Barnes-Gibson-F aymond, U.S.A.)
tound which the springs are spaced. It is necessary to make
one or two trial calculations before the best compromise is
obtained, since there are an indefinite number of spring com-
binations which can be utilised. As the springs are arranged
in pairs there must be an even number.

The permissible stress ranges in steel springs subjected to
fluctnating loads are given in a paper by F. P. Zimmerli, en-
titled, ‘‘ Permissible Stress Range for Small Helical Springs "
(Engineering Research Bulletin, No. 26, July, 1934, University
of Michigan). Fig. 54 shows representative diagrams for
carbon steel springs in torsion and in bending.

The abscisse and ordinates of these diagrams represent
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the minimum and maximum stresses in the spring respectively,
and it is essential that any point plotted from given values of
minimum and maximum stress should lie within the shaded
areas for satisfactory spring life. Thus, in Fig. 54, point A,
representing a minimum stress of 60,000 and a maximum
stress of 90,000 lbs. per sq. in. is a safe design; whilst point
B, representing a minimum stress of 20,000 and the same maxi-
mum stress of 90,000 1bs. per sq. in. is an unsafe design.

Similarly, point C on the diagram for steel strip springs
subjected to bending is safe, whilst point D is unsafe.

In the present example the springs are subjected to a
minimum stress of g8o and a maximum stress of 60,000 Ibs,
per sq. in. in torsion. Fig. 54 shows that these are safe values.

In the present example it will be assumed that there are
8 springs and that the width of the abutments on the pitch
line is about 1 in. The length on the pitch line which is avail-
able for accommodating each spring is therefore

Circumference of 10 ins. diameter pitch circle = 31416
ins.
Space occupied by 8 abutments, each 1 in. wide on pitch
Jine =8 X 1 = 8 ins,
Length on pitch line per spring
= (31°416 — 8)/8 = 2-92 ins,,
i.e. it will be assumed that each spring is 2-75 ins. long when
it is in position in the coupling and when the coupling is not
transmitting torque.
The maximum compressive load P on each spring is
therefore
P = 6100/# = 6100/8 = 763 Ibs.,
and, from Equation (x27),
60,000 = 235 X 763 X 4 X d[d® = 7780/d?,
or a2 = 013,
d=036in,,
D=4.d=4 X 036 =144 ins.
Assuming a solid length of 2-25 ins. for each spring, ie.
allowing o-5 in. for compression of each spring under the
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transmitted torques, the maximum permissible number of coils
is 2-250-36 = 6-23, say 6.
The number of free coils in each spring is therefore
N = (6 — 2) = 4 free coils.

The inch rate is given by Equation (129), viz.,
A G.d* _ 11300000 X 0:36%
T8 DX 8XI4f X4
= 2020 Ibs. per in.
The dimensions of each spring are therefore as follows : —
d = diameter of wire = 0-36 in.,
D = mean coil diameter = 1-44 ins,,
N = number of free coils = 4 (i.e. total number of coils = 6),
k = inch rate = 2020 Ibs. per inch,
P = safe load = 763 Ibs. per spring.
Initial load = 3100/n = 3100/8 = 388 Ibs. per spring.
Initial compression = 388/2020 = 0192 in.
Free length = (2-75 + 0'19) = 2-94 ins.
Maximum load = 6100/n = 6100/8 = 763 Ibs. per spring.
Total compression = 763/2020 = 0-38 in.
Minimum compressed length = (2-94 — 0-38) = 2-56 ins.
Solid length = 6 X 0-36 = 2-16 ins.
Since the solid length is less than the minimum compressed
length the spring is suitable for the specified duty.
Torsional Rigidity of Coupling.—This is given by Equation
(126), viz.,
C = k.n. R®1bs-ins. per radian,
where & = inch rate per spring = 2020 lbs. per inch,
n = number of springs in coupling = 8,
R = pitch circle radius of springs = 5 ins.,
Le. C = 2020 X 8 X 25 = 404,000 lbs.-ins. per radian.
Check by Resilience Method.
The total resilience of the spring elements of the coupling is
W = f2.V/(4.G) (see Table 20),
where  f, = maximum stress due to fluctuating portion of the
torque transmitted by the coupling.
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The load per spring due to the fluctuating part of the

torque is
= £10,000/(8 X 5) = = 250 1bs.

The stress in the spring due to the maximum load of 763
Ibs. is 60,000 1bs. per sq. in.

Hence the stress due to the fluctuating part of the torque
is
fi = £ 60,000 X 250/763 = = 19,650 Ibs. per sq. in.
V = volume of active material in the springs

a .42
=-4—.w.N.D‘n=z~47xo~36”><4>< 144 X 8
= I4{'75 cu. ins.

0% ¢ Tqems
W= 190508 X 1475 1235 in.-lbs.

Hence,
4 X II500000

Also, from Equation (125),
C=T%(z. W),
where T = fluctuating portion of transmitted torque
= - 10,000 lbs.-ins.,
ie. C = 10,000%/(2 X 123'5) = 404,000 lbs.-ins. per radian,
which agrees with the value previously obtained.

This torsional rigidity is practically the same as that of
the spoked coupling of Example 30.

If allowance is made for the necessary inactive end coils
of each of the helical springs, the total weight of spring material
in the present coupling is about 6 lbs. compared with only
3 Ibs. for the spoked coupling. The weight of a coupling em-
ploying helical springs of the type shown at I in Fig. 53 is
therefore, in general, greater than that of a spoked coupling
having the same total flexibility, despite the fact that the
resilience per unit volume and weight of solid cylindrical
torsion members is practically the same as that of flexural
members with uniform skin stress everywhere, as shown in
Table 22.

This is because the stress in the helical springs of couplings
of Type I, Fig. 53, is considerably below the maximum per-
missible stress due to the necessity for providing sufficient
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initial compression in all the springs to avoid completely
unloading one spring of each pair when the coupling is trans-
mitting fluctuating torques. If no initial compression were
provided only one-half the total number of springs would be
effective, so that the resilience of the active material and the
torsional rigidity of the coupling as a whole would be halved.
Moreover, a coupling of this type without initial compression
of the spring members is an impracticable arrangement.

M.A.N. Sleeve Spring Coupling.—The coupling shown
at III in Fig. 53 was developed by the M.A.N. works for use
in damping torsional vibrations. This coupling consists of a
number of packets of sleeve springs, one of which is shown
in detail in Fig. 53.

Each packet contains a number of neatly fitting steel
sleeves, with a slot cut through the whole assembly so that
the spring element comprises 2 number of C-springs in parallel.
Maximum resilience is obtained by grading the thickness of
the sleeves so that the stress is nearly constant at all points.
A cylindrical member is accommodated within the innermost
sleeve, and this member is provided with a tongue piece which
is keyed into the hub and serves to prevent rotation of the
spring packets as a whole, and also to limit the deflection of
the springs, thus preventing over-stressmg

The cylindrical centre piece introduces a certain amount
of non-linearity because the spring packet gradually contacts
this member as the applied load increases. There is also an
appreciable amount of damping due to inter-sleeve friction.

The torsional rigidity of a coupling of this type can be
calculated as follows :—

Referring to the loading diagram for one sleeve shown
at II1 in Fig. 53,

let T = torque transmitted by coupling, in Ibs.-ins.,
N = number of spring packets,
R = pitch circle radius of spring packets, in inches,
= tangential load on each spring packet = T/(N . R),
in Ibs.,
r = mean radius of any one sleeve, in inches,
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E =modulus of elasticity of material of sleeves, in
Ibs./sq. in.,
I = moment of inertia of cross-section of one sleeve
= b .#/12, in ins.* unit,
= length of sleeve, in inches,
t = thickness of sleeve, in inches,
v = tangential deflection at pitch circle of spring
packets, in inches.

Then
e I
resilience of any one sleeve = W = TR I_[M" .dx. (117)
In this case M,=P.7».sin3,
. (™ .
ie. W—mLPZ.r’.sm’.S.dx,
but z=r.8 or §=uafr.
Hence w=2r jmsmz sl dx
ence, =:E1), Lxfr.
=n.P2.7%(4.E.I)
=3.a.P2.A(E.b.85). . (130)
The strain energy is also given by the following expression i—
W =P.yf2.
Hence, y=2W[P=6.n.P.A[(E.b.5). . (131)

If there are # sleeves in each spring packet, y is the common
deflection at the pitch circle radius of all sleeves.

Let Py, P, P, etc., = the tangential load carried by the
various sleeves of each pack, for
example, load P, is the load
carried by the outermost sleeve.

K,, K, K, etc., = the corresponding values of y/P,
ie. Ky=9P,=6.7.r3(E.b.%3.
Then P = total load on pack !
=P, +Py+Ps+...+P,) Ibs
=y(E/Ky+ 1K + 1Ks + . . . + 1/K,),
whence y = P/(1/K, + 1/K, + 1/Ks3 + . . . +1/K,).
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The angular deflection of the input side of the coupling relative
to the output side is
8 =R,
ie. C = torsional rigidity of coupling = T/f =T . R/y.
Stress in Spring Sleeves.

Let £, far - - « fm eic., = bending stresses in the various
sleeves of each pack.
Then Fa=6.Pn.7,J(b. 20, . . (132)

Since the tangential deflection at the pitch line for the
whole spring pack is also the tangential deflection for each
sleeve of the pack, the following relationship is obtained from
Equation (131):—

E.b.y6.7 =P, r3t% =P, 13t
=P, rdid =. . . =P, 30

Also, since for maximum resilience the same stress must
occur in each sleeve, the following relationship is obtained
from Equation (132):—

b fio =Py .ryft,2=P,y. 7yt
=Py 1t =. . . =Pl
Combining these results,

talty = 7:311® OT Enftingy = 7,2(7%0s), . (133)
and PofPy=13r® or Po/Playy = 1287y, . (134)
ie. the thicknesses of consecutive sleeves are proportional to
the squares of the mean radii of the sleeves, and the tangential
loads at the pitch lines of consecutive sleeves are proportional
to the cube of the mean radii of the sleeves.

The selection of the best combination of sleeves is largely
a matter for trial and error, but this process is facilitated by
making the following simplifying assumptions for the first
attempt.

It has already been shown that 2,/f, = 7,%/7,%, and, since
the sleeves fit snugly inside one another,

ra =17, — (t; + 1a)/2,

Le. £y = tl(t.x.:%___("d'fa))”_
1
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If it is assumed that ¢, =¢,, and that higher powers of
¢ can be neglected, the above expression reduces to

by =1(I — 2. 4,/ry),
and ty = 1o(T — 2. £,frs),

by =tpoll —2 .ty sfrus). . . (135)
Also, for correct fitting of sleeves,

7y =17, — 05(t; + £o),

75 =15 — 0-5(fs + £3),

Tn=tpy — 05(tn-1 + a), . . (136)
where 7, and #, are the mean radius and thickness of the
outermost sleeve.

Example 32 shows the application of the above methods
to the design of a sleeve spring coupling.

ExaMPLE 32.—Calculate the torsional rigidity and load-carrying
capacity of a spring sleeve coupling to fulfil the following

specification :—
Pitch circle of spring packs == 3% ins. radius,
Bore of housing of spring packs = 275 ins.,
Number of sleeves per pack =6,
Number of packs =6,
Width of sleeves = 2-0 ins.,
Thickness of outermost sleeve = 0-100 in.

Since the bore of the housing for each pack is 2-y5 ins. and
the outermost sleeve is 0-100 in. thick, the mean radius of the
outermost sleeve is (1-375 ins. — 0-050 in.) = 1-325 ins,,

ie. 7, = 1325 ins. ; and ¢, = 0100 in.

The approximate dimensions of the remaining sleeves can
be determined by applying Equations (135) and (136), as shown
in the following tabulation :—

For example,
2, = £5(I — 2. §4/r;) = 0-T00(T — 2 X 0-100/1-325)
= 0-085 in.,
and 7, =7, — 05(; + ¥s) = I-325 — 0-5(0°X00 + 0085)
= 1233 ins.
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The value of ¢, obtained by this method differs from the
true value as follows :—
true value of £, = f; . 7,%/7,% = 0-100(1-233/1°325)% = 0-087in.,
or,ingeneral, ¢, = t, 4(ra/tn_1)%

The correct dimensions of the various sleeves can therefore
be quickly determined from the approximate dimensions in
columns 2 and 3 of the following table by applying the above
equation. The correct dimensions are given in columns 4
and 3 of the table —

! { Permissible

s | ! Defiectio

§ | Corrested D Toadon ' | Codine.

£

@ P i . t P,. UK,

1 | 1-325ins.| o'rooin. | 1325 ins. | o100 in. 214 Ibs. 1370

2 | 1233 0085 1232 0087 174 1120

3 | ris54 0073 1151 0076 142 910

4 | 1086 o0b4 1080 0:067 118 760

5 | 17026 0056 1017 0059 97 620

6 | 0973 0050 0961 0053 83 530
P=8281bs.| 1/K=5310

A consideration of the action of these sleeve springs shows
that the stress in any fibre is always uni-directional, even when
the applied torque on the coupling reverses. The greatest
stress range occurs, therefore, in couplings fitted to reversible
drives, in which case the minimum stress is zero. The safe
stress range for rectangular strip in bending is given in Fig. 54,
and for zero minimum stress the permissible maximum stress
is 85,000 Ibs. per sq. in.

The sixth column of the above table shows the maximum
permissible load on each sleeve and is obtained from Equation
(132), using a working stress of 85,000 1lbs. per sq. in.

Thus, for the outermost sleeve, where 7 = 1-325 ins.,
i=o0-1001n, and b = 2-0 ins.,

P=05.2.f6.7), from Equation (132),
ie. P, =20 X 0100 X 85,000/(6 X 1'325) = 214 lbs.
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The total maximum working load for all sleeves in one
pack is the sum of the values in column 6 of the foregoing
table, namely, 828 Ibs.,
jie. T = maximum working torque for coupling =828 X 6 X 35

(6 packs each containing 6 sleeves at 35 ims.
radius) = 17,300 Ibs.-ins.

Column 7 of the foregoing table gives the values of 1/K
for the various sleeves. As already shown, the common tan-
gential deflection at the pitch circle of the spring packs is

y = PJ(1/K) = 828/5310 = 0156 in.,
and the torsional rigidity of the whole coupling is
C = T. R}y, where R is the pitch radius of the spring packs,
= 17,300 X 35/0-I156 = 390,000 lbs.-ins. per radian.

The angular deflection between the input and output
shafts when the coupling is transmitting a torque of 17,300
Ibs.-ins. is therefore

6 = 17,300{390,000 = 0'0444 radian
= 254",

The deflection limiting central piece should therefore be
designed to permit a deflection of 4 2-5° so that a torque of
17,300 Ibs.-ins. can be accommodated in either direction
and to ensure that the maximum stress range in the spring
elements does not exceed the permissible value of 85,000 Ibs.
per sq. in.

Thus the maximum capacity of this coupling is + 17,300
1bs.-ins., and this can be made up of a fluctuating torque super-
imposed on a steady transmitted torque, provided the maxi-
mum value of the combined torque does not exceed the limit
set by the stop piece. For example, a fluctuating torque of
4 8650 1bs.-ins. could be superimposed on a steady torque
of 8650 lbs.-ins., in -which case the maximum combined torque
would be 17,300 lbs.-ins., whilst the minimum combined torque
would be zero.

The deflection limiting members should be hardened on
the surfaces which contact the ends of the spring sleeves, and

VOL. L.—17
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the sleeves themselves should be a neat sliding fit within one
another (diametral clearance 0-002 in. to 0-004 in.).

The spring packs should be fitted into their bores with an
initial deflection of about 0-008 in., i.e. the bores of the spring
pack housing should be about 0-008 in. less in diameter than
the free outside diameter of the outermost sleeve of the spring
pack assembly,

This initial deflection provides sufficient pre-loading to
eliminate back-lash, which is desirable when the coupling has
to transmit torque in either direction.

The sleeve spring coupling of Example 32 has approxi-
mately the same load carrying capacity and the same tor-
sional rigidity as the spoked coupling of Example 30, and the
helical spring coupling of Example 31, i.e. the capacity of the
couplings in Examples 30 and 31 is a fluctuating torque of
+ 10,000 lbs.ins. superimposed on a steady torque of 5000
Ibs.-ins. In this example, although the maximum fluctuating
torque which could be superimposed on a steady torque of
5000 Ibs.-ins. is 4- 12,300 lbs.-ins. it would be advisable to
restrict the fluctuating portion to a value somewhere in the
legion of 4 10,000 Ibs.-ins. to avoid continuous hammering
on the central stop piece and leave a reasonable margin for
occasional overloads.

The weight of the spring material in the sleeve spring
coupling is, however, 13 Ibs., compared with 3 lbs. for the
spoked coupling and 6 Ibs. for the helical spring coupling.
The sleeve spring coupling is therefore, in general, heavier
than a coupling employing helical springs of the type shown at
I in Fig. 53. This is mainly due to the somewhat large pro-
portion of unstressed spring material which must be provided
to take the spring reactions in the hub member (see Diagram
III of Fig. 53).

Spring Plate Couplings.—Fig. 55 shows a flexible coup-
ling in which the torque is transmitted through a number of
spring steel plates accommodated in slots cut in the coupling
flanges.

The torsional rigidity of this coupling is determined as
follows :—
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Let R = pitch radius of flexible plates, in inches,

» = number of plates,

L = effective span of one plate, considered as a beam
fixed at the ends, in inches,

3 = deflection of one end of the plate relative to the
other end, in inches,

P = reaction at each end of plate for a deflection y,
in Ibs.,

I = moment of inertia of cross-section of one plate,
about neutral axis, in inches* units,

E = modulus of elasticity, in Ibs. per sq. in.

! ] =t =

TR

Bl
DeﬂectsoanagPa N

T
Bending Moment, Diagram.
Fi6. 55.—Flexible coupling.

Then, applying the equations already given for the spokes of a
flexibly connected flywheel rim,
_E.1l.y _P.L®
P=—1— o Y=uET
6E.1.y 12E.I1.x.y

M="p T

b= - T ]

The angular deflection is therefore
§—2 = _P.IF
R nE.I.R
The total torque transmitted for a deflection y is
T=P.R.n.lbs.-ins.

radians.
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Hence, the torsional rigidity of the coupling is

C_T__IZP.R.”.E‘I.R__IZE.I.%.R2
e P.L? - L® :

(x37)

For steel plates of rectangular cross-section
E = 30,000,000 Ibs. per sq. in.,
3
1=%" b
12
3 2
Hence, C=W~li Ibs.-ins. fradian. (138)
The equivalent length of shaft of diameter D is obtained as

follows :—
Let L,= equivalent length of shaft of diameter D. Then

torsional rigidity of equivalent shaft is

_T_G.I,_=.D'.G
==

¢ T P

and, assuming G = 12,000,000 1bs. per sq. in. for steel,

4
C= 1177000 D

L
1177000 Dt _ 30000000 4%. 5.7 . R?
1e. = 13 .
Dt L2 .
‘Whence, L= e R ins. . . (x39)

Siress in Plates.—The maximum bending stress is the same
as already determined for the spokes of a flexibly connected
flywheel rim, viz.,

Juss ="

i.e. for rectangular steel plates

Sz = 31;‘;[' Ibs. per sq. in.
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In the present case the torque transmitted by the coupling

is
T=P.R.n I P=m.
.T.L .

Hence, fmx = a’;ﬁ_ﬁ 1bs. persq. m. . . (140)

The maximum stress should not exceed the values given
in Table 21.

Instead of providing separate slots for each plate, several
plates can be assembled in each pair of slots. This laminated

construction provides a certain amount of inter-plate damping
which might be useful in some cases.

ExampLE 33.—Calculate the dimensions of a flexible coupling
for a 23-in. diameter shaft, assuming that there are forty-
eight spring steel plates of rectangular cross-section, $-in.
wide.

The pitch radius of the plates is 4 ins., and the stress in
the plates must not exceed 50,000 Ibs. per sq. in. when the
shear stress in the shaft is 6000 Ibs. per sq.in. Theeffective
span is 2 ins.

Also calculate the length of 24-in. diameter shaft
having the same torsional rigidity as the coupling.

The torque transmitted by a 24-in. diameter steel shaft for
a maximum shear stress of 6000 Ibs. per sq. in. is
_ = 31416 X 25® X 6000
M= 16.D".f—-————————]:6
= 18,400 Ibs.-ins.
The stress in the plates is
__3.M.L
Jux =R
where L=2ins.; b=05in.; n =48 R =4ins.;
and Jraax = 50,000 Ibs. per sq. in.,
3 X 18400 X 2
at X 075 X 48 X 4
‘Whence, @ = 0124 in.

ie. 50000 =
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Equivalent length of 23-in. diameter shait is

L — DA L3 ) 254 X 2°
¢ T 2554°.0.7n. R? 253 X 01243 X 075 X 48 X 42
= II'15 ins.

Referring to Fig. 55, it will be seen that over the length of
the effective span L the sides of the grooves in the coupling
flanges are flared away from the plates to permit free deflection.
In practice, the shape of the sides is such that when the coupling
is transmitting the maximum permissible torque the plates
are in contact with the sides of the grooves. The effective
span of the plates is thus very small when overloads occur,
thus preventing over-stressing the material. Incidentally,
the alteration in the effective span when the torque becomes
excessive produces a corresponding alteration of the torsional
rigidity of the coupling. This alters the torsional vibration
characteristics of the system, and enables critical speeds to be
passed through safely.

Bibby Flexible Coupling.—This coupling is described
in Chapter ro, and is illustrated in Figs. 169, 170 and 171.

A fundamental and very important difference between the
Bibby coupling and other couplings of the type shown in Fig.
55 is that the spring elements of the Bibby coupling consist
of a series of plate springs or rungs which are connected to-
gether in grid formation as shown in Fig. 56.

This construction not only overcomes the very real diffi-
culty of anchoring the ends of the plates in the construction
shown in Fig. 535, but also provides considerably greater resil-
ience and freedom to allow for mis-alignment of the input and
output shafts.

Furthermore, the grid formation ensures that the rungs
bear only on one side of the grooves for a given direction of
torque loading. This avoids any tendency for the rungs to
become locked in the grooves, which sometimes occurs with
plain bars of the type shown in Fig. 55.

In one rather striking instance where a Bibby coupling
had been operated for a long time with an abnormal amount
of radial mis-alignment, and without lubrication, each, rung
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had worn on ome side only to about one-half its normal

thickness before fracture occurred.
The forces acting on one element of the grid spring are

shown in the left-hand diagrams of Fig. 57.

Let P = tooth reactions, in Ibs.,

T = torque transmitted by coupling, in Ibs.-ins.,
R = pitch circle radius of rungs, in ins.,

a = thickness of rung, in inches,

b = width of rung, in inches,

¢ = pitch of rungs, in inches,

L = length over teeth, in inches,

S = overall length of rungs, in inches,

Q = end reactions on each rung, in lbs.,

n = number of rungs,

E = modulus of elasticity, in Ibs. per sq. in.,
f» = maximum bending stress in rung, in Ibs. per sq. in.,
I = moment of inertia of cross-section of rung in ins.*

=b.a%12,

M = bending moment on rung, in lbs.-ins.,
W = resilience, in ins.-lbs.,

7 = radius of sides of teeth,

C = torsional rigidity of coupling, in Ibs.-ins./radian.

Then, referring to the top left-hand diagram in Fig. 57,

for equilibrium of each rung, P.L =Q.c,
or Q=P.Lfe

It should be noted that there is no unbalanced force on
each rung, and that the couple due to the tooth reactions
P is balanced by the couple due to the end reactions Q.
Furthermore, the end reactions Q of one rung are absorbed
by the equal and opposite end reactions of the adjacent rung,
so that there is no unbalanced exfernal end reaction.

The maximum bending moment acting on each rung is

M=0Q.¢/z2=P.L2
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Hence, the maximum bending stress in the rung is

»=M/Z, where Z=15.a%6,
for a rectangular cross-section,

ie fo=3.P.L/(b.a?.
Also, if T = torque transmitted by the coupling= P . R.#,
3.T.L
then, fo= Bt - . . (1404)

which is the same as the expression for the stress in the spring
elements of the coupling shown in Fig. 53.

Equation (1404) gives the maximum bending stress which
would occur in the rungs when transmitting a torque T, assum-
ing that this torque is not sufficient to cause the rungs to con-
tact the sides of the teeth, ie. assuming that the distamce
between the tooth reactions L is not altered when the coupling
is transmitting a torque T.

In practice, the maximum bending stress which can occur
in the rungs is limited by the radius of the sides of the teeth,
because, as the transmitted torque increases, the rungs come
gradually into contact with the sides of the teeth until, finally,
the reactions P occur close to the points of the teeth and the
rungs are bent to the radius of curvature of the teeth.

If the radius of curvature of the teeth is 7, the maximum
possible bending stress in the rungs is therefore

H=E.az.n. . . . (r41)
Resilience of Coupling—The shear and tensile resilience is

small and will be neglected in the following treatment.
Consider one-half of a rung, s-#«-» in Fig. 57.

Bending in Portion st.—

p— I 2
Wam s o
but M,== sing,
2
and M = maximum bending moment acting on rung

=Q.cf2.
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W M2 woclt | ) P
== sin?. «. dx.
Hence, 1=3TE Ijo

Also, r=c.a2, or o= 2xc,

where x is the length of arc subtending angle «,
Mz pEeclt 2
L J— p— 27
Le. W, = o IL sin® = . dx

=2 )
TE.IN16/°
Bending in Poriion t-u—Since in this case the bending

moment is constant and equal to the maximum bending
moment in the rung, viz M= Q.¢cz2=P .1z,

W, =L rdx,

2. E. 1]
: . M2
e W=gy().
but y—S/z—L/z——c/ =8 —-L—c)f2

. S—L—¢
Hence, W, E I(\ —————Z————)

Bending in Portion u-v.—Bending moment varies from
zero to the maximum bending moment in the rung, viz. M.,

ie. s=P.x

Hence, W;= ;_3 IJ Pz, %% dx

L3

- 48 E.T
but M = maximum bending moment on rung =P . L/2,
. M2 /L
ie. W= E_I(I—2>
Total Resilience.
Resilience per half-rung = (W, + W, + W)
M’ S — L —c¢, L
TE. 6 o+ * 12)



FLEXIBLE COUPLINGS 267

Hence, total resilience of » rungs,
M2 (128 — 8L — 2570\

V=1 A

and since ¢ is small compared with S and L the expression
for total resilience of the coupling is

M2
6.E.1
* Torsional Rigidity of Coupling.
From Equation (125), C = T?%(2W).

Now, T = torque transmitted by coupling =P.R.#,
M = maximum bending moment on each rung = P. L/z.

W= 3.8—z2.L).n . . (r42)

Hence, C = torsional rigidity of coupling

12.2.E.I.R? . .

1538 — 2L) © Ibs.-ins./radian. . . (143)

The usual proportions of the rungs are given in Fig. 56, viz.,
S=36a; L=24a; b=4a; c=m.a

[Note : ¢ is the minimum pitch for forming the bends at the ends of the
rungs. The height of the teeth can be reduced to 075 . b where weight mast
be minimised.]

7 =ymaximum number of rungs permissible = 2 . R/a.
With these proportions Equation (r43) reduces to
C=TR2.E/4320. . . . (144)

Also, with these proportions the expression for the maximum
stress in each rung, Equation (140), reduces to

H=0.TRQ. . . . (1)
Finally, since T =Cé,
8 = amplitude of angular deflection across coupling
= T/C radian
= 57-3T/C degrees,

* This treatment neglects back-lash between the rungs and grooves.
A method of allowing for back-lash is given in Chapter 10,
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where T and C are obtained from Equations (140) and (143)
respectively.

The permissible working stress in the spring steel rungs
of couplings of this type is = 50,000 Ibs. per sq. in. for couplings
which are used as resilient members only, and 4 25,000 Ibs:
per sq. in. for couplings which may have to work under resonant
conditions, for example, when they are used in the construc-
tion of torsional vibration detuning flywheels. The lower
value of the permissible working stress allows for stress con-
centration at the bends at the ends of the rungs when the springs
are subjected to reversed bending loads.

ExaMPLE 34.—Calculate the principal dimensions of a coupling
of the type shown in Fig. 56, assuming that the trans-
mitted torque is = 10,000 lbs.-ins., and the required
torsional rigidity is 400,000 Ibs.-ins. per radian. The rung
proportions given in Fig. 56 may be used.

Torsional Rigiditv.—From Equation (144),

C =R3. E/4320,
ie. R? = 400,000 X 4320/30,000,000
=373,
or R = 3-86 ins.

Stress in each Rumg—Assuming that the coupling is not
intended to run continuously under resonant conditions, a
working stress of + 50,000 Ibs. per sq. in. may be used.

From Equation (145)

fo=9.TI(R? . )
Hence, =9 X 10,000/(50,000 X 14:9) = 0-12 in.

The principal dimensions of the coupling are therefore

a = thickness of rung = o0-12 in.

b = width of rung = 4.4 = 0-48 in.

S = overall length of rung = 36 . 4 = 4-32 ins.
L = overall length of teeth = 24 . 2 = 2-88 ins.
R = pitch circle radius of rungs = 3-86 ins.

# == number of rungs = 2. R/a = 64.
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The total weight of the spring elements in the coupling is
45 Ibs., which is very nearly the same weight as the spring
elements of the much larger diameter spoked coupling of
Example 30, and is much less than the weights of the helical
spring and sleeve spring couplings of Examples 31 and 32.
Since these alternative couplings have about the same tor-
sional rigidity and are designed with a similar factor of safety
it appears that the Bibby coupling is the most efficient of the
types investigated.

It is of interest to compare the relative capacity for storing
energy of the Bibby coupling with the coupling shown in
Fig. 55.

The torsional rigidity of a coupling of the type shown in
Fig. 55 having the same rung dimensions as the above Bibby
coupling is given by Equation (137),
ie. C=12.E.1.R? a3

= Iz X 30,000,000 X 0-000069 X I49 X 64/23-8
= 1,000,000 Ibs.-ins. per radian.

Thus the torsional rigidity of the coupling shown in Fig. 55
is two and a half times that of the Bibby coupling, in other
words, the energy storing capacity, or resilience, of the Bibby
coupling is two and a half times that of the coupling shown in
Fig. 55. This is also illustrated by the comparative resilience
diagrams in Fig. 57.

The weight of a coupling of the type shown in Fig. 55 will
not be appreciably less than that of the Bibby coupling, because
the active material in the overbanging ends of the Bibby rungs
is replaced by the inactive material required to anchor the
rungs in couplings of the type shown in Fig. 5.

It should also be noticed that the difficulty of anchoring the
rungs, which is a real disadvantage in couplings of the type
shown in Fig. 53, is completely overcome in the Bibby design.

Furthermore, by increasing the ratio S/L, the above com-
parison of resilience becomes even more favourable to the
Bibby coupling.

In cases where the coupling is required to operate con-
tinuously in resonance the working stress should not exceed
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+ 25,000 lbs. per sq. in., as already mentioned. Where the
space available for accommodating the coupling is such that
the proportions of the rung given in Fig. 56 are unsuitable,
Equations (140) and (143) can be used to determine the char-
acteristics of a coupling having more suitably proportioned
rungs.

Rubber-in-Shear Couplings.—In many cases the simplest
and most effective solution of a torsional vibration problem
is to tune the system so that no important resonant zone occurs
within the operating speed range. Tuning is carried out by
adjusting the inertia or the elastic characteristics of the oscil-
lating system, so that the frequency is either raised to such
a value that only high-order criticals of feeble intensity occur
within the operating range, or so that the frequency is lowered
to such a value that the operating range lies in the wide gap
between two low-order resonant zonmes. In many cases a
solution by increasing the natural frequency to a sufficiently
high value is undesirable, because it entails a disproportionate
increase in the scantlings of crankshafts and transmission
shafts, which in turn means a large increase in overall weight
of the power plant, a point of fundamental importance in
transport and aeronautical applications. .

Moreover, the trend towards higher operating speeds is
tending to make such a solution increasingly difficult, in other
words, speed increases are tending to do more than offset possible
frequency increases.

There remains